
Feature Extraction &
Image Processing for

Computer Vision

We would like to dedicate this book to our parents.
To Gloria and to Joaquin Aguado,

and to Brenda and the late Ian Nixon.

This page intentionally left blank

Feature Extraction &
Image Processing for

Computer Vision
Third edition

Mark S. Nixon

Alberto S. Aguado

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier

The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK

84 Theobald’s Road, London WC1X 8RR, UK

First edition 2002

Reprinted 2004, 2005

Second edition 2008

Third edition 2012

Copyright r 2012 Professor Mark S. Nixon and Alberto S. Aguado. Published by Elsevier Ltd.

All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or any information storage and retrieval

system, without permission in writing from the publisher. Details on how to seek permission, further

information about the Publisher’s permissions policies and our arrangements with organizations

such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our

website: www.elsevier.com/permissions

This book and the individual contributions contained in it are protected under copyright by the

Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience

broaden our understanding, changes in research methods, professional practices, or medical treatment

may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating

and using any information, methods, compounds, or experiments described herein. In using such

information or methods they should be mindful of their own safety and the safety of others, including

parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume

any liability for any injury and/or damage to persons or property as a matter of products liability,

negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas

contained in the material herein.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-123-96549-3

For information on all Academic Press publications visit

our website at books.elsevier.com

Printed and bound in the UK

12 10 9 8 7 6 5 4 3 2 1

http://www.elsevier.com/permissions
http://books.elsevier.com

Contents

Preface ..xi

CHAPTER 1 Introduction ... 1
1.1 Overview ..1

1.2 Human and computer vision..2

1.3 The human vision system ..4

1.3.1 The eye...5

1.3.2 The neural system..8

1.3.3 Processing ..9

1.4 Computer vision systems...12

1.4.1 Cameras..12

1.4.2 Computer interfaces...15

1.4.3 Processing an image ..17

1.5 Mathematical systems..19

1.5.1 Mathematical tools ..19

1.5.2 Hello Matlab, hello images! ..20

1.5.3 Hello Mathcad! ..25

1.6 Associated literature ..30

1.6.1 Journals, magazines, and conferences...........................30

1.6.2 Textbooks...31

1.6.3 The Web...34

1.7 Conclusions ..35

1.8 References ..35

CHAPTER 2 Images, Sampling, and Frequency
Domain Processing ... 37

2.1 Overview ..37

2.2 Image formation...38

2.3 The Fourier transform..42

2.4 The sampling criterion...49

2.5 The discrete Fourier transform ..53

2.5.1 1D transform..53

2.5.2 2D transform..57

2.6 Other properties of the Fourier transform.................................63

2.6.1 Shift invariance..63

2.6.2 Rotation..65

2.6.3 Frequency scaling ..66

2.6.4 Superposition (linearity) ..67

2.7 Transforms other than Fourier...68

2.7.1 Discrete cosine transform..68

v

2.7.2 Discrete Hartley transform ..70

2.7.3 Introductory wavelets ..71

2.7.4 Other transforms ..78

2.8 Applications using frequency domain properties......................78

2.9 Further reading...80

2.10 References..81

CHAPTER 3 Basic Image Processing Operations............................. 83
3.1 Overview ..83

3.2 Histograms ...84

3.3 Point operators ...86

3.3.1 Basic point operations ...86

3.3.2 Histogram normalization ...89

3.3.3 Histogram equalization..90

3.3.4 Thresholding ..93

3.4 Group operations..98

3.4.1 Template convolution ..98

3.4.2 Averaging operator ..101

3.4.3 On different template size ...103

3.4.4 Gaussian averaging operator104

3.4.5 More on averaging...107

3.5 Other statistical operators ..109

3.5.1 Median filter ..109

3.5.2 Mode filter ...112

3.5.3 Anisotropic diffusion ...114

3.5.4 Force field transform ...121

3.5.5 Comparison of statistical operators122

3.6 Mathematical morphology...123

3.6.1 Morphological operators..124

3.6.2 Gray-level morphology..127

3.6.3 Gray-level erosion and dilation128

3.6.4 Minkowski operators ...130

3.7 Further reading...134

3.8 References ..134

CHAPTER 4 Low-Level Feature Extraction (including
edge detection) ..137

4.1 Overview ..138

4.2 Edge detection..139

4.2.1 First-order edge-detection operators139

4.2.2 Second-order edge-detection operators161

4.2.3 Other edge-detection operators170

4.2.4 Comparison of edge-detection operators171

4.2.5 Further reading on edge detection...............................173

vi Contents

4.3 Phase congruency...173

4.4 Localized feature extraction ..180

4.4.1 Detecting image curvature (corner extraction)180

4.4.2 Modern approaches: region/patch analysis193

4.5 Describing image motion...199

4.5.1 Area-based approach ...200

4.5.2 Differential approach...204

4.5.3 Further reading on optical flow...................................211

4.6 Further reading...212

4.7 References ..212

CHAPTER 5 High-Level Feature Extraction: Fixed Shape
Matching ..217

5.1 Overview ..218

5.2 Thresholding and subtraction ..220

5.3 Template matching ..222

5.3.1 Definition ...222

5.3.2 Fourier transform implementation...............................230

5.3.3 Discussion of template matching234

5.4 Feature extraction by low-level features235

5.4.1 Appearance-based approaches.....................................235

5.4.2 Distribution-based descriptors238

5.5 Hough transform ..243

5.5.1 Overview..243

5.5.2 Lines...243

5.5.3 HT for circles...250

5.5.4 HT for ellipses ...255

5.5.5 Parameter space decomposition258

5.5.6 Generalized HT..271

5.5.7 Other extensions to the HT ...287

5.6 Further reading...288

5.7 References ..289

CHAPTER 6 High-Level Feature Extraction: Deformable
Shape Analysis ...293

6.1 Overview ..293

6.2 Deformable shape analysis ..294

6.2.1 Deformable templates..294

6.2.2 Parts-based shape analysis...297

6.3 Active contours (snakes)..299

6.3.1 Basics ...299

6.3.2 The Greedy algorithm for snakes................................301

viiContents

6.3.3 Complete (Kass) snake implementation......................308

6.3.4 Other snake approaches ...313

6.3.5 Further snake developments ..314

6.3.6 Geometric active contours (level-set-based

approaches) ..318

6.4 Shape skeletonization ..325

6.4.1 Distance transforms ...325

6.4.2 Symmetry...327

6.5 Flexible shape models—active shape and active

appearance..334

6.6 Further reading...338

6.7 References ..338

CHAPTER 7 Object Description...343
7.1 Overview ..343

7.2 Boundary descriptions ...345

7.2.1 Boundary and region ...345

7.2.2 Chain codes..346

7.2.3 Fourier descriptors ...349

7.3 Region descriptors ...378

7.3.1 Basic region descriptors ..378

7.3.2 Moments ..383

7.4 Further reading...395

7.5 References ..395

CHAPTER 8 Introduction to Texture Description,
Segmentation, and Classification399

8.1 Overview ..399

8.2 What is texture? ...400

8.3 Texture description ..403

8.3.1 Performance requirements ...403

8.3.2 Structural approaches ..403

8.3.3 Statistical approaches ..406

8.3.4 Combination approaches ...409

8.3.5 Local binary patterns ...411

8.3.6 Other approaches ...417

8.4 Classification..417

8.4.1 Distance measures ...417

8.4.2 The k-nearest neighbor rule...424

8.4.3 Other classification approaches...................................428

8.5 Segmentation..429

8.6 Further reading...431

8.7 References ..432

viii Contents

CHAPTER 9 Moving Object Detection and Description435
9.1 Overview ..435

9.2 Moving object detection ..437

9.2.1 Basic approaches ...437

9.2.2 Modeling and adapting to the (static) background442

9.2.3 Background segmentation by thresholding447

9.2.4 Problems and advances..450

9.3 Tracking moving features ..451

9.3.1 Tracking moving objects ...451

9.3.2 Tracking by local search ...452

9.3.3 Problems in tracking..455

9.3.4 Approaches to tracking..455

9.3.5 Meanshift and Camshift ..457

9.3.6 Recent approaches ...472

9.4 Moving feature extraction and description474

9.4.1 Moving (biological) shape analysis.............................474

9.4.2 Detecting moving shapes by shape matching

in image sequences ..476

9.4.3 Moving shape description..480

9.5 Further reading...483

9.6 References ..484

CHAPTER 10 Appendix 1: Camera Geometry Fundamentals........489
10.1 Image geometry ...489

10.2 Perspective camera ..490

10.3 Perspective camera model ...491

10.3.1 Homogeneous coordinates and projective

geometry...491

10.3.2 Perspective camera model analysis496

10.3.3 Parameters of the perspective camera model..............499

10.4 Affine camera ..500

10.4.1 Affine camera model ...501

10.4.2 Affine camera model and the perspective

projection ...503

10.4.3 Parameters of the affine camera model.......................504

10.5 Weak perspective model..505

10.6 Example of camera models ...507

10.7 Discussion ..517

10.8 References ..517

CHAPTER 11 Appendix 2: Least Squares Analysis519
11.1 The least squares criterion...519

11.2 Curve fitting by least squares ..521

ixContents

CHAPTER 12 Appendix 3: Principal Components Analysis525
12.1 Principal components analysis ..525

12.2 Data ..526

12.3 Covariance ...526

12.4 Covariance matrix..529

12.5 Data transformation ...530

12.6 Inverse transformation ...531

12.7 Eigenproblem...532

12.8 Solving the eigenproblem..533

12.9 PCA method summary ..533

12.10 Example ...534

12.11 References..540

CHAPTER 13 Appendix 4: Color Images.......................................541
13.1 Color images..542

13.2 Tristimulus theory..542

13.3 Color models..544

13.3.1 The colorimetric equation544

13.3.2 Luminosity function ..545

13.3.3 Perception based color models: the CIE RGB

and CIE XYZ...547

13.3.4 Uniform color spaces: CIE LUV and CIE LAB.....562

13.3.5 Additive and subtractive color models: RGB

and CMY ...568

13.3.6 Luminance and chrominance color models:

YUV, YIQ, and YCbCr ...575

13.3.7 Perceptual color models: HSV and HLS583

13.3.8 More color models...599

13.4 References..600

x Contents

Preface

What is new in the third edition?
Image processing and computer vision has been, and continues to be, subject to

much research and development. The research develops into books and so the

books need updating. We have always been interested to note that our book con-

tains stock image processing and computer vision techniques which are yet to be

found in other regular textbooks (OK, some is to be found in specialist books,

though these rarely include much tutorial material). This has been true of the pre-

vious editions and certainly occurs here.

In this third edition, the completely new material is on new methods for low-

and high-level feature extraction and description and on moving object detection,

tracking, and description. We have also extended the book to use color and more

modern techniques for object extraction and description especially those capital-

izing on wavelets and on scale space. We have of course corrected the previous

production errors and included more tutorial material where appropriate. We con-

tinue to update the references, especially to those containing modern survey mate-

rial and performance comparison. As such, this book—IOHO—remains the most

up-to-date text in feature extraction and image processing in computer vision.

Why did we write this book?
We always expected to be asked: “why on earth write a new book on computer

vision?”, and we have been. A fair question is “there are already many good

books on computer vision out in the bookshops, as you will find referenced later,

so why add to them?” Part of the answer is that any textbook is a snapshot of

material that exists prior to it. Computer vision, the art of processing images

stored within a computer, has seen a considerable amount of research by highly

qualified people and the volume of research would appear even to have increased

in recent years. That means a lot of new techniques have been developed, and

many of the more recent approaches are yet to migrate to textbooks. It is not just

the new research: part of the speedy advance in computer vision technique has

left some areas covered only in scanty detail. By the nature of research, one can-

not publish material on technique that is seen more to fill historical gaps, rather

than to advance knowledge. This is again where a new text can contribute.

Finally, the technology itself continues to advance. This means that there is

new hardware, new programming languages, and new programming environ-

ments. In particular for computer vision, the advance of technology means that

computing power and memory are now relatively cheap. It is certainly consider-

ably cheaper than when computer vision was starting as a research field. One of

xi

the authors here notes that the laptop in which his portion of the book was written

on has considerably more memory, is faster, and has bigger disk space and better

graphics than the computer that served the entire university of his student days.

And he is not that old! One of the more advantageous recent changes brought by

progress has been the development of mathematical programming systems. These

allow us to concentrate on mathematical technique itself rather than on implemen-

tation detail. There are several sophisticated flavors of which Matlab, one of the

chosen vehicles here, is (arguably) the most popular. We have been using these

techniques in research and in teaching, and we would argue that they have been

of considerable benefit there. In research, they help us to develop technique faster

and to evaluate its final implementation. For teaching, the power of a modern lap-

top and a mathematical system combines to show students, in lectures and in

study, not only how techniques are implemented but also how and why they work

with an explicit relation to conventional teaching material.

We wrote this book for these reasons. There is a host of material we could

have included but chose to omit; the taxonomy and structure we use to expose the

subject are of our own construction. Our apologies to other academics if it was

your own, or your favorite, technique that we chose to omit. By virtue of the

enormous breadth of the subject of image processing and computer vision, we

restricted the focus to feature extraction and image processing in computer vision

for this has been the focus of not only our research but also where the attention of

established textbooks, with some exceptions, can be rather scanty. It is, however,

one of the prime targets of applied computer vision, so would benefit from better

attention. We have aimed to clarify some of its origins and development, while

also exposing implementation using mathematical systems. As such, we have

written this text with our original aims in mind and maintained the approach

through the later editions.

The book and its support
Each chapter of this book presents a particular package of information concerning

feature extraction in image processing and computer vision. Each package is

developed from its origins and later referenced to more recent material. Naturally,

there is often theoretical development prior to implementation. We have provided

working implementations of most of the major techniques we describe, and

applied them to process a selection of imagery. Though the focus of our work has

been more in analyzing medical imagery or in biometrics (the science of recog-

nizing people by behavioral or physiological characteristic, like face recognition),

the techniques are general and can migrate to other application domains.

You will find a host of further supporting information at the book’s web site

http://www.ecs.soton.ac.uk/Bmsn/book/. First, you will find the worksheets (the

Matlab and Mathcad implementations that support the text) so that you can study

xii Preface

http://www.ecs.soton.ac.uk/∼msn/book/
http://www.ecs.soton.ac.uk/∼msn/book/

the techniques described herein. The demonstration site too is there. The web

site will be kept up-to-date as much as possible, for it also contains links to other

material such as web sites devoted to techniques and applications as well as to

available software and online literature. Finally, any errata will be reported there.

It is our regret and our responsibility that these will exist, and our inducement for

their reporting concerns a pint of beer. If you find an error that we don’t know

about (not typos like spelling, grammar, and layout) then use the “mailto” on the

web site and we shall send you a pint of good English beer, free!

There is a certain amount of mathematics in this book. The target audience is

the third- or fourth-year students of BSc/BEng/MEng in electrical or electronic

engineering, software engineering, and computer science, or in mathematics or

physics, and this is the level of mathematical analysis here. Computer vision can

be thought of as a branch of applied mathematics, though this does not really

apply to some areas within its remit and certainly applies to the material herein.

The mathematics essentially concerns mainly calculus and geometry, though

some of it is rather more detailed than the constraints of a conventional lecture

course might allow. Certainly, not all the material here is covered in detail in

undergraduate courses at Southampton.

Chapter 1 starts with an overview of computer vision hardware, software, and

established material, with reference to the most sophisticated vision system yet

“developed”: the human vision system. Though the precise details of the nature

of processing that allows us to see are yet to be determined, there is a consider-

able range of hardware and software that allow us to give a computer system

the capability to acquire, process, and reason with imagery, the function of

“sight.” The first chapter also provides a comprehensive bibliography of material

you can find on the subject including not only textbooks but also available soft-

ware and other material. As this will no doubt be subject to change, it might well

be worth consulting the web site for more up-to-date information. The preference

for journal references is those which are likely to be found in local university

libraries or on the Web, IEEE Transactions in particular. These are often sub-

scribed to as they are relatively of low cost and are often of very high quality.

Chapter 2 concerns the basics of signal processing theory for use in computer

vision. It introduces the Fourier transform that allows you to look at a signal in

a new way, in terms of its frequency content. It also allows us to work out the

minimum size of a picture to conserve information, to analyze the content in

terms of frequency, and even helps to speed up some of the later vision algo-

rithms. Unfortunately, it does involve a few equations, but it is a new way of

looking at data and at signals and proves to be a rewarding topic of study in its

own right. It extends to wavelets, which are a popular analysis tool in image

processing.

In Chapter 3, we start to look at basic image processing techniques, where

image points are mapped into a new value first by considering a single point in

an original image and then by considering groups of points. Not only do we see

common operations to make a picture’s appearance better, especially for human

xiiiPreface

vision, but also we see how to reduce the effects of different types of commonly

encountered image noise. We shall see some of the modern ways to remove noise

and thus clean images, and we shall also look at techniques which process an

image using notions of shape rather than mapping processes.

Chapter 4 concerns low-level features which are the techniques that describe

the content of an image, at the level of a whole image rather than in distinct

regions of it. One of the most important processes we shall meet is called edge

detection. Essentially, this reduces an image to a form of a caricaturist’s sketch,

though without a caricaturist’s exaggerations. The major techniques are presented

in detail, together with descriptions of their implementation. Other image proper-

ties we can derive include measures of curvature, which developed into modern

methods of feature extraction, and measures of movement. These are also cov-

ered in this chapter.

These edges, the curvature, or the motion need to be grouped in some way so

that we can find shapes in an image and are dealt with in Chapter 5. Using basic

thresholding rarely suffices for shape extraction. One of the newer approaches is

to group low-level features to find an object—in a way this is object extraction

without shape. Another approach to shape extraction concerns analyzing the

match of low-level information to a known template of a target shape. As this

can be computationally very cumbersome, we then progress to a technique that

improves computational performance, while maintaining an optimal performance.

The technique is known as the Hough transform and it has long been a popular

target for researchers in computer vision who have sought to clarify its basis,

improve its speed, and to increase its accuracy and robustness. Essentially, by the

Hough transform, we estimate the parameters that govern a shape’s appearance,

where the shapes range from lines to ellipses and even to unknown shapes.
In Chapter 6, some applications of shape extraction require to determine rather

more than the parameters that control appearance, and require to be able to

deform or flex to match the image template. For this reason, the chapter on shape

extraction by matching is followed by one on flexible shape analysis. This is a

topic that has shown considerable progress of late, especially with the introduc-

tion of snakes (active contours). The newer material is the formulation by level

set methods and brings new power to shape extraction techniques. These seek to

match a shape to an image by analyzing local properties. Further, we shall see

how we can describe a shape by its skeleton though with practical difficulty

which can be alleviated by symmetry (though this can be slow), and also how

global constraints concerning the statistics of a shape’s appearance can be used

to guide final extraction.

Up to this point, we have not considered techniques that can be used to

describe the shape found in an image. In Chapter 7, we shall find that the two

major approaches concern techniques that describe a shape’s perimeter and those

that describe its area. Some of the perimeter description techniques, the Fourier

descriptors, are even couched using Fourier transform theory that allows analysis

of their frequency content. One of the major approaches to area description, sta-

tistical moments, also has a form of access to frequency components, though it is

xiv Preface

of a very different nature to the Fourier analysis. One advantage is that insight

into descriptive ability can be achieved by reconstruction which should get back

to the original shape.

Chapter 8 describes texture analysis and also serves as a vehicle for introduc-

tory material on pattern classification. Texture describes patterns with no known

analytical description and has been the target of considerable research in com-

puter vision and image processing. It is used here more as a vehicle for material

that precedes it, such as the Fourier transform and area descriptions though refer-

ences are provided for access to other generic material. There is also introductory

material on how to classify these patterns against known data, with a selection of

the distance measures that can be used within that, and this is a window on a

much larger area, to which appropriate pointers are given.

Finally, Chapter 9 concerns detecting and analyzing moving objects. Moving

objects are detected by separating the foreground from the background, known as

background subtraction. Having separated the moving components, one

approach is then to follow or track the object as it moves within a sequence of

image frames. The moving object can be described and recognized from the

tracking information or by collecting together the sequence of frames to derive

moving object descriptions.

The appendices include materials that are germane to the text, such as camera

models and coordinate geometry, the method of least squares, a topic known as

principal components analysis, and methods of color description. These are

aimed to be short introductions and are appendices since they are germane to

much of the material throughout but not needed directly to cover it. Other related

material is referenced throughout the text, especially online material.

In this way, the text covers all major areas of feature extraction and image pro-

cessing in computer vision. There is considerably more material in the subject than

is presented here; for example, there is an enormous volume of material in 3D com-

puter vision and in 2D signal processing, which is only alluded to here. Topics that

are specifically not included are 3D processing, watermarking, and image coding.

To include all these topics would lead to a monstrous book that no one could afford

or even pick up. So we admit we give a snapshot, and we hope more that it is con-

sidered to open another window on a fascinating and rewarding subject.

In gratitude
We are immensely grateful to the input of our colleagues, in particular, Prof.

Steve Gunn, Dr. John Carter, and Dr. Sasan Mahmoodi. The family who put up

with it are Maria Eugenia and Caz and the nippers. We are also very grateful to

past and present researchers in computer vision at the Information: Signals,

Images, Systems (ISIS) research group under (or who have survived?) Mark’s

supervision at the School of Electronics and Computer Science, University of

Southampton. In addition to Alberto and Steve, these include Dr. Hani Muammar,

xvPreface

Prof. Xiaoguang Jia, Prof. Yan Qiu Chen, Dr. Adrian Evans, Dr. Colin Davies,

Dr. Mark Jones, Dr. David Cunado, Dr. Jason Nash, Dr. Ping Huang, Dr. Liang

Ng, Dr. David Benn, Dr. Douglas Bradshaw, Dr. David Hurley, Dr. John

Manslow, Dr. Mike Grant, Bob Roddis, Dr. Andrew Tatem, Dr. Karl Sharman,

Dr. Jamie Shutler, Dr. Jun Chen, Dr. Andy Tatem, Dr. Chew-Yean Yam,

Dr. James Hayfron-Acquah, Dr. Yalin Zheng, Dr. Jeff Foster, Dr. Peter

Myerscough, Dr. David Wagg, Dr. Ahmad Al-Mazeed, Dr. Jang-Hee Yoo,

Dr. Nick Spencer, Dr. Stuart Mowbray, Dr. Stuart Prismall, Dr. Peter Gething,

Dr. Mike Jewell, Dr. David Wagg, Dr. Alex Bazin, Hidayah Rahmalan, Dr. Xin

Liu, Dr. Imed Bouchrika, Dr. Banafshe Arbab-Zavar, Dr. Dan Thorpe, Dr. Cem

Direkoglu, Dr. Sina Samangooei, Dr. John Bustard, Alastair Cummings, Mina

Ibrahim, Muayed Al-Huseiny, Gunawan Ariyanto, Sung-Uk Jung, Richard Lowe,

Dan Reid, George Cushen, Nick Udell, Ben Waller, Anas Abuzaina, Mus’ab

Sahrim, Ari Rheum, Thamer Alathari, Tim Matthews and John Evans (for the

great hippo photo), and to Jamie Hutton, Ben Dowling, and Sina again (for the

Java demonstrations site). There has been much input from Mark’s postdocs too,

omitting those already mentioned, they include Dr. Hugh Lewis, Dr. Richard

Evans, Dr. Lee Middleton, Dr. Galina Veres, Dr. Baofeng Guo, and Dr. Michaela

Goffredo. We are also very grateful to other past Southampton students on BEng

and MEng Electronic Engineering, MEng Information Engineering, BEng and

MEng Computer Engineering, MEng Software Engineering, and BSc Computer

Science who have pointed out our earlier mistakes (and enjoyed the beer), have

noted areas for clarification, and in some cases volunteered some of the material

herein. Beyond Southampton, we remain grateful to the reviewers of the three

editions, to those who have written in and made many helpful suggestions, and to

Prof. Daniel Cremers, Dr. Timor Kadir, Prof. Tim Cootes, Prof. Larry Davis,

Dr. Pedro Felzenszwalb, Prof. Luc van Gool, and Prof. Aaron Bobick, for obser-

vations on and improvements to the text and/or for permission to use images. To

all of you, our very grateful thanks.

Final message
We ourselves have already benefited much by writing this book. As we already

know, previous students have also benefited and contributed to it as well. It

remains our hope that it does inspire people to join in this fascinating and reward-

ing subject that has proved to be such a source of pleasure and inspiration to its

many workers.

Mark S. Nixon

Electronics and Computer Science,

University of Southampton

Alberto S. Aguado

Sportradar

December 2011

xvi Preface

About the authors

Mark S. Nixon is a professor in Computer Vision at the University of

Southampton, United Kingdom. His research interests are in image processing

and computer vision. His team develops new techniques for static and moving

shape extraction which have found application in biometrics and in medical image

analysis. His team were early workers in automatic face recognition, later came

to pioneer gait recognition and more recently joined the pioneers of ear bio-

metrics. With Tieniu Tan and Rama Chellappa, their book Human ID based on

Gait is part of the Springer Series on Biometrics and was published in 2005. He

has chaired/program chaired many conferences (BMVC 98, AVBPA 03, IEEE

Face and Gesture FG06, ICPR 04, ICB 09, and IEEE BTAS 2010) and given

many invited talks. He is a Fellow IET and a Fellow IAPR.

Alberto S. Aguado is a principal programmer at Sportradar, where he works

developing Image Processing and real-time multicamera 3D tracking technologies

for sport events. Previously, he worked as a technology programmer for

Electronic Arts and for Black Rock Disney Game Studios. He worked as a lec-

turer in the Centre for Vision, Speech and Signal Processing in the University of

Surrey. He pursued a postdoctoral fellowship in Computer Vision at INRIA

Rhône-Alpes, and he received his Ph.D. in Computer Vision/Image Processing

from the University of Southampton.

xvii

CHAPTER

1Introduction

CHAPTER OUTLINE HEAD

1.1 Overview ... 1

1.2 Human and computer vision.. 2

1.3 The human vision system.. 4

1.3.1 The eye ...5

1.3.2 The neural system ..8

1.3.3 Processing ...9

1.4 Computer vision systems .. 12

1.4.1 Cameras ..12

1.4.2 Computer interfaces ...15

1.4.3 Processing an image ...17

1.5 Mathematical systems.. 19

1.5.1 Mathematical tools ...19

1.5.2 Hello Matlab, hello images! ...20

1.5.3 Hello Mathcad! ..25

1.6 Associated literature .. 30

1.6.1 Journals, magazines, and conferences ..30

1.6.2 Textbooks ..31

1.6.3 The Web ..34

1.7 Conclusions... 35

1.8 References .. 35

1.1 Overview
This is where we start, by looking at the human visual system to investigate what

is meant by vision, on to how a computer can be made to sense pictorial data and

how we can process an image. The overview of this chapter is shown in

Table 1.1; you will find a similar overview at the start of each chapter. There are

no references (citations) in the overview, citations are made in the text and are

collected at the end of each chapter.

Feature Extraction & Image Processing for Computer Vision.

© 2012 Mark Nixon and Alberto Aguado. Published by Elsevier Ltd. All rights reserved.
1

1.2 Human and computer vision
A computer vision system processes images acquired from an electronic camera,

which is like the human vision system where the brain processes images derived

from the eyes. Computer vision is a rich and rewarding topic for study and

research for electronic engineers, computer scientists, and many others.

Increasingly, it has a commercial future. There are now many vision systems in

routine industrial use: cameras inspect mechanical parts to check size, food is

inspected for quality, and images used in astronomy benefit from computer vision

techniques. Forensic studies and biometrics (ways to recognize people) using

computer vision include automatic face recognition and recognizing people by the

“texture” of their irises. These studies are paralleled by biologists and psycholo-

gists who continue to study how our human vision system works, and how we see

and recognize objects (and people).

A selection of (computer) images is given in Figure 1.1; these images com-

prise a set of points or picture elements (usually concatenated to pixels) stored as

an array of numbers in a computer. To recognize faces, based on an image

such as in Figure 1.1(a), we need to be able to analyze constituent shapes, such as

the shape of the nose, the eyes, and the eyebrows, to make some measurements to

describe, and then recognize, a face. (Figure 1.1(a) is perhaps one of the most

Table 1.1 Overview of Chapter 1

Main Topic Subtopics Main Points

Human vision system How the eye works, how
visual information is
processed, and how it
can fail

Sight, vision, lens, retina,
image, color, monochrome,
processing, brain, visual
illusions

Computer
vision systems

How electronic images are
formed, how video is fed into
a computer, and how we can
process the information using
a computer

Picture elements, pixels, video
standard, camera
technologies, pixel
technology, performance
effects, specialist cameras,
video conversion, computer
languages, processing
packages. Demonstrations of
working techniques

Mathematical
systems

How we can process images
using mathematical
packages; introduction to the
Matlab and Mathcad
systems

Ease, consistency, support,
visualization of results,
availability, introductory use,
example worksheets

Literature Other textbooks and other
places to find information on
image processing, computer
vision, and feature extraction

Magazines, textbooks,
web sites, and this book’s
web site

2 CHAPTER 1 Introduction

famous images in image processing. It is called the Lenna image and is derived

from a picture of Lena Sjööblom in Playboy in 1972.) Figure 1.1(b) is an ultra-

sound image of the carotid artery (which is near the side of the neck and supplies

blood to the brain and the face), taken as a cross section through it. The top

region of the image is near the skin; the bottom is inside the neck. The image

arises from combinations of the reflections of the ultrasound radiation by tissue.

This image comes from a study aimed to produce three-dimensional (3D) models

of arteries, to aid vascular surgery. Note that the image is very noisy, and this

obscures the shape of the (elliptical) artery. Remotely sensed images are often

analyzed by their texture content. The perceived texture is different between the

road junction and the different types of foliage as seen in Figure 1.1(c). Finally,

Figure 1.1(d) shows a magnetic resonance image (MRI) of a cross section near

the middle of a human body. The chest is at the top of the image, and the lungs

and blood vessels are the dark areas, the internal organs and the fat appear gray.

MRI images are in routine medical use nowadays, owing to their ability to pro-

vide high-quality images.

There are many different image sources. In medical studies, MRI is good for

imaging soft tissue but does not reveal the bone structure (the spine cannot be

seen in Figure 1.1(d)); this can be achieved by using computerized tomography (CT)

which is better at imaging bone, as opposed to soft tissue. Remotely sensed images

can be derived from infrared (thermal) sensors or synthetic-aperture radar, rather than

by cameras, as shown in Figure 1.1(c). Spatial information can be provided by two-

dimensional (2D) arrays of sensors, including sonar arrays. There are perhaps more

varieties of sources of spatial data in medical studies than in any other area. But com-

puter vision techniques are used to analyze any form of data, not just the images

from cameras.

Synthesized images are good for evaluating techniques and finding out how

they work, and some of the bounds on performance. Two synthetic images are

shown in Figure 1.2. Figure 1.2(a) is an image of circles that were specified

mathematically. The image is an ideal case: the circles are perfectly defined and

the brightness levels have been specified to be constant. This type of synthetic

(a) Face from a camera (b) Artery from
ultrasound

(c) Ground by remote-
sensing

(d) Body by magnetic
resonance

FIGURE 1.1

Real images from different sources.

31.2 Human and computer vision

image is good for evaluating techniques which find the borders of the shape (its

edges), the shape itself, and even for making a description of the shape.

Figure 1.2(b) is a synthetic image made up of sections of real image data. The

borders between the regions of image data are exact, again specified by a pro-

gram. The image data comes from a well-known texture database, the Brodatz

album of textures. This was scanned and stored as a computer image. This image

can be used to analyze how well computer vision algorithms can identify regions

of differing texture.

This chapter will show you how basic computer vision systems work, in the

context of the human vision system. It covers the main elements of human vision

showing you how your eyes work (and how they can be deceived!). For computer

vision, this chapter covers the hardware and the software used for image analysis,

giving an introduction to Mathcad and Matlab, the software tools used throughout

this text to implement computer vision algorithms. Finally, a selection of pointers

to other material is provided, especially those for more detail on the topics cov-

ered in this chapter.

1.3 The human vision system
Human vision is a sophisticated system that senses and acts on visual stimuli. It

has evolved for millions of years, primarily for defense or survival. Intuitively,

computer and human vision appear to have the same function. The purpose of

both systems is to interpret spatial data, data that are indexed by more than one

dimension (1D). Even though computer and human vision are functionally simi-

lar, you cannot expect a computer vision system to exactly replicate the function

of the human eye. This is partly because we do not understand fully how the

(a) Circles (b) Textures

FIGURE 1.2

Examples of synthesized images.

4 CHAPTER 1 Introduction

vision system of the eye and brain works, as we shall see in this section.

Accordingly, we cannot design a system to exactly replicate its function. In fact,

some of the properties of the human eye are useful when developing computer

vision techniques, whereas others are actually undesirable in a computer vision

system. But we shall see computer vision techniques which can, to some extent

replicate, and in some cases even improve upon, the human vision system.

You might ponder this, so put one of the fingers from each of your hands in

front of your face and try to estimate the distance between them. This is difficult,

and I am sure you would agree that your measurement would not be very accu-

rate. Now put your fingers very close together. You can still tell that they are

apart even when the distance between them is tiny. So human vision can distin-

guish relative distance well but is poor for absolute distance. Computer vision is

the other way around: it is good for estimating absolute difference but with rela-

tively poor resolution for relative difference. The number of pixels in the image

imposes the accuracy of the computer vision system, but that does not come until

the next chapter. Let us start at the beginning, by seeing how the human vision

system works.

In human vision, the sensing element is the eye from which images are trans-

mitted via the optic nerve to the brain, for further processing. The optic nerve has

insufficient bandwidth to carry all the information sensed by the eye.

Accordingly, there must be some preprocessing before the image is transmitted

down the optic nerve. The human vision system can be modeled in three parts:

1. the eye—this is a physical model since much of its function can be

determined by pathology;

2. a processing system—this is an experimental model since the function can be

modeled, but not determined precisely; and

3. analysis by the brain—this is a psychological model since we cannot access or

model such processing directly but only determine behavior by experiment

and inference.

1.3.1 The eye
The function of the eye is to form an image; a cross section of the eye is illus-

trated in Figure 1.3. Vision requires an ability to selectively focus on objects of

interest. This is achieved by the ciliary muscles that hold the lens. In old age, it is

these muscles which become slack and the eye loses its ability to focus at short

distance. The iris, or pupil, is like an aperture on a camera and controls the

amount of light entering the eye. It is a delicate system and needs protection; this

is provided by the cornea (sclera). This is outside the choroid which has blood

vessels that supply nutrition and is opaque to cut down the amount of light. The

retina is on the inside of the eye, which is where light falls to form an image. By

this system, muscles rotate the eye, and shape the lens, to form an image on the

fovea (focal point) where the majority of sensors are situated. The blind spot is

where the optic nerve starts, there are no sensors there.

51.3 The human vision system

Focusing involves shaping the lens, rather than positioning it as in a camera.

The lens is shaped to refract close images greatly, and distant objects little,

essentially by “stretching” it. The distance of the focal center of the lens varies

approximately from 14 to 17 mm depending on the lens shape. This implies that a

world scene is translated into an area of about 2 mm2. Good vision has high acu-

ity (sharpness), which implies that there must be very many sensors in the area

where the image is formed.

There are actually nearly 100 million sensors dispersed around the retina.

Light falls on these sensors to stimulate photochemical transmissions, which

results in nerve impulses that are collected to form the signal transmitted by the

eye. There are two types of sensor: firstly the rods—these are used for black and

white (scotopic) vision, and secondly the cones—these are used for color (phot-

opic) vision. There are approximately 10 million cones and nearly all are found

within 5� of the fovea. The remaining 100 million rods are distributed around the

retina, with the majority between 20� and 5� of the fovea. Acuity is actually

expressed in terms of spatial resolution (sharpness) and brightness/color resolution

and is greatest within 1� of the fovea.
There is only one type of rod, but there are three types of cones. They are:

1. S—short wavelength: these sense light toward the blue end of the visual

spectrum;

2. M—medium wavelength: these sense light around green; and

3. L—long wavelength: these sense light toward the red region of the spectrum.

Lens

Ciliary muscle

Choroid/sclera

Optic nerve

Fovea

Blind spot

Retina

FIGURE 1.3

Human eye.

6 CHAPTER 1 Introduction

The total response of the cones arises from summing the response of these

three types of cone; this gives a response covering the whole of the visual spec-

trum. The rods are sensitive to light within the entire visual spectrum, giving the

monochrome capability of scotopic vision. Accordingly, when the light level is

low, images are formed away from the fovea, to use the superior sensitivity of the

rods, but without the color vision of the cones. Note that there are actually very

few of the bluish cones, and there are many more of the others. But we can still

see a lot of blue (especially given ubiquitous denim!). So, somehow, the human

vision system compensates for the lack of blue sensors, to enable us to perceive

it. The world would be a funny place with red water! The vision response is actu-

ally logarithmic and depends on brightness adaption from dark conditions, where

the image is formed on the rods, to brighter conditions, where images are formed

on the cones. More on color sensing is to be found in Chapter 13, Appendix 4.

One inherent property of the eye, known as Mach bands, affects the way we

perceive images. These are illustrated in Figure 1.4 and are the bands that appear

to be where two stripes of constant shade join. By assigning values to the image

brightness levels, the cross section of plotted brightness is shown in Figure 1.4(a).

(a) Image showing the Mach band effect

mach0,x

0 50 100

100

200

seenx

x
0 50 100

100

200

x

(b) Cross section through (a) (c) Perceived cross section through (a)

FIGURE 1.4

Illustrating the Mach band effect.

71.3 The human vision system

This shows that the picture is formed from stripes of constant brightness. Human

vision perceives an image for which the cross section is as plotted in Figure 1.4(c).

These Mach bands do not really exist but are introduced by your eye. The bands

arise from overshoot in the eyes’ response at boundaries of regions of different

intensity (this aids us to differentiate between objects in our field of view). The real

cross section is illustrated in Figure 1.4(b). Also note that a human eye can distin-

guish only relatively few gray levels. It actually has a capability to discriminate

between 32 levels (equivalent to 5 bits), whereas the image of Figure 1.4(a) could

have many more brightness levels. This is why your perception finds it more diffi-

cult to discriminate between the low intensity bands on the left of Figure 1.4(a).

(Note that Mach bands cannot be seen in the earlier image of circles (Figure 1.2(a))

due to the arrangement of gray levels.) This is the limit of our studies of the first

level of human vision; for those who are interested, Cornsweet (1970) provides

many more details concerning visual perception.

So we have already identified two properties associated with the eye that it

would be difficult to include, and would often be unwanted, in a computer vision

system: Mach bands and sensitivity to unsensed phenomena. These properties are

integral to human vision. At present, human vision is far more sophisticated than we

can hope to achieve with a computer vision system. Infrared-guided-missile vision

systems can actually have difficulty in distinguishing between a bird at 100 m and a

plane at 10 km. Poor birds! (Lucky plane?) Human vision can handle this with ease.

1.3.2 The neural system
Neural signals provided by the eye are essentially the transformed response of the

wavelength-dependent receptors, the cones and the rods. One model is to combine

these transformed signals by addition, as illustrated in Figure 1.5. The response is

transformed by a logarithmic function, mirroring the known response of the eye.

This is then multiplied by a weighting factor that controls the contribution of a

particular sensor. This can be arranged to allow combination of responses from a

particular region. The weighting factors can be chosen to afford particular filtering

properties. For example, in lateral inhibition, the weights for the center sensors are

much greater than the weights for those at the extreme. This allows the response

of the center sensors to dominate the combined response given by addition. If the

weights in one half are chosen to be negative, while those in the other half are pos-

itive, then the output will show detection of contrast (change in brightness), given

by the differencing action of the weighting functions.

The signals from the cones can be combined in a manner that reflects chromi-

nance (color) and luminance (brightness). This can be achieved by subtraction of

logarithmic functions, which is then equivalent to taking the logarithm of their

ratio. This allows measures of chrominance to be obtained. In this manner, the

signals derived from the sensors are combined prior to transmission through the

optic nerve. This is an experimental model, since there are many ways possible to

combine the different signals together.

8 CHAPTER 1 Introduction

Visual information is then sent back to arrive at the lateral geniculate nucleus

(LGN) which is in the thalamus and is the primary processor of visual informa-

tion. This is a layered structure containing different types of cells, with differing

functions. The axons from the LGN pass information on to the visual cortex. The

function of the LGN is largely unknown, though it has been shown to play a part

in coding the signals that are transmitted. It is also considered to help the visual

system focus its attention, such as on sources of sound. For further information

on retinal neural networks, see Ratliff (1965); an alternative study of neural pro-

cessing can be found in Overington (1992).

1.3.3 Processing
The neural signals are then transmitted to two areas of the brain for further pro-

cessing. These areas are the associative cortex, where links between objects are

made, and the occipital cortex, where patterns are processed. It is naturally diffi-

cult to determine precisely what happens in this region of the brain. To date there

have been no volunteers for detailed study of their brain’s function (though prog-

ress with new imaging modalities such as positive emission tomography or elec-

trical impedance tomography will doubtless help). For this reason, there are only

psychological models to suggest how this region of the brain operates.

It is well known that one function of the human vision system is to use edges,

or boundaries, of objects. We can easily read the word in Figure 1.6(a); this is

achieved by filling in the missing boundaries in the knowledge that the pattern

Logarithmic response

Sensor inputs

p1 log(p1) w1 × log(p1)

w2 × log(p2)

w3 × log(p3)

w4 × log(p4)

w5 × log(p5)

log(p2)

log(p3)

log(p4)

log(p5)

p2

p3

p4

p5

Weighting functions

Output

∑

FIGURE 1.5

Neural processing.

91.3 The human vision system

most likely represents a printed word. But we can infer more about this image;

there is a suggestion of illumination, causing shadows to appear in unlit areas. If

the light source is bright, then the image will be washed out, causing the disap-

pearance of the boundaries which are interpolated by our eyes. So there is more

than just physical response, there is also knowledge, including prior knowledge of

solid geometry. This situation is illustrated in Figure 1.6(b) that could represent

three “pacmen” about to collide or a white triangle placed on top of three black

circles. Either situation is possible.

It is also possible to deceive human vision, primarily by imposing a scene that

it has not been trained to handle. In the famous Zollner illusion, Figure 1.7(a), the

bars appear to be slanted, whereas in reality they are vertical (check this by plac-

ing a pen between the lines): the small crossbars mislead your eye into perceiving

the vertical bars as slanting. In the Ebbinghaus illusion, Figure 1.7(b), the inner

(a) Word? (b) Pacmen?

FIGURE 1.6

How human vision uses edges.

(a) Zollner (b) Ebbinghaus

FIGURE 1.7

Static illusions.

10 CHAPTER 1 Introduction

circle appears to be larger when surrounded by small circles, than it is when sur-

rounded by larger circles.

There are dynamic illusions too: you can always impress children with the

“see my wobbly pencil” trick. Just hold the pencil loosely between your fingers

and, to whoops of childish glee, when the pencil is shaken up and down, the solid

pencil will appear to bend. Benham’s disk (Figure 1.8) shows how hard it is to

model vision accurately. If you make up a version of this disk into a spinner

(push a matchstick through the center) and spin it anticlockwise, you do not see

three dark rings, but you will see three colored ones. The outside one will appear

to be red, the middle one a sort of green, and the inner one will appear deep

blue. (This can depend greatly on lighting and contrast between the black and

white on the disk. If the colors are not clear, try it in a different place, with differ-

ent lighting.) You can appear to explain this when you notice that the red colors

are associated with long lines and the blue with short lines. But this is from phys-

ics, not psychology. Now spin the disk clockwise. The order of the colors

reverses: red is associated with short lines (inside) and blue with long lines (out-

side). So the argument from physics is clearly incorrect, since red is now associ-

ated with short lines not long ones, revealing the need for psychological

explanation of the eyes’ function. This is not color perception; see Armstrong

(1991) for an interesting (and interactive!) study of color theory and perception.

Naturally, there are many texts on human vision—one popular text on human

visual perception is by Schwarz (2004) and there is an online book: The Joy of

Vision (http://www.yorku.ca/eye/thejoy.htm)—useful, despite its title! Marr’s

(1982) seminal text is a computational investigation into human vision and visual

perception, investigating it from a computer vision viewpoint. For further details

on pattern processing in human vision, see Bruce and Green (1990); for more illu-

sions see Rosenfeld and Kak (1982). Many of the properties of human vision are

FIGURE 1.8

Benham’s disk.

111.3 The human vision system

http://www.yorku.ca/eye/thejoy.htm

hard to include in a computer vision system, but let us now look at the basic com-

ponents that are used to make computers see.

1.4 Computer vision systems
Given the progress in computer technology and domestic photography, computer

vision hardware is now relatively inexpensive; a basic computer vision system

requires a camera, a camera interface, and a computer. These days, some personal

computers offer the capability for a basic vision system, by including a camera

and its interface within the system. There are specialized systems for vision,

offering high performance in more than one aspect. These can be expensive, as

any specialist system is.

1.4.1 Cameras
A camera is the basic sensing element. In simple terms, most cameras rely on

the property of light to cause hole/electron pairs (the charge carriers in electron-

ics) in a conducting material. When a potential is applied (to attract the charge

carriers), this charge can be sensed as current. By Ohm’s law, the voltage across

a resistance is proportional to the current through it, so the current can be turned

into a voltage by passing it through a resistor. The number of hole/electron pairs

is proportional to the amount of incident light. Accordingly, greater charge (and

hence greater voltage and current) is caused by an increase in brightness. In this

manner cameras can provide as output a voltage which is proportional to the

brightness of the points imaged by the camera. Cameras are usually arranged to

supply video according to a specified standard. Most will aim to satisfy the CCIR

standard that exists for closed circuit television systems.

There are three main types of cameras: vidicons, charge coupled devices

(CCDs), and, more recently, complementary metal oxide silicon (CMOS) cameras

(now the dominant technology for logic circuit implementation). Vidicons are the

older (analog) technology, which though cheap (mainly by virtue of longevity in

production) are being replaced by the newer CCD and CMOS digital technolo-
gies. The digital technologies now dominate much of the camera market because

they are lightweight and cheap (with other advantages) and are therefore used in

the domestic video market.

Vidicons operate in a manner akin to a television in reverse. The image is

formed on a screen and then sensed by an electron beam that is scanned across

the screen. This produces an output which is continuous, the output voltage is

proportional to the brightness of points in the scanned line, and is a continuous

signal, a voltage which varies continuously with time. On the other hand, CCDs

and CMOS cameras use an array of sensors; these are regions where charge is

collected, which is proportional to the light incident on that region. This is then

available in discrete, or sampled, form as opposed to the continuous sensing of a

12 CHAPTER 1 Introduction

vidicon. This is similar to human vision with its array of cones and rods, but digi-

tal cameras use a rectangular regularly spaced lattice, whereas human vision

uses a hexagonal lattice with irregular spacing.

Two main types of semiconductor pixel sensors are illustrated in Figure 1.9.

In the passive sensor, the charge generated by incident light is presented to a bus

through a pass transistor. When the signal Tx is activated, the pass transistor is

enabled and the sensor provides a capacitance to the bus, one that is proportional

to the incident light. An active pixel includes an amplifier circuit that can com-

pensate for limited fill factor of the photodiode. The select signal again controls

presentation of the sensor’s information to the bus. A further reset signal allows

the charge site to be cleared when the image is re-scanned.

The basis of a CCD sensor is illustrated in Figure 1.10. The number of charge

sites gives the resolution of the CCD sensor; the contents of the charge sites (or

buckets) need to be converted to an output (voltage) signal. In simple terms, the

contents of the buckets are emptied into vertical transport registers which are shift

registers moving information toward the horizontal transport registers. This is the

column bus supplied by the pixel sensors. The horizontal transport registers empty

the information row by row (point by point) into a signal conditioning unit which

transforms the sensed charge into a voltage which is proportional to the charge in

a bucket and hence proportional to the brightness of the corresponding point in

the scene imaged by the camera. CMOS cameras are like a form of memory: the

charge incident on a particular site in a 2D lattice is proportional to the brightness

at a point. The charge is then read like computer memory. (In fact, a computer

memory RAM chip can act as a rudimentary form of camera when the circuit—

the one buried in the chip—is exposed to light.)

Incident
light

Tx

Column bus

(a) Passive

Reset

Incident
light Select

Column bus

VDD

(b) Active

FIGURE 1.9

Pixel sensors.

131.4 Computer vision systems

There are many more varieties of vidicon (e.g., Chalnicon) than there are of

CCD technology (e.g., charge injection device), perhaps due to the greater age of

basic vidicon technology. Vidicons are cheap but have a number of intrinsic per-

formance problems. The scanning process essentially relies on “moving parts.”

As such, the camera performance will change with time, as parts wear; this is

known as aging. Also, it is possible to burn an image into the scanned screen by

using high-incident light levels; vidicons can also suffer lag that is a delay in

response to moving objects in a scene. On the other hand, the digital technologies

are dependent on the physical arrangement of charge sites and as such do not suf-

fer from aging but can suffer from irregularity in the charge sites’ (silicon) mate-

rial. The underlying technology also makes CCD and CMOS cameras less

sensitive to lag and burn, but the signals associated with the CCD transport regis-

ters can give rise to readout effects. CCDs actually only came to dominate camera

technology when technological difficulties associated with quantum efficiency

(the magnitude of response to incident light) for the shorter, blue, wavelengths

were solved. One of the major problems in CCD cameras is blooming where

bright (incident) light causes a bright spot to grow and disperse in the image (this

used to happen in the analog technologies too). This happens much less in CMOS

cameras because the charge sites can be much better defined, and reading their

data is equivalent to reading memory sites as opposed to shuffling charge between

sites. Also, CMOS cameras have now overcome the problem of fixed pattern

Horizontal transport register

Video
output

Control
inputs

Pixel sensors

Control

Signal
condit-
ioning

V
er

tic
al

 tr
an

sp
or

t r
eg

is
te

r

V
er

tic
al

 tr
an

sp
or

t r
eg

is
te

r

V
er

tic
al

 tr
an

sp
or

t r
eg

is
te

r

FIGURE 1.10

CCD sensing element.

14 CHAPTER 1 Introduction

noise that plagued earlier MOS cameras. CMOS cameras are actually much more

recent than CCDs. This begs a question as to which is the best: CMOS or CCD?

Given that they both will be subject to much continued development though

CMOS is a cheaper technology and because it lends itself directly to intelligent

cameras with on-board processing. This is mainly because the feature size of

points (pixels) in a CCD sensor is limited to be about 4 µm so that enough light is

collected. In contrast, the feature size in CMOS technology is considerably smal-

ler, currently at around 0.1 µm. Accordingly, it is now possible to integrate signal

processing within the camera chip and thus it is perhaps possible that CMOS

cameras will eventually replace CCD technologies for many applications.

However, the more modern CCDs also have on-board circuitry, and their process

technology is more mature, so the debate will continue!

Finally, there are specialist cameras, which include high-resolution devices

(which can give pictures with a great number of points), low-light level cameras,

which can operate in very dark conditions (this is where vidicon technology is

still found), and infrared cameras which sense heat to provide thermal images.

Increasingly, hyperspectral cameras are available which have more sensing bands.

For more detail concerning modern camera practicalities and imaging systems,

see Nakamura (2005). For more detail on sensor development, particularly

CMOS, Fossum (1997) is well worth a look.

1.4.2 Computer interfaces
This technology is in a rapid state of change, due to the emergence of digital

cameras. There are still some legacies from the older analog systems to be found

in the newer digital systems. There is also some older technology in deployed sys-

tems. As such, we shall cover the main points of the two approaches, but note

that technology in this area continues to advance. Essentially, an image sensor

converts light into a signal which is expressed either as a continuous signal, or

sampled (digital) form. Some (older) systems expressed the camera signal as an

analog continuous signal, according to a standard – often the CCIR standard and

this was converted at the computer (and still is in some cases). Modern digital

systems convert the sensor information into digital information with on-chip cir-

cuitry and then provide the digital information according to a specified standard.

The older systems, such as surveillance systems, supplied (or supply) video

whereas the newer systems are digital. Video implies delivering the moving

image as a sequence of frames and these can be in analog (continuous) or discrete

(sampled) form (of which one format is Digital Video – DV).

An interface that converts an analog signal into a set of digital numbers is

called a framegrabber since it grabs frames of data from a video sequence, and
is illustrated in Figure 1.11. Note that cameras which provide digital information

do not need this particular interface (it is inside the camera). However, an analog

camera signal is continuous and is transformed into digital (discrete) format

151.4 Computer vision systems

using an Analogue to Digital (A/D) converter. Flash converters are usually used

due to the high speed required for conversion (say 11 MHz that cannot be met by

any other conversion technology). Usually, 8-bit A/D converters are used; at

6dB/ bit, this gives 48dB which just satisfies the CCIR stated bandwidth of

approximately 45dB. The output of the A/D converter is often fed to look-up

tables (LUTs) which implement designated conversion of the input data, but in

hardware, rather than in software, and this is very fast. The outputs of the A/D

converter are then stored. Note that there are aspects of the sampling process

which are of considerable interest in computer vision; these are covered in

Chapter 2.

In digital camera systems, this processing is usually performed on the camera

chip, and the camera eventually supplies digital information, often in coded form.

IEEE 1394 (or Firewire) is a way of connecting devices external to a computer

and often used for digital video cameras as it supports high-speed digital commu-

nication and can provide power; this is similar to USB which can be used for still

cameras. Firewire naturally needs a connection system and software to operate it,

and this can be easily acquired. One important aspect of Firewire is its support of

isochronous transfer operation which guarantees timely delivery of data that is of

importance in video-based systems.

There are clearly many different ways to design framegrabber units, especially

for specialist systems. Note that the control circuitry has to determine exactly

when image data is to be sampled. This is controlled by synchronisation pulses

within the video signal: the sync signals which control the way video information

is constructed. Images are constructed from a set of lines, those lines scanned by

a camera. In the older analog systems, in order to reduce requirements on trans-

mission (and for viewing), the 625 lines (in the PAL system, NTSC is of lower

resolution) were transmitted in two interlaced fields, each of 312.5 lines, as illus-

trated in Figure 1.12. These were the odd and the even fields. Modern televisions

are progressive scan, which is like reading a book: the picture is constructed line

A/D
converter

Control

Input
video Signal

conditioning
Look-up

table
Image

memory

Computer
interface

Computer

FIGURE 1.11

A computer interface—a framegrabber.

16 CHAPTER 1 Introduction

by line. There is also an aspect ratio in picture transmission: pictures are arranged

to be longer than they are high. These factors are chosen to make television

images attractive to human vision, and can complicate the design of a framegrab-

ber unit. There are of course conversion systems to allow change between the sys-

tems. Nowadays, digital video cameras can provide digital output, in progressive

scan delivering sequences of images that are readily processed. There are firewire

cameras and there are Gigabit Ethernet cameras which transmit high speed video

and control information over Ethernet networks. Or there are webcams, or just

digital camera systems that deliver images straight to the computer. Life just gets

easier!

This completes the material we need to cover for basic computer vision sys-

tems. For more detail concerning practicalities of computer vision systems, see,

for example, Davies (2005) (especially for product inspection) or Umbaugh

(2005) (both offer much more than this).

1.4.3 Processing an image
Most image processing and computer vision techniques are implemented in com-

puter software. Often, only the simplest techniques migrate to hardware, though

coding techniques to maximize efficiency in image transmission are of sufficient

commercial interest that they have warranted extensive, and very sophisticated,

hardware development. The systems include the Joint Photographic Expert Group

Aspect ratio

4

3

Television picture

Even field lines Odd field lines

FIGURE 1.12

Interlacing in television pictures.

171.4 Computer vision systems

(JPEG) and the Moving Picture Expert Group (MPEG) image coding formats. C,

C11, and JavaTM are by now the most popular languages for vision system

implementation because of strengths in integrating high- and low-level functions

and of the availability of good compilers. As systems become more complex,

C11 and Java become more attractive when encapsulation and polymorphism

may be exploited. Many people use JAVA as a development language partly not

only due to platform independence but also due to ease in implementation (though

some claim that speed/efficiency is not as good as in C/C11). There is consider-

able implementation advantage associated with use of the JavaTM Advanced

Imaging API (Application Programming Interface). There is an online demonstra-

tion site, for educational purposes only, associated with this book—to be found at

web site http://www.ecs.soton.ac.uk/Bmsn/book/new_demo/. This is based

around Java, so that the site can be used over the Web (as long as Java is installed

and up-to-date). There are some textbooks that offer image processing systems

implemented in these languages. Also, there are many commercial packages

available, though these are often limited to basic techniques, and do not include

the more sophisticated shape extraction techniques—and the underlying imple-

mentation can be hard to check. Some popular texts such as O’Gorman et al.

(2008) and Parker (2010) include those which present working algorithms.

In terms of software packages, one of the most popular is OpenCV (Open

Source Computer Vision) whose philosophy is to “aid commercial uses of com-

puter vision in human�computer interface, robotics, monitoring, biometrics, and

security by providing a free and open infrastructure where the distributed efforts

of the vision community can be consolidated and performance optimized.” This

contains a wealth of technique and (optimized) implementation—there is a

Wikipedia entry and a discussion web site supporting it. There is now a textbook

which describes its use (Bradski and Kaehler, 2008) and which has excellent

descriptions of how to use the code (and some great diagrams) but which omits

much of the (mathematical) background and analysis so it largely describes usage

rather than construction. There is also an update on OpenCV 2.0 with much prac-

tical detail (Langaniere, 2011). Many of the main operators described are avail-

able in OpenCV (12), but not all.

Then there are the VXLs (the Vision-something-Libraries, groan). This is “a

collection of C11 libraries designed for computer vision research and implemen-

tation.” There is Adobe’s Generic Image Library (GIL) which aims to ease diffi-

culties with writing imaging-related code that is both generic and efficient. The

CImg Library (another duff acronym: it derives from Cool Image) is a system

aimed to be easy to use, efficient, and a generic base for image processing algo-

rithms. Note that these are open source, and there are licenses and conditions on

use and exploitation. Web links are shown in Table 1.2. Finally, there are compe-

titions for open source software, e.g., at ACM Multimedia (one winner in 2010

was VLFeat—An open and portable library of computer vision algorithms http://

www.acmmm10.org/).

18 CHAPTER 1 Introduction

http://www.ecs.soton.ac.uk/∼msn/book/new_demo/
http://www.ecs.soton.ac.uk/∼msn/book/new_demo/
http://www.acmmm10.org/
http://www.acmmm10.org/

1.5 Mathematical systems
Several mathematical systems have been developed. These offer what is virtu-

ally a word-processing system for mathematicians and can be screen-based using

a Windows system. The advantage of these systems is that you can transpose

mathematics pretty well directly from textbooks, and see how it works. Code

functionality is not obscured by the use of data structures, though this can make

the code appear cumbersome (to balance though, the range of data types is invari-

ably small). A major advantage is that the systems provide low-level functionality

and data visualization schemes, allowing the user to concentrate on techniques

alone. Accordingly, these systems afford an excellent route to understand, and

appreciate, mathematical systems prior to development of application code, and

to check the final code works correctly.

1.5.1 Mathematical tools
Mathematica, Maple, and Matlab are among the most popular of current mathe-

matical systems. There have been surveys that compare their efficacy, but it is

difficult to ensure precise comparison due to the impressive speed of development

of techniques. Most systems have their protagonists and detractors, as in any com-

mercial system. There are many books which use these packages for particular

subjects, and there are often handbooks as addenda to the packages. We shall use

both Matlab and Mathcad throughout this text, aiming to expose the range of sys-

tems that are available. Matlab dominates this market these days, especially in

image processing and computer vision, and its growth rate has been enormous;

Mathcad is more sophisticated but has a more checkered commercial history. We

shall describe Mathcad later, as it is different from Matlab, though the aim is the

same (note that there is an open source compatible system for Matlab called

Table 1.2 Software Web Sites

Packages

OpenCV Originally Intel http://opencv.willowgarage.com/wiki/
Welcome

VXL Many international
contributors

http://vxl.sourceforge.net/

GIL Adobe http://opensource.adobe.com/gil/
CImg Many international

contributors
http://cimg.sourceforge.net/index.shtml

VLFeat Oxford and UCLA http://www.vlfeat.org/

191.5 Mathematical systems

http://www.opencv.willowgarage.com/wiki/Welcome
http://www.opencv.willowgarage.com/wiki/Welcome
http://www.vxl.sourceforge.net/
http://www.opensource.adobe.com/gil/
http://www.cimg.sourceforge.net/index.shtml
http://www.vlfeat.org/

Octave and no such equivalent for Mathcad). The web site links for the main

mathematical packages are given in Table 1.3.

1.5.2 Hello Matlab, hello images!
Matlab offers a set of mathematical tools and visualization capabilities in a man-

ner arranged to be very similar to conventional computer programs. The system

was originally developed for matrix functions, hence the “Mat” in the name. In

some users’ views, a WYSIWYG system like Mathcad is easier to start with than

a screen-based system like Matlab. There are a number of advantages to Matlab,

and not least the potential speed advantage in computation and the facility for

debugging, together with a considerable amount of established support. There is

an image processing toolkit supporting Matlab, but it is rather limited compared

with the range of techniques exposed in this text. Matlab’s popularity is reflected

in a book by Gonzalez et al. (2009), dedicated to its use for image processing,

who is perhaps one of the most popular authors of the subject. It is of note that

many researchers make available Matlab versions for others to benefit from their

new techniques.

There is a compatible system, which is a open source, called Octave which

was built mainly with Matlab compatibility in mind. It shares a lot of features

with Matlab such as using matrices as the basic data type, with availability of

complex numbers and built-in functions as well as the capability for user-defined

functions. There are some differences between Octave and Matlab, but there is

extensive support available for both. In our description, we shall refer to both sys-

tems using Matlab as the general term.

Table 1.3 Mathematical Package Web Sites

General

Guide to available
Mathematical Software

NIST http://gams.nist.gov/

Vendors

Mathcad Parametric Technology
Corp.

www.ptc.com/products/
mathcad/

Mathematica Wolfram Research www.wolfram.com/
Matlab Mathworks http://www.mathworks.com/
Maple Maplesoft www.maplesoft.com/
Matlab Compatible

Octave Gnu (Free Software
Foundation)

www.gnu.org/software/
octave/

20 CHAPTER 1 Introduction

http://gams.nist.gov/
http://www.ptc.com/products/mathcad/
http://www.ptc.com/products/mathcad/
http://www.wolfram.com/
http://www.mathworks.com/
http://www.maplesoft.com/
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/

Essentially, Matlab is the set of instructions that process the data stored in a

workspace, which can be extended by user-written commands. The workspace stores

different lists of data and these data can be stored in a MAT file; the user-written

commands are functions that are stored in M-files (files with extension .M). The

procedure operates by instructions at the command line to process the workspace

data using either one of Matlab’s own commands or using your own commands.

The results can be visualized as graphs, surfaces, or images, as in Mathcad.

Matlab provides powerful matrix manipulations to develop and test complex

implementations. In this book, we avoid matrix implementations in favor of a

more C11 algorithmic form. Thus, matrix expressions are transformed into loop

sequences. This helps students without experience in matrix algebra to under-

stand and implement the techniques without dependency on matrix manipulation

software libraries. Implementations in this book only serve to gain understanding

of the techniques’ performance and correctness, and favor clarity rather than

speed.

Matlab processes images, so we need to know what an image represents.

Images are spatial data, data that is indexed by two spatial coordinates. The cam-

era senses the brightness at a point with coordinates x,y. Usually, x and y refer to

the horizontal and vertical axes, respectively. Throughout this text, we shall work

in orthographic projection, ignoring perspective, where real-world coordinates

map directly to x and y coordinates in an image. The homogeneous coordinate

system is a popular and proven method for handling 3D coordinate systems (x, y,

and z, where z is depth). Since it is not used directly in the text, it is included in

Appendix 1 (Section 10.1). The brightness sensed by the camera is transformed to

a signal which is then fed to the A/D converter and stored as a value within the

computer, referenced to the coordinates x,y in the image. Accordingly, a computer

image is a matrix of points. For a gray scale image, the value of each point is pro-

portional to the brightness of the corresponding point in the scene viewed, and

imaged, by the camera. These points are the picture elements or pixels.

Consider for example, the set of pixel values in Figure 1.13(a). These values

were derived from the image of a bright square on a dark background. The square

is brighter where the pixels have a larger value (here around 40 brightness levels);

the background is dark and those pixels have a smaller value (near 0 brightness

levels). Note that neither the background nor the square has a constant brightness.

This is because noise has been added to the image. If we want to evaluate the per-

formance of a computer vision technique on an image, but without the noise, we

can simply remove it (one of the advantages to using synthetic images). (We shall

consider how many points we need in an image and the possible range of values

for pixels in Chapter 2.) The square can be viewed as a surface (or function) in

Figure 1.13(b) or as an image in Figure 1.13(c). The function of the programming

system is to allow us to store these values and to process them.

Matlab runs on Unix/Linux or Windows and on Macintosh systems; a student

version is available at low cost. We shall use a script, to develop our approaches,

211.5 Mathematical systems

which is the simplest type of M-file, as illustrated in Code 1.1. To start the

Matlab system, type MATLAB at the command line. At the Matlab prompt (») type
chapter1 to load and run the script (given that the file chapter1.m is saved in the

directory you are working in). Here, we can see that there are no text boxes and

so comments are preceded by a %. The first command is one that allocates data to

our variable pic. There is a more sophisticated way to input this in the Matlab

system, but that is not used here. The points are addressed in row�column format

and the origin is at coordinates y5 1 and x5 1. So we access these point pic3,3
as the third column of the third row and pic4,3 is the point in the third column of

the fourth row. Having set the display facility to black and white, we can view

the array pic as a surface. When the surface, illustrated in Figure 1.13(a), is plot-

ted, Matlab has been made to pause until you press Return before moving on.

Here, when you press Return, you will next see the image of the array

(Figure 1.13(b)).

(b) Matlab surface plot (c) Matlab image

(a) Set of pixel values

50

40

30

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

20

10

0
8

6

4

2

0
1 2 3 4 5 6 7 8

6

4

2

0 2 3 4 5 6 7 8

1
2
3
4
1
2
1
1

2
2
1
1
2
1
2
2

3
3
38
45
43
39
1
1

4
2
39
44
44
41
2
3

1
1
37
41
40
42
2
1

1
2

36
42
39
40
3
1

2
2
3
2
1
2
1
4

1
1
1
1
3
1
1
2

FIGURE 1.13

Matlab image visualization.

22 CHAPTER 1 Introduction

%Chapter 1 Introduction (Hello Matlab) CHAPTER1.M
%Written by: Mark S. Nixon

disp(‘Welcome to the Chapter1 script’)
disp(‘This worksheet is the companion to Chapter 1 and is an
introduction.’)
disp(‘It is the source of Section 1.5.2 Hello Matlab.’)
disp(‘The worksheet follows the text directly and allows you to
process basic images.’)

disp(‘Let us define a matrix, a synthetic computer image called
pic.’)

pic =[1 2 3 4 1 1 2 1;
2 2 3 2 1 2 2 1;
3 1 38 39 37 36 3 1;
4 1 45 44 41 42 2 1;
1 2 43 44 40 39 1 3;
2 1 39 41 42 40 2 1;
1 2 1 2 2 3 1 1;
1 2 1 3 1 1 4 2]

%Pixels are addressed in row-column format.
%Using x for the horizontal axis (a column count), and y for the
%vertical axis (a row count) then picture points are addressed as
%pic(y,x). The origin is at co-ordinates(1,1), so the point
%pic(3,3) is on the third row and third column; the point pic(4,3)
%is on the fourth row, at the third column. Let’s print them:
disp (‘The element pic(3,3) is’)
pic(3,3)
disp(‘The element pic(4,3)is’)
pic(4,3)

%We’ll set the output display to black and white
colormap(gray);
%We can view the matrix as a surface plot
disp (‘We shall now view it as a surface plot (play with the
controls to see it in relief)’)
disp(‘When you are ready to move on, press RETURN’)
surface(pic);
%Let’s hold awhile so we can view it
pause;
%Or view it as an image
disp (‘We shall now view the array as an image’)
disp(‘When you are ready to move on, press RETURN’)
imagesc(pic);
%Let’s hold awhile so we can view it
pause;

CODE 1.1

Matlab script for Chapter 1.

231.5 Mathematical systems

We can use Matlab’s own command to interrogate the data: these commands

find use in the M-files that store subroutines. An example routine is called after

this. This subroutine is stored in a file called invert.m and is a function that

inverts brightness by subtracting the value of each point from the array’s maxi-

mum value. The code is illustrated in Code 1.2. Note that this code uses for
loops which are best avoided to improve speed, using Matlab’s vectorized

operations. The whole procedure can actually be implemented by the command

inverted5max(max(pic)) - pic. In fact, one of Matlab’s assets is a “profiler”

which allows you to determine exactly how much time is spend on different parts

of your programs. Naturally, there is facility for importing graphics files, which is

quite extensive (i.e., it accepts a wider range of file formats). When images are

used, this reveals that unlike Mathcad which stores all variables as full precision

real numbers, Matlab has a range of data types. We must move from the unsigned

integer data type, used for images, to the double precision data type to allow pro-

cessing as a set of real numbers. In these ways, Matlab can and will be used to

%Let’s look at the array’s dimensions
disp(‘The dimensions of the array are’)
size(pic)

%now let’s invoke a routine that inverts the image
inverted_pic=invert(pic);
%Let’s print it out to check it
disp(‘When we invert it by subtracting each point from the
maximum, we get’)
inverted_pic
%And view it
disp(‘And when viewed as an image, we see’)
disp(‘When you are ready to move on, press RETURN’)
imagesc(inverted_pic);
%Let’s hold awhile so we can view it
pause;
disp(‘We shall now read in a bitmap image, and view it’)
disp(‘When you are ready to move on, press RETURN’)
face=imread(‘rhdark.bmp’,‘bmp’);
imagesc(face);
pause;
%Change from unsigned integer(uint8) to double precision so we can
process it
face=double(face);
disp(‘Now we shall invert it, and view the inverted image’)
inverted_face=invert(face);
imagesc(inverted_face);
disp(‘So we now know how to process images in Matlab. We shall be
using this later!’)

CODE 1.1

(Continued)

24 CHAPTER 1 Introduction

process images throughout this book. Note that the translation to application code

is perhaps easier via Matlab than for other systems and it offers direct compilation

of the code. There are some Matlab scripts available at the book’s web site

(www.ecs.soton.ac.uk/Bmsn/book/) for online tutorial support of the material in

this book. There are many other implementations of techniques available on the

Web in Matlab. The edits required to make the Matlab worksheets run in Octave

are described in the file readme.txt in the downloaded zip.

1.5.3 Hello Mathcad!
Mathcad is rather different from Matlab. It is a WYSIWYG (What You See Is

What You Get) system rather than screen based (consider it as Word whereas

Matlab is Latex). Mathcad uses worksheets to implement mathematical analysis.

The flow of calculation is very similar to using a piece of paper: calculation starts

at the top of a document and flows left-to-right and downward. Data is available

to later calculation (and to calculation to the right), but is not available to prior

calculation, much as is this case when calculation is written manually on paper.

Mathcad uses the Maple mathematical library to extend its functionality. To

ensure that equations can migrate easily from a textbook to application, its equa-

tion editor is actually not dissimilar to the Microsoft Equation (Word) editor.

Mathcad offers a compromise between many performance factors. There used to

be a free worksheet viewer called Mathcad Explorer which operated in read-only

mode, which is an advantage lost. As with Matlab, there is an image processing

function inverted=invert(image)
%Subtract image point brightness from maximum
%
%Usage:[new image]=invert(image)
%
%Parameters: image-array of points
%
%Author: Mark S.Nixon
%get dimensions
[rows,cols]=size(image);

%find the maximum
maxi=max(max(image));

%subtract image points from maximum
for x=1:cols %address all columns

for y=1:rows %address all rows
inverted(y,x)=maxi-image(y,x);

end
end

CODE 1.2

Matlab function (invert.m) to invert an image.

251.5 Mathematical systems

http://www.ecs.soton.ac.uk/∼msn/book/
http://www.ecs.soton.ac.uk/∼msn/book/

handbook available with Mathcad, but it does not include many of the more

sophisticated feature extraction techniques.

This image is first given a label, pic, and then pic is allocated, :5 , to the

matrix defined by using the matrix dialog box in Mathcad, specifying a matrix

with eight rows and eight columns. The pixel values are then entered one by one

until the matrix is complete (alternatively, the matrix can be specified by using a

subroutine, but that comes later). The matrix becomes an image when it is viewed

as a picture and is shown in Figure 1.14(c). This is done either by presenting it as

a surface plot, rotated by 0� and viewed from above, or by using Mathcad’s pic-

ture facility. As a surface plot, Mathcad allows the user to select a gray-scale

image, and the patch plot option allows an image to be presented as point values.

Mathcad stores matrices in row�column format and stores all variables as full

precision real numbers unlike the range allowed in Matlab (there again, that gives

rise to less problems too). The coordinate system used throughout this text has x

as the horizontal axis and y as the vertical axis (as conventional). Accordingly, x

is the column count and y is the row count; so a point (in Mathcad) at coordinates

x,y is actually accessed as picy,x. The origin is at coordinates x5 0 and y5 0, so

pic0,0 is the magnitude of the point at the origin, pic2,2 is the point at the third

row and third column, and pic3,2 is the point at the third column and fourth row,

as shown in Code 1.3 (the points can be seen in Figure 1.14(a)). Since the origin

is at (0,0), the bottom right-hand point, at the last column and row, has coordi-

nates (7,7). The number of rows and columns in a matrix and the dimensions of

an image can be obtained by using the Mathcad rows and cols functions, respec-

tively, and again in Code 1.3.

0

(a) Matrix (b) Surface plot (c) Image

pic

1

2

3

4

1

2

1

1

2

2

1

1

2

1

2

2

3

3

38

45

43

39

1

1

4

2

39

44

44

41

2

3

1

1

37

41

40

42

2

1

1

2

36

42

39

40

3

1

2

2

3

2

1

2

1

4

1

1

1

1

3

1

1

2

2 4 6

0
2

4
6

10
20
30
40

pic

FIGURE 1.14

Synthesized image of a square.

pic2,2=38 pic3,2=45
rows(pic)=8 cols(pic)=8

CODE 1.3

Accessing an image in Mathcad.

26 CHAPTER 1 Introduction

This synthetic image can be processed using the Mathcad programming lan-

guage, which can be invoked by selecting the appropriate dialog box. This allows

for conventional for, while, and if statements, and the earlier assignment opera-

tor, which is :5 in noncode sections, is replaced by ’ in sections of code. A

subroutine that inverts the brightness level at each point, by subtracting it from

the maximum brightness level in the original image, is illustrated in Code 1.4.

This uses for loops to index the rows and the columns and then calculates a new

pixel value by subtracting the value at that point from the maximum obtained by

Mathcad’s max function. When the whole image has been processed, the new pic-

ture is returned to be assigned to the label newpic. The resulting matrix is shown

in Figure 1.15(a). When this is viewed as a surface (Figure 1.15(b)), the inverted

brightness levels mean that the square appears dark and its surroundings appear

white, as in Figure 1.15(c).

Routines can be formulated as functions, so they can be invoked to process a

chosen picture, rather than restricted to a specific image. Mathcad functions are

conventional, we simply add two arguments (one is the image to be processed,

and the other is the brightness to be added), and use the arguments as local vari-

ables, to give the add function illustrated in Code 1.5. To add a value, we simply

newpicturey,x←max(pic)-picy,x

for y∈0..rows(pic)-1
new_pic:= for x∈0..cols(pic)-1

newpicture

CODE 1.4

Processing image points in Mathcad.

0 2 4

44

43

42

41

44

43

44

44

43

43

44

44

43

44

43

43

42

42

7

0

2

6

44

44

41

43

6

1

1

4

43

42

44

44

8

4

5

3

43

44

44

43

9

3

6

5

42

44

43

43

42

43

44

43

44

41

44

44

44

44

42

44

44

43

new_pic = 6

2
46

0
10
20
30
40

new_pic

(a) Matrix (b) Surface plot (c) Image

FIGURE 1.15

Image of a square after division.

271.5 Mathematical systems

call the function and supply an image and the chosen brightness level as the

arguments.

Mathematically, for an image which is a matrix of N3N points, the bright-

ness of the pixels in a new picture (matrix), N, is the result of adding b brightness

values to the pixels in the old picture, O, and is given by:

Nx;y 5Ox;y 1 b ’x; yA1;N (1.1)

Real images naturally have many points. Unfortunately, the Mathcad matrix

dialog box allows only matrices that are of 10 rows and 10 columns at most, i.e.,

a 103 10 matrix. Real images can be 5123 512 but are often 2563 256 or

1283 128; this implies a storage requirement for 262144, 65536, and 16384 pix-

els, respectively. Since Mathcad stores all points as high precision, complex float-

ing point numbers, 5123 512 images require too much storage, but 2563 256

and 1283 128 images can be handled with ease. Since this cannot be achieved by

the dialog box, Mathcad has to be “tricked” into accepting an image of this size.

Figure 1.16 shows an image captured by a camera. This image has been stored in

Windows bitmap (.BMP) format. This can be read into a Mathcad worksheet

using the READBMP command (yes, capitals please!—Mathcad can’t handle

readbmp) and is assigned to a variable. It is inadvisable to attempt to display this

using the Mathcad surface plot facility as it can be slow for images and require a

lot of memory. It is best to view an image using Mathcad’s picture facility or to

store it using the WRITEBMP command and then look at it using a bitmap viewer.

Mathcad is actually quite limited in the range of file formats it can accept, but

there are many image viewers which offer conversion.

So if we are to make an image brighter (by addition) by the routine in Code 1.5

via Code 1.6 then we achieve the result shown in Figure 1.16. The matrix listings

in Figure 1.16(a) and (b) shows that 20 has been added to each point (these show

only the top left-hand section of the image where the bright points relate to the

grass, the darker points on, say, the ear cannot be seen). The effect will be to

make each point appear brighter as seen by comparison of the (darker) original

image (Figure 1.16(c)) with the (brighter) result of addition (Figure 1.16(d)). In

Chapter 3, we will investigate techniques which can be used to manipulate the

← inpicy,x+value

add_value(inpic,value):= for x∈0..cols(inpic)–1
for y∈0..rows(inpic)–1

newpicturey,x
newpicture

CODE 1.5

Function to add a value to an image in Mathcad.

28 CHAPTER 1 Introduction

image brightness to show the face in a much better way. For the moment though,

we are just seeing how Mathcad can be used, in a simple way, to process pictures.

Naturally, Mathcad was used to generate the image used to demonstrate the

Mach band effect; the code is given in Code 1.7. First, an image is defined by

copying the face image (from Code 1.6) to an image labeled mach. Then, the
floor function (which returns the nearest integer less than its argument) is used

to create the bands, scaled by an amount appropriate to introduce sufficient con-

trast (the division by 21.5 gives six bands in the image of Figure 1.4(a)). The

cross section and the perceived cross section of the image were both generated by

(a) Part of original image as a matrix

(c) Bitmap of original image (d) Bitmap of processed image

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

150 145 145 145 150 159 152 152 151 145

159 151 151 152 159 159 159 151 145 145

159 152 151 151 159 159 159 152 134 145

159 145 137 134 145 151 152 151 145 152

145 142 128 128 134 145 145 151 150 159

134 145 142 137 134 145 145 145 151 152

142 145 151 142 145 151 151 145 159 159

145 151 152 145 134 145 152 159 170 170

152 159 158 151 145 142 151 152 170 152

158 158 152 152 142 134 145 159 159 151

oldhippo =

(b) Part of processed image as a matrix

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

170 165 165 165 170 179 172 172 171 165

179 171 171 172 179 179 179 171 165 165

179 172 171 171 179 179 179 172 154 165

179 165 157 154 165 171 172 171 165 172

165 162 148 148 154 165 165 171 170 179

154 165 162 157 154 165 165 165 171 172

162 165 171 162 165 171 171 165 179 179

165 171 172 165 154 165 172 179 190 190

172 179 178 171 165 162 171 172 190 172

178 178 172 172 162 154 165 179 179 171

newhippo =

FIGURE 1.16

Processing an image.

oldhippo:=READBMP(“hippo_orig”)
newhippo:=add_value(hippo,20)
WRITEBMP(“hippo_brighter.bmp”):=newhippo

CODE 1.6

Processing an image.

291.5 Mathematical systems

Mathcad’s X�Y plot facility, using appropriate code for the perceived cross

section.

The translation of the Mathcad code into application can be rather prolix

when compared with the Mathcad version by the necessity to include low-level

functions. Since these can obscure the basic image processing functionality,

Mathcad is used throughout this book to show you how the techniques work. The

translation to application code is rather more difficult than Matlab. There is also

an electronic version of this book which is a collection of worksheets to help you

learn the subject. You can download these worksheets from this book’s web site

(http://www.ecs.soton.ac.uk/Bmsn/book/) and there is a link to the old Mathcad

Explorer too. You can then use the algorithms as a basis for developing your own

application code. This provides a good way to verify that your code actually

works: you can compare the results of your final application code with those of

the original mathematical description. If your final application code and the

Mathcad implementation are both correct, the results should be the same.

Naturally, your application code will be much faster than in Mathcad and will

benefit from the GUI you’ve developed.

1.6 Associated literature
1.6.1 Journals, magazines, and conferences
As in any academic subject, there are many sources of literature and when used

within this text the cited references are to be found at the end of each chapter.

The professional magazines include those that are more systems oriented, like

Vision Systems Design and Advanced Imaging. These provide more general arti-

cles and are often a good source of information about new computer vision pro-

ducts. For example, they survey available equipment, such as cameras and

monitors, and provide listings of those available, including some of the factors by

which you might choose to purchase them.

There is a wide selection of research journals—probably more than you can

find in your nearest library unless it is particularly well-stocked. These journals

have different merits: some are targeted at short papers only, whereas some have

mach:= for x∈0..cols(mach)–1
for y∈0..rows(mach)–1

mach brightnessy,x ← ·floor x
bar_width

⎛
⎝⎜

⎞
⎠⎟

mach

CODE 1.7

Creating the image of Figure 1.4(a).

30 CHAPTER 1 Introduction

http://www.ecs.soton.ac.uk/∼msn/book/
http://www.ecs.soton.ac.uk/∼msn/book/

short and long papers; some are more dedicated to the development of new the-

ory, whereas others are more pragmatic and focus more on practical, working,

image processing systems. But it is rather naive to classify journals in this way,

since all journals welcome good research, with new ideas, which has been demon-

strated to satisfy promising objectives.

The main research journals include: IEEE Transactions on: Pattern Analysis

and Machine Intelligence (in later references this will be abbreviated to IEEE

Trans. on PAMI); Image Processing (IP); Systems, Man and Cybernetics (SMC);

and on Medical Imaging (there are many more IEEE transactions, some of which

sometimes publish papers of interest in image processing and computer vision).

The IEEE Transactions are usually found in (university) libraries since they are

available at comparatively low cost; they are online to subscribers at the IEEE

Explore site (http://ieeexplore.ieee.org/) and this includes conferences and IET

Proceedings (described soon). Computer Vision and Image Understanding and

Graphical Models and Image Processing arose from the splitting of one of the

subject’s earlier journals, Computer Vision, Graphics and Image Processing

(CVGIP), into two parts. Do not confuse Pattern Recognition (Pattern Recog.)

with Pattern Recognition Letters (Pattern Recog. Lett.), published under the aegis

of the Pattern Recognition Society and the International Association of Pattern

Recognition, respectively, since the latter contains shorter papers only. The

International Journal of Computer Vision is a more recent journal whereas Image

and Vision Computing was established in the early 1980s. Finally, do not miss

out on the IET Proceedings Computer Vision and other journals.

Most journals are now online but usually to subscribers only; some go back a

long way. Academic Press titles include Computer Vision and Image

Understanding, Graphical Models and Image Processing, and Real-Time Image

Processing.

There are plenty of conferences too: the proceedings of IEEE conferences are

also held on the Explore site and two of the top conferences are Computer Vision

and Pattern Recognition (CVPR) which is held annually in the United States and

the International Conference on Computer Vision (ICCV) is biennial and moves

internationally. The IEEE also hosts specialist conferences, e.g., on biometrics or

computational photography. Lecture Notes in Computer Science is hosted by

Springer (http://www.springer.com/) and is usually the proceedings of confer-

ences. Some conferences such as the British Machine Vision Conference series

maintain their own site (http://www.bmva.org). The excellent Computer Vision

Conferences page http://iris.usc.edu/Information/Iris-Conferences.html is brought

to us by Keith Price and lists conferences in Computer Vision, Image Processing,

and Pattern Recognition.

1.6.2 Textbooks
There are many textbooks in this area. Increasingly, there are web versions, or

web support, as summarized in Table 1.4. The difficulty is of access as you need

311.6 Associated literature

http://www.ieeexplore.ieee.org/
http://www.springer.com/
http://www.bmva.org
http://www.iris.usc.edu/Information/Iris-Conferences.html

a subscription to be able to access the online book (and sometimes even to see

that it is available online), though there are also Kindle versions. For example,

this book is available online to those subscribing to Referex in Engineering

Village http://www.engineeringvillage.org. The site given in Table 1.4 for this

book is the support site which includes demonstrations, worksheets, errata, and

other information. The site given next, at Edinburgh University, United Kingdom,

is part of the excellent Computer Vision Online (CVOnline) site (many thanks to

Bob Fisher there) and it lists current books as well as pdfs of some which are

more dated, but still excellent (e.g., Ballard and Brown, 1982). There is also con-

tinuing debate on appropriate education in image processing and computer vision,

for which review material is available (Bebis et al., 2003).

For support material, the World of Mathematics comes from Wolfram research

(the distributors of Mathematica) and gives an excellent web-based reference for

mathematics. Numerical Recipes (Press et al., 2007) is one of the best established

texts in signal processing. It is beautifully written, with examples and implemen-

tation and is on the Web too. Digital Signal Processing is an online site with

focus on the more theoretical aspects which will be covered in Chapter 2. The

Joy of Visual Perception is an online site on how the human vision system works.

We haven’t noted Wikipedia—computer vision is there too.

By way of context, for comparison with other textbooks, this text aims to start

at the foundation of computer vision and to reach current research. Its content

specifically addresses techniques for image analysis, considering feature extrac-

tion and shape analysis in particular. Mathcad and Matlab are used as a vehicle to

demonstrate implementation. There are of course other texts, and these can help

you to develop your interest in other areas of computer vision.

Some of the main textbooks are now out of print, but pdfs can be found at the

CVOnline site. There are more than given here, some of which will be referred to

in later chapters; each offers a particular view or insight into computer vision and

image processing. Some of the main textbooks include: Vision (Marr, 1982) which

Table 1.4 Web Textbooks and Homepages

This book’s homepage Southampton
University

http://www.ecs.soton.ac.uk/Bmsn/book/

CVOnline—online book
compendium

Edinburgh
University

http://homepages.inf.ed.ac.uk/rbf/
CVonline/books.htm

World of Mathematics Wolfram
Research

http://mathworld.wolfram.com

Numerical Recipes Cambridge
University Press

http://www.nr.com/

Digital Signal
Processing

Steven W. Smith http://www.dspguide.com/

The Joy of Visual
Perception

York University http://www.yorku.ca/research/vision/eye/
thejoy.htm

32 CHAPTER 1 Introduction

http://www.engineeringvillage.org
http://www.ecs.soton.ac.uk/∼msn/book/
http://www.ecs.soton.ac.uk/∼msn/book/
http://www.homepages.inf.ed.ac.uk/rbf/CVonline/books.htm
http://www.homepages.inf.ed.ac.uk/rbf/CVonline/books.htm
http://www.mathworld.wolfram.com
http://www.nr.com/
http://www.dspguide.com/
http://www.yorku.ca/research/vision/eye/thejoy.htm
http://www.yorku.ca/research/vision/eye/thejoy.htm

concerns vision and visual perception (as previously mentioned); Fundamentals of

Computer Vision (Jain, 1989) which is stacked with theory and technique, but

omits implementation and some image analysis, as does Robot Vision (Horn,

1986); Image Processing, Analysis and Computer Vision (Sonka et al., 2007)

offers coverage of later computer vision techniques, together with pseudo-code

implementation but omitting some image processing theory (the support site http://

css.engineering.uiowa.edu/%7Edip/LECTURE/lecture.html has teaching material

too); Machine Vision (Jain et al., 1995) offers concise and modern coverage of 3D

and motion; Digital Image Processing (Gonzalez and Woods, 2008) has more

tutorial element than many of the basically theoretical texts and has a fantastic rep-

utation for introducing people to the field; Digital Picture Processing (Rosenfeld

and Kak, 1982) is very dated now, but is a well-proven text for much of the basic

material; and Digital Image Processing (Pratt, 2001), which was originally one of

the earliest books on image processing and, like Digital Picture Processing, is a

well-proven text for much of the basic material, particularly image transforms.

Despite its name, Active Contours (Blake and Isard, 1998) concentrates rather

more on models of motion and deformation and probabilistic treatment of shape

and motion, than on the active contours which we shall find here. As such it is a

more research text, reviewing many of the advanced techniques to describe shapes

and their motion. Image Processing—The Fundamentals (Petrou and Petrou, 2010)

(by two Petrous!) surveys the subject (as its title implies) from an image proces-

sing viewpoint. Computer Vision (Shapiro and Stockman, 2001) includes chapters

on image databases and on virtual and augmented reality. Computer Imaging:

Digital Image Analysis and Processing (Umbaugh, 2005) reflects interest in imple-

mentation by giving many programming examples. Computer Vision: A Modern

Approach (Forsyth and Ponce, 2002) offers much new—and needed—insight into

this continually developing subject (two chapters that didn’t make the final text—

on probability and on tracking—are available at the book’s web site http://luthuli

.cs.uiuc.edu/Bdaf/book/book.html). One newer text (Brunelli, 2009) focuses on

object recognition techniques “employing the idea of projection to match image

patterns” which is a class of approaches to be found later in this text. A much

newer text Computer Vision: Algorithms and Applications (Szeliski, 2011) is natu-

rally much more up-to-date than older texts and has an online (earlier) electronic

version available too. An even newer text (Prince, 2012)—electronic version avail-

able—is based on models and learning. One of the bases of the book is “to orga-

nize our knowledge . . . what is most critical is the model itself—the statistical

relationship between the world and the measurements” and thus covers many of

the learning aspects of computer vision which complement and extend this book’s

focus on feature extraction.

Also Kasturi and Jain (1991a,b) present a collection of seminal papers in com-

puter vision, many of which are cited in their original form (rather than in this

volume) in later chapters. There are other interesting edited collections

(Chellappa, 1992); one edition (Bowyer and Ahuja, 1996) honors Azriel

Rosenfeld’s many contributions.

331.6 Associated literature

http://www.css.engineering.uiowa.edu/%7Edip/LECTURE/lecture.html
http://www.css.engineering.uiowa.edu/%7Edip/LECTURE/lecture.html
http://www.luthuli.cs.uiuc.edu/∼daf/book/book.html
http://www.luthuli.cs.uiuc.edu/∼daf/book/book.html
http://www.luthuli.cs.uiuc.edu/∼daf/book/book.html

Section 1.4.3 describes some of the image processing software packages avail-

able and their textbook descriptions. Of the texts with a more practical flavor,

Image Processing and Computer Vision (Parker, 2010) includes description of

software rather at the expense of lacking range of technique. There is excellent

coverage of practicality in Practical Algorithms for Image Analysis (O’Gorman

et al., 2008) and the book’s support site is at http://www.mlmsoftwaregroup.com/.

Computer Vision and Image Processing (Umbaugh, 2005) takes an applications-

oriented approach to computer vision and image processing, offering a variety of

techniques in an engineering format. One JAVA text, The Art of Image

Processing with Java (Hunt, 2011) emphasizes software engineering more than

feature extraction (giving basic methods only).

Other textbooks include: The Image Processing Handbook (Russ, 2006) which

contains much basic technique with excellent visual support, but without any sup-

porting theory and which has many practical details concerning image processing

systems; Machine Vision: Theory, Algorithms and Practicalities (Davies, 2005)

which is targeted primarily at (industrial) machine vision systems but covers

much basic technique, with pseudo-code to describe their implementation; and the

Handbook of Pattern Recognition and Computer Vision (Cheng and Wang, 2009)

covers much technique. There are specialist texts too and they usually concern

particular sections of this book, and they will be mentioned there. Last but by no

means least, there is even a (illustrated) dictionary (Fisher et al., 2005) to guide

you through the terms that are used.

1.6.3 The Web
This book’s homepage (http://www.ecs.soton.ac.uk/Bmsn/book/) details much of

the support material, including worksheets and Java-based demonstrations, and

any errata we regret have occurred (and been found). The CVOnline homepage

http://www.dai.ed.ac.uk/CVonline/ has been brought to us by Bob Fisher from the

University of Edinburgh. There’s a host of material there, including its descrip-

tion. Their group also prove the Hypermedia Image Processing web site and in

their words “HIPR2 is a free www-based set of tutorial materials for the 50 most

commonly used image processing operators http://www.dai.ed.ac.uk/HIPR2. It

contains tutorial text, sample results and JAVA demonstrations of individual

operators and collections”. It covers a lot of basic material and shows you the

results of various processing options. If your university has access to the web-

based indexes of published papers, the ISI index gives you journal papers (and

allows for citation search), but unfortunately including medicine and science

(where you can get papers with 301 authors). Alternatively, Compendex and

INSPEC include papers more related to engineering, together with papers in con-

ferences, and hence vision, but without the ability to search citations. Explore is

for the IEEE—for subscribers; many researchers turn to Citeseer and Google

Scholar as these are freely available with the ability to retrieve the papers as well

as to see where they have been used.

34 CHAPTER 1 Introduction

http://www.mlmsoftwaregroup.com/
http://www.ecs.soton.ac.uk/∼msn/book/
http://www.ecs.soton.ac.uk/∼msn/book/
http://www.dai.ed.ac.uk/CVonline/
http://www.dai.ed.ac.uk/HIPR2

1.7 Conclusions
This chapter has covered most of the prerequisites for feature extraction in image

processing and computer vision. We need to know how we see, in some form,

where we can find information and how to process data. More importantly we

need an image or some form of spatial data. This is to be stored in a computer

and processed by our new techniques. As it consists of data points stored in a

computer, this data is sampled or discrete. Extra material on image formation,

camera models, and image geometry is to be found in Chapter 10, Appendix 1,

but we shall be considering images as a planar array of points hereon. We need to

know some of the bounds on the sampling process, on how the image is formed.

These are the subjects of the next chapter which also introduces a new way of

looking at the data, how it is interpreted (and processed) in terms of frequency.

1.8 References
Armstrong, T., 1991. Colour Perception—A Practical Approach to Colour Theory. Tarquin

Publications, Diss.

Ballard, D.H., Brown, C.M., 1982. Computer Vision. Prentice Hall, Upper Saddle River, NJ.

Bebis, G., Egbert, D., Shah, M., 2003. Review of computer vision education. IEEE Trans.

Educ. 46 (1), 2�21.

Blake, A., Isard, M., 1998. Active Contours. Springer-Verlag, London.

Bowyer, K., Ahuja, N. (Eds.), 1996. Advances in Image Understanding, A Festschrift for

Azriel Rosenfeld. IEEE Computer Society Press, Los Alamitos, CA.

Bradski, G., Kaehler, A., 2008. Learning OpenCV: Computer Vision with the OpenCV

Library. O’Reilly Media, Inc, Sebastopol, CA.

Bruce, V., Green, P., 1990. Visual Perception: Physiology, Psychology and Ecology, sec-

ond ed. Lawrence Erlbaum Associates, Hove.

Brunelli, R., 2009. Template Matching Techniques in Computer Vision. Wiley, Chichester.

Chellappa, R., 1992. Digital Image Processing, second ed. IEEE Computer Society Press,

Los Alamitos, CA.

Cheng, C.H., Wang, P.S P., 2009. Handbook of Pattern Recognition and Computer Vision,

fourth ed. World Scientific, Singapore.

Cornsweet, T.N., 1970. Visual Perception. Academic Press, New York, NY.

Davies, E.R., 2005. Machine Vision: Theory, Algorithms and Practicalities, third ed.

Morgan Kaufmann (Elsevier), Amsterdam, The Netherlands.

Fisher, R.B., Dawson-Howe, K., Fitzgibbon, A., Robertson, C., 2005. Dictionary of

Computer Vision and Image Processing. Wiley, Chichester.

Forsyth, D., Ponce, J., 2002. Computer Vision: A Modern Approach. Prentice Hall, Upper

Saddle River, NJ.

Fossum, E.R., 1997. CMOS image sensors: electronic camera-on-a-chip. IEEE Trans.

Electron. Devices 44 (10), 1689�1698.

Gonzalez, R.C., Woods, R.E., 2008. Digital Image Processing, third ed. Pearson

Education, Upper Saddle River, NJ.

351.8 References

Gonzalez, R.C., Woods, R.E., Eddins, S.L., 2009. Digital Image Processing Using

MATLAB, second ed. Prentice Hall, Upper Saddle River, NJ.

Horn, B.K.P., 1986. Robot Vision. MIT Press, Boston, MA.

Hunt, K.A., 2011. The Art of Image Processing with Java. CRC Press (A.K. Peters Ltd.),

Natick, MA.

Jain, A.K., 1989. Fundamentals of Computer Vision. Prentice Hall International, Hemel

Hempstead.

Jain, R.C., Kasturi, R., Schunk, B.G., 1995. Machine Vision. McGraw-Hill Book Co.,

Singapore.

Kasturi, R., Jain, R.C., 1991a. Computer Vision: Principles. IEEE Computer Society Press,

Los Alamitos, CA.

Kasturi, R., Jain, R.C., 1991b. Computer Vision: Advances and Applications. IEEE

Computer Society Press, Los Alamitos, CA.

Langaniere, R., 2011. OpenCV 2 Computer Vision Application Programming Cookbook.

Packt Publishing, Birmingham.

Marr, D., 1982. Vision. W.H. Freeman, New York, NY.

Nakamura, J., 2005. Image Sensors and Signal Processing for Digital Still Cameras. CRC

Press, Boca Raton, FL.

O’Gorman, L., Sammon, M.J., Seul, M., 2008. Practical Algorithms for Image Analysis,

second ed. Cambridge University Press, Cambridge.

Overington, I., 1992. Computer Vision—A Unified, Biologically-Inspired Approach.

Elsevier Science Press, Holland.

Parker, J.R., 2010. Algorithms for Image Processing and Computer Vision, second ed.

Wiley, Indianapolis, IN.

Petrou, M., Petrou, C., 2010. Image Processing—The Fundamentals, second ed. Wiley-

Blackwell, London.

Pratt, W.K., 2001. Digital Image Processing: PIKS Inside, third ed. Wiley, Chichester.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 2007. Numerical Recipes:

The Art of Scientific Computing, third ed. Cambridge University Press, Cambridge.

Prince, S.J.D., 2012. Computer Vision Models, Learning, and Inference. Cambridge

University Press, Cambridge.

Ratliff, F., 1965. Mach Bands: Quantitative Studies on Neural Networks in the Retina.

Holden-Day Inc., San Francisco, CA.

Rosenfeld, A., Kak, A.C., 1982. Digital Picture Processing, vols. 1 and 2, second ed.

Academic Press, Orlando, FL.

Russ, J.C., 2006. The Image Processing Handbook, sixth ed. CRC Press (Taylor &

Francis), Boca Raton, FL.

Schwarz, S.H., 2004. Visual Perception, third ed. McGraw-Hill, New York, NY.

Shapiro, L.G., Stockman, G.C., 2001. Computer Vision. Prentice Hall, Upper Saddle River, NJ.

Sonka, M., Hllavac, V., Boyle, R., 2007. Image Processing, Analysis and Machine Vision,

third ed. Brooks/Cole, London.

Szeliski, R., 2011. Computer Vision: Algorithms and Applications. Springer-Verlag,

London.

Umbaugh, S.E., 2005. Computer Imaging: Digital Image Analysis and Processing. CRC

Press (Taylor & Francis), Boca Raton, FL.

36 CHAPTER 1 Introduction

CHAPTER

2Images, sampling, and
frequency domain processing

CHAPTER OUTLINE HEAD

2.1 Overview ... 37

2.2 Image formation... 38

2.3 The Fourier transform ... 42

2.4 The sampling criterion ... 49

2.5 The discrete Fourier transform .. 53

2.5.1 1D transform..53

2.5.2 2D transform..57

2.6 Other properties of the Fourier transform ... 63

2.6.1 Shift invariance..63

2.6.2 Rotation ..65

2.6.3 Frequency scaling...66

2.6.4 Superposition (linearity) ..67

2.7 Transforms other than Fourier ... 68

2.7.1 Discrete cosine transform..68

2.7.2 Discrete Hartley transform...70

2.7.3 Introductory wavelets ..71

2.7.3.1 Gabor wavelet ... 71

2.7.3.2 Haar wavelet ... 74

2.7.4 Other transforms ..78

2.8 Applications using frequency domain properties .. 78

2.9 Further reading .. 80

2.10 References .. 81

2.1 Overview
In this chapter, we shall look at the basic theory which underlies image formation

and processing. We shall start by investigating what makes up a picture and look

at the consequences of having a different number of points in the image. We shall

also look at images in a different representation, known as the frequency domain.

In this, as the name implies, we consider an image as a collection of frequency

Feature Extraction & Image Processing for Computer Vision.

© 2012 Mark Nixon and Alberto Aguado. Published by Elsevier Ltd. All rights reserved.
37

components. We can actually operate on images in the frequency domain and we

shall also consider different transformation processes. These allow us different

insights into images and image processing which will be used in later chapters

not only as a means to develop techniques but also to give faster (computer) pro-

cessing. The Chapter’s structure is shown in Table 2.1.

2.2 Image formation
A computer image is a matrix (a 2D array) of pixels. The value of each pixel is

proportional to the brightness of the corresponding point in the scene; its value

is, of course, usually derived from the output of an A/D converter. The matrix of

pixels, the image, is usually square and we shall describe an image as N3N

m-bit pixels where N is the number of points and m controls the number of bright-

ness values. Using m bits gives a range of 2m values, ranging from 0 to 2m2 1.

If m is 8, this gives brightness levels ranging between 0 and 255, which are usu-

ally displayed as black and white, respectively, with shades of gray in-between,

as they are for the grayscale image of a walking man in Figure 2.1(a). Smaller

values of m give fewer available levels reducing the available contrast in an

image. We are concerned with images here, not their formation; imaging geome-

try (pinhole cameras et al.) is to be found in Chapter 10, Appendix 1.

The ideal value of m is actually related to the signal-to-noise ratio (dynamic

range) of the camera. This is stated as approximately 45 dB for an analog camera

and since there are 6 dB per bit, then 8 bits will cover the available range. Choosing

8-bit pixels has further advantages in that it is very convenient to store pixel

Table 2.1 Overview of Chapter 2

Main Topic Subtopics Main Points

Images Effects of differing numbers of
points and of number range for
those points

Grayscale, color, resolution,
dynamic range, storage

Fourier
transform
theory

What is meant by the frequency
domain, how it applies to
discrete (sampled) images, how
it allows us to interpret images
and the sampling resolution
(number of points)

Continuous Fourier transform and
properties, sampling criterion,
discrete Fourier transform (DFT)
and properties, image
transformation, transform duals.
Inverse Fourier transform

Consequences
of transform
approach

Basic properties of Fourier
transforms, other transforms,
frequency domain operations

Translation (shift), rotation, and
scaling. Principle of Superposition
and linearity. Walsh, Hartley,
discrete cosine, and wavelet
transforms. Filtering and other
operations.

38 CHAPTER 2 Images, sampling, and frequency domain processing

values as bytes, and 8-bit A/D converters are cheaper than those with a higher

resolution. For these reasons, images are nearly always stored as 8-bit bytes,

though some applications use a different range. The relative influence of the eight

bits is shown in the image of the walking subject in Figure 2.1. Here, the least

significant bit, bit 0 (Figure 2.1(b)), carries the least information (it changes more

rapidly). As the order of the bits increases, they change less rapidly and carry

more information. The most information is carried by the most significant bit,

(a) Original image

(f) bit 4 (g) bit 5 (h) bit 6 (i) bit 7 (MSB)

(b) bit 0 (LSB) (c) bit 1 (d) bit 2 (e) bit 3

FIGURE 2.1

Decomposing an image into its bits.

392.2 Image formation

bit 7 (Figure 2.1(i)). Clearly, the fact that there is a walker in the original image

can be recognized much better from the high order bits, much more reliably than

it can from the other bits (also notice the odd effects which would appear to come

from lighting at the top of the image).

Color images follow a similar storage strategy to specify pixels’ intensities.

However, instead of using just one image plane, color images are represented by

three intensity components. These components generally correspond to red, green,

and blue (the RGB model) although there are other color schemes. For example,

the CMYK color model is defined by the components cyan, magenta, yellow, and

black. In any color mode, the pixel’s color can be specified in two main ways.

First, you can associate an integer value, with each pixel, that can be used as an

index to a table that stores the intensity of each color component. The index is

used to recover the actual color from the table when the pixel is going to be dis-

played or processed. In this scheme, the table is known as the image’s palette and

the display is said to be performed by color mapping. The main reason for using

this color representation is to reduce memory requirements. That is, we only store

a single image plane (i.e., the indices) and the palette. This is less than storing the

red, green, and blue components separately and so makes the hardware cheaper,

and it can have other advantages, for example when the image is transmitted. The

main disadvantage is that the quality of the image is reduced since only a reduced

collection of colors is actually used. An alternative to represent color is to use

several image planes to store the color components of each pixel. This scheme is

known as true color, and it represents an image more accurately, essentially by

considering more colors. The most common format uses 8 bits for each of the

three RGB components. These images are known as 24-bit true color and they

can contain 16,777,216 different colors simultaneously. In spite of requiring sig-

nificantly more memory, the image quality and the continuing reduction in cost of

computer memory make this format a good alternative, even for storing the image

frames from a video sequence. Of course, a good compression algorithm is always

helpful in these cases, particularly, if images need to be transmitted on a network.

Here we will consider the processing of gray level images only since they contain

enough information to perform feature extraction and image analysis; greater

depth on color analysis/parameterization is to be found in Chapter 13, Appendix 4,

on Color Models. Should the image be originally in color, we will consider proces-

sing its luminance only, often computed in a standard way. In any case, the amount

of memory used is always related to the image size.

Choosing an appropriate value for the image size, N, is far more complicated.

We want N to be sufficiently large to resolve the required level of spatial detail in

the image. If N is too small, the image will be coarsely quantized: lines will

appear to be very “blocky” and some of the detail will be lost. Larger values of N

give more detail but need more storage space, and the images will take longer to

process since there are more pixels. For example, with reference to the image of

the walking subject in Figure 2.1(a), Figure 2.2 shows the effect of taking the

image at different resolutions. Figure 2.2(a) is a 643 64 image that shows only

40 CHAPTER 2 Images, sampling, and frequency domain processing

the broad structure. It is impossible to see any detail in the subject’s face, or any-

where else. Figure 2.2(b) is a 1283 128 image, which is starting to show more of

the detail, but it would be hard to determine the subject’s identity. The original

image, repeated in Figure 2.2(c), is a 2563 256 image which shows a much

greater level of detail, and the subject can be recognized from the image. (These

images actually come from a research program aimed to use computer vision

techniques to recognize people by their gait, face recognition would be of little

potential for the low resolution image which is often the sort of image that secu-

rity cameras provide.) These images were derived from video. If the image was a

pure photographic image or a high resolution digital camera image, some of the

much finer detail like the hair would show up in much greater detail. Note that

the images in Figure 2.2 have been scaled to be the same size. As such, the pixels

in Figure 2.2(a) are much larger than in Figure 2.2(c), which emphasizes its

blocky structure. Common choices are for 2563 256, 5123 512, or 10243 1024

images and these require 64 KB, 256 KB, and 1 MB of storage, respectively.

If we take a sequence of, say, 20 images for motion analysis, we will need more

than 1 MB to store the 20 images of resolution 2563 256 and more than 5 MB if

the images were 5123 512. Even though memory continues to become cheaper,

this can still impose high cost. But it is not just cost which motivates an investiga-

tion of the appropriate image size, the appropriate value for N. The main question

is: are there theoretical guidelines for choosing it? The short answer is “yes”; the

long answer is to look at digital signal processing theory.

The choice of sampling frequency is dictated by the sampling criterion.

Presenting the sampling criterion requires understanding of how we interpret sig-

nals in the frequency domain. The way in is to look at the Fourier transform. This

is a highly theoretical topic, but do not let that put you off (it leads to image coding,

like the JPEG format, so it is very useful indeed). The Fourier transform has found

many uses in image processing and understanding; it might appear to be a complex

topic (that’s actually a horrible pun!), but it is a very rewarding one to study.

(b) 128 × 128(a) 64 × 64 (c) 256 × 256

FIGURE 2.2

Effects of differing image resolution.

412.2 Image formation

The particular concern is number of points per unit area or the appropriate sam-

pling frequency of (essentially, the value for N), or the rate at which pixel values

are taken from, a camera’s video signal.

2.3 The Fourier transform
The Fourier transform is a way of mapping a signal into its component frequen-

cies. Frequency is measured in Hertz (Hz); the rate of repetition with time is

measured in seconds (s); time is the reciprocal of frequency and vice versa

(Hertz5 1/s; s5 1/Hz).

Consider a music center: the sound comes from a CD player (or a tape, what-

ever) and is played on the speakers after it has been processed by the amplifier.

On the amplifier, you can change the bass or the treble (or the loudness which is

a combination of bass and treble). Bass covers the low-frequency components

and treble covers the high-frequency ones. The Fourier transform is a way of

mapping the signal from the CD player, which is a signal varying continuously

with time, into its frequency components. When we have transformed the signal,

we know which frequencies made up the original sound.

So why do we do this? We have not changed the signal, only its representation.

We can now visualize it in terms of its frequencies rather than as a voltage which

changes with time. But we can now change the frequencies (because we can see

them clearly) and this will change the sound. If, say, there is hiss on the original sig-

nal then since hiss is a high-frequency component, it will show up as a high-

frequency component in the Fourier transform. So we can see how to remove it by

looking at the Fourier transform. If you have ever used a graphic equalizer, you

have done this before. The graphic equalizer is a way of changing a signal by inter-

preting its frequency domain representation, you can selectively control the fre-

quency content by changing the positions of the controls of the graphic equalizer.

The equation which defines the Fourier transform, Fp, of a signal p, is given by a

complex integral:

FpðωÞ5ℑðpðtÞÞ5
ðN
2N

pðtÞ e2jωt dt (2.1)

where:

Fp(ω) is the Fourier transform, and ℑ denotes the Fourier transform process;

ω is the angular frequency, ω5 2πf, measured in radians/s (where the

frequency f is the reciprocal of time t, f5 1/t);

j is the complex variable, j5
ffiffiffiffiffiffiffi
21

p
(electronic engineers prefer j to i since

they cannot confuse it with the symbol for current; perhaps they don’t want to

be mistaken for mathematicians who use i5
ffiffiffiffiffiffiffi
21

p
);

p(t) is a continuous signal (varying continuously with time); and

e2jωt5 cos(ωt)2 j sin(ωt) gives the frequency components in p(t).

42 CHAPTER 2 Images, sampling, and frequency domain processing

We can derive the Fourier transform by applying Eq. (2.1) to the signal of

interest. We can see how it works by constraining our analysis to simple signals.

(We can then say that complicated signals are just made up by adding up lots of

simple signals.) If we take a pulse which is of amplitude (size) A between when it

starts at time t52T/2 and it ends at t5 T/2, and is zero elsewhere, the pulse is

pðtÞ5 A if 2T=2# t# T=2
0 otherwise

���� (2.2)

To obtain the Fourier transform, we substitute for p(t) in Eq. (2.1). p(t)5A

only for a specified time so we choose the limits on the integral to be the start

and end points of our pulse (it is zero elsewhere) and set p(t)5A, its value in this

time interval. The Fourier transform of this pulse is the result of computing:

FpðωÞ5
ðT=2
2T=2

A e2jωt dt (2.3)

When we solve this, we obtain an expression for Fp(ω):

FpðωÞ52
A e2jωT=2 2A ejωT=2

jω
(2.4)

By simplification, using the relation sin(θ)5 (ejθ2 e2jθ)/2j, the Fourier trans-

form of the pulse is

FpðωÞ5
2A

ω
sin

ωT
2

0
@

1
A if ω 6¼ 0

AT if ω5 0

������� (2.5)

This is a version of the sinc function, sinc(x)5 sin(x)/x. The original pulse and

its transform are illustrated in Figure 2.3. Equation (2.5) (as plotted in Figure 2.3(b))

suggests that a pulse is made up of a lot of low frequencies (the main body of the

pulse) and a few higher frequencies (which give us the edges of the pulse). (The

range of frequencies is symmetrical around zero frequency; negative frequency is a

p (t)

t

Fp (ω)

ω

(a) Pulse of amplitude A = 1 (b) Fourier transform

FIGURE 2.3

A pulse and its Fourier transform.

432.3 The Fourier transform

necessary mathematical abstraction.) The plot of the Fourier transform is actually

called the spectrum of the signal, which can be considered akin with the spectrum

of light.

So what actually is this Fourier transform? It tells us what frequencies make up

a time-domain signal. The magnitude of the transform at a particular frequency is

the amount of that frequency in the original signal. If we collect together sinusoi-

dal signals in amounts specified by the Fourier transform, we should obtain the

originally transformed signal. This process is illustrated in Figure 2.4 for the signal

and transform illustrated in Figure 2.3. Note that since the Fourier transform is

actually a complex number, it has real and imaginary parts, and we only plot the

real part here. A low frequency, that for ω5 1, in Figure 2.4(a) contributes a large

component of the original signal; a higher frequency, that for ω5 2, contributes

Re(Fp(1)·e j·t)

t

Re(Fp(2)·e j·2·t)

t

(a) Contribution for ω = 1 (b) Contribution for ω = 2

Re(Fp(3)·e j·3·t)

t

Re(Fp(4)·e j·4·t)

t

(c) Contribution for ω = 3 (d) Contribution for ω = 4

(e) Reconstruction by integration

Fp(ω)·e j·ω·t dω

6

t

–6

FIGURE 2.4

Reconstructing a signal from its transform.

44 CHAPTER 2 Images, sampling, and frequency domain processing

less as in Figure 2.4(b). This is because the transform coefficient is less for ω5 2

than it is for ω5 1. There is a very small contribution for ω5 3 (Figure 2.4(c))

though there is more for ω5 4 (Figure 2.4(d)). This is because there are frequen-

cies for which there is no contribution, where the transform is zero. When these

signals are integrated together, we achieve a signal that looks similar to our origi-

nal pulse (Figure 2.4(e)). Here, we have only considered frequencies ω from26 to 6.

If the frequency range in integration was larger, more high frequencies would be

included, leading to a more faithful reconstruction of the original pulse.

The result of the Fourier transform is actually a complex number. As such, it

is usually represented in terms of its magnitude (or size or modulus) and phase

(or argument). The transform can be represented as

ðN
2N

pðtÞ e2jωt dt5Re½FpðωÞ�1 j Im½FpðωÞ� (2.6)

where Re[] and Im[] are the real and imaginary parts of the transform, respec-

tively. The magnitude of the transform is then

ðN
2N

pðtÞ e2jωt dt

����
����5

ffi
Re½FpðωÞ�2 1 Im½FpðωÞ�2

q
(2.7)

and the phase is

ðN
2N

pðtÞ e2jωt dt5 tan21 Im½FpðωÞ�
Re½FpðωÞ�

�
(2.8)

where the signs of the real and the imaginary components can be used to deter-

mine which quadrant the phase is in (since the phase can vary from 0 to 2π
radians). The magnitude describes the amount of each frequency component, the

phase describes timing when the frequency components occur. The magnitude

and phase of the transform of a pulse are shown in Figure 2.5 where the magni-

tude returns a positive transform, and the phase is either 0 or 2π radians (consis-

tent with the sine function).

ω

⏐Fp (ω)⏐

(a) Magnitude

arg (Fp (ω))

ω

(b) Phase

FIGURE 2.5

Magnitude and phase of Fourier transform of pulse.

452.3 The Fourier transform

In order to return to the time-domain signal, from the frequency domain sig-

nal, we require the inverse Fourier transform. Naturally, this is the process by

which we reconstructed the pulse from its transform components. The inverse

Fourier transform calculates p(t) from Fp(ω) by the inverse transformation ℑ21:

pðtÞ5ℑ21ðFpðωÞÞ5 1

2π

ðN
2N

FpðωÞ ejωt dω (2.9)

Together, Eqs (2.1) and (2.9) form a relationship known as a transform pair

that allows us to transform into the frequency domain and back again. By this

process, we can perform operations in the frequency domain or in the time

domain, since we have a way of changing between them. One important process

is known as convolution. The convolution of one signal p1(t) with another signal

p2(t), where the convolution process denoted by * is given by the integral

p1ðtÞ � p2ðtÞ5
ðN
2N

p1ðτÞ p2ðt2 τÞdτ (2.10)

This is actually the basis of systems theory where the output of a system is the

convolution of a stimulus, say p1, and a system’s response, p2. By inverting the

time axis of the system response, to give p2(t2 τ), we obtain a memory function.

The convolution process then sums the effect of a stimulus multiplied by the

memory function: the current output of the system is the cumulative response to a

stimulus. By taking the Fourier transform of Eq. (2.10), the Fourier transform of

the convolution of two signals is

ℑ½p1ðtÞ � p2ðtÞ�5
ðN
2N

ðN
2N

p1ðτÞ p2ðt2 τÞdτ
� �

e2jωt dt

5

ðN
2N

ðN
2N

p2ðt2 τÞ e2jωt dt

� �
p1ðτÞdτ

(2.11)

Now since ℑ[p2 (t2 τ)]5 e2jωτ Fp2(ω) (to be considered later in Section 2.6.1),

then

ℑ½p1ðtÞ � p2ðtÞ�5
ðN
2N

Fp2ðωÞ p1ðτÞ e2jωτ dτ

5Fp2ðωÞ
ðN
2N

p1ðτÞ e2jωτ dτ

5Fp2ðωÞ3Fp1ðωÞ

(2.12)

As such, the frequency domain dual of convolution is multiplication; the con-

volution integral can be performed by inverse Fourier transformation of the

product of the transforms of the two signals. A frequency domain representation

essentially presents signals in a different way, but it also provides a different way

of processing signals. Later we shall use the duality of convolution to speed up

the computation of vision algorithms considerably.

46 CHAPTER 2 Images, sampling, and frequency domain processing

Further, correlation is defined to be

p1ðtÞ � p2ðtÞ5
ðN
2N

p1ðτÞ p2ðt1 τÞdτ (2.13)

where � denotes correlation (} is another symbol which is used sometimes, but

there is not much consensus on this symbol—if comfort is needed: “in esoteric

astrology } represents the creative spark of divine consciousness” no less!).

Correlation gives a measure of the match between the two signals p2(ω) and p1(ω).
When p2(ω)5 p1(ω) we are correlating a signal with itself and the process is known

as autocorrelation. We shall be using correlation later to find things in images.

Before proceeding further, we also need to define the delta function, which

can be considered to be a function occurring at a particular time interval:

deltaðt2 τÞ5 1 if t5 τ
0 otherwise

���� (2.14)

The relationship between a signal’s time-domain representation and its fre-

quency domain version is also known as a transform pair: the transform of a

pulse (in the time domain) is a sinc function in the frequency domain. Since the

transform is symmetrical, the Fourier transform of a sinc function is a pulse.

There are other Fourier transform pairs, as illustrated in Figure 2.6. Firstly,

Figure 2.6(a) and (b) shows that the Fourier transform of a cosine function is two

points in the frequency domain (at the same value for positive and negative fre-

quency)—we expect this since there is only one frequency in the cosine function,

the frequency shown by its transform. Figure 2.6(c) and (d) shows that the transform

of the Gaussian function is another Gaussian function; this illustrates linearity (for

linear systems it’s Gaussian in, Gaussian out which is another version of GIGO).

Figure 2.6(e) is a single point (the delta function) which has a transform that is an

infinite set of frequencies; Figure 2.6(f) is an alternative interpretation that a delta

function contains an equal amount of all frequencies. This can be explained by using

Eq. (2.5) where if the pulse is of shorter duration (T tends to zero), the sinc function

is wider; as the pulse becomes infinitely thin, the spectrum becomes infinitely flat.

Finally, Figure 2.6(g) and (h) shows that the transform of a set of uniformly

spaced delta functions is another set of uniformly spaced delta functions but with

a different spacing. The spacing in the frequency domain is the reciprocal of the

spacing in the time domain. By way of an (nonmathematical) explanation, let us

consider that the Gaussian function in Figure 2.6(c) is actually made up by sum-

ming a set of closely spaced (and very thin) Gaussian functions. Then, since the

spectrum for a delta function is infinite, as the Gaussian function is stretched in

the time domain (eventually to be a set of pulses of uniform height), we obtain a

set of pulses in the frequency domain but spaced by the reciprocal of the time-

domain spacing. This transform pair is actually the basis of sampling theory

(which we aim to use to find a criterion which guides us to an appropriate choice

for the image size).

472.3 The Fourier transform

Time domain signals Frequency domain spectra

cos (t)

g (t)

F cos (ω)

Fg (ω)

t ω

(a) Cosine wave (b) Fourier transform of cosine wave

t
ω

(c) Gaussian function (d) Spectrum of Gaussian function

delta (t, 0)

t

1

ω

(e) Delta function (f) Frequency content of delta function

many d (t , Ψ)

t

many d ω, 1
Ψ

ω

(g) Sampling function in time domain (h) Transform of sampling function

((

FIGURE 2.6

Fourier transform pairs.

48 CHAPTER 2 Images, sampling, and frequency domain processing

2.4 The sampling criterion
The sampling criterion specifies the condition for the correct choice of sam-

pling frequency. Sampling concerns taking instantaneous values of a continuous

signal, physically these are the outputs of an A/D converter sampling a camera

signal. Clearly, the samples are the values of the signal at sampling instants. This

is illustrated in Figure 2.7 where Figure 2.7(a) concerns taking samples at a high

frequency (the spacing between samples is low), compared with the amount of

change seen in the signal of which the samples are taken. Here, the samples are

taken sufficiently fast to notice the slight dip in the sampled signal. Figure 2.7(b)

concerns taking samples at a low frequency, compared with the rate of change of

(the maximum frequency in) the sampled signal. Here, the slight dip in the sam-

pled signal is not seen in the samples taken from it.

We can understand the process better in the frequency domain. Let us consider

a time-variant signal which has a range of frequencies between2 fmax and fmax as

illustrated in Figure 2.8(b). This range of frequencies is shown by the Fourier

transform where the signal’s spectrum exists only between these frequencies.

This function is sampled every Δt s: this is a sampling function of spikes occur-

ring every Δt s. The Fourier transform of the sampling function is a series of

spikes separated by fsample5 1/Δt Hz. The Fourier pair of this transform is illus-

trated in Figure 2.6(g) and (h).

The sampled signal is the result of multiplying the time-variant signal by the

sequence of spikes, this gives samples that occur every Δt s, and the sampled sig-

nal is shown in Figure 2.8(a). These are the outputs of the A/D converter at sam-

pling instants. The frequency domain analog of this sampling process is to

convolve the spectrum of the time-variant signal with the spectrum of the sam-

pling function. Convolving the signals, the convolution process, implies that we

take the spectrum of one, flip it along the horizontal axis and then slide it across

the other. Taking the spectrum of the time-variant signal and sliding it over the

(a) Sampling at high frequency

Sampling
instants

Signal
Amplitude

Sampling
instants

TimeTime
Δt

Δt

Signal
Amplitude

(b) Sampling at low frequency

FIGURE 2.7

Sampling at different frequencies.

492.4 The sampling criterion

(a) Sampled signal

Time

Frequency response

Frequency

Frequency

Frequency

Frequency response

Frequency response

f max fsample–f max–f sample

–3f max

–f sample
= –1/Δt

f sample
= 1/Δt

Δt

–f max f max

–f max f max 2f max
= f sample

3f max–2fmax
= –f sample

Signal

(b) Oversampled spectra

(c) Sampling at the Nyquist rate

(d) Undersampled, aliased, spectra

FIGURE 2.8

Sampled spectra.

50 CHAPTER 2 Images, sampling, and frequency domain processing

spectrum of the spikes result in a spectrum where the spectrum of the original sig-

nal is repeated every 1/Δt Hz, fsample in Figure 2.8(b�d). If the spacing between
samples is Δt, the repetitions of the time-variant signal’s spectrum are spaced

at intervals of 1/Δt, as in Figure 2.8(b). If the sample spacing is large, then the

time-variant signal’s spectrum is replicated close together and the spectra collide,

or interfere, as in Figure 2.8(d). The spectra just touch when the sampling fre-

quency is twice the maximum frequency in the signal. If the frequency domain

spacing, fsample, is more than twice the maximum frequency, fmax, the spectra do

not collide or interfere, as in Figure 2.8(c). If the sampling frequency exceeds

twice the maximum frequency, then the spectra cannot collide. This is the

Nyquist sampling criterion:

In order to reconstruct a signal from its samples, the sampling frequency

must be at least twice the highest frequency of the sampled signal.

If we do not obey Nyquist’s sampling theorem, the spectra will collide. When

we inspect the sampled signal, whose spectrum is within2 fmax to fmax, wherein the

spectra collided, the corrupt spectrum implies that by virtue of sampling, we have

ruined some of the information. If we were to attempt to reconstruct a signal by

inverse Fourier transformation of the sampled signal’s spectrum, processing

Figure 2.8(d) would lead to the wrong signal, whereas inverse Fourier transformation

of the frequencies between2 fmax and fmax in Figure 2.8(b) and (c) would lead back

to the original signal. This can be seen in computer images as illustrated in

Figure 2.9 that shows an image of a group of people (the computer vision research

team at Southampton) displayed at different spatial resolutions (the contrast has been

increased to the same level in each subimage, so that the effect we want to demon-

strate should definitely show up in the print copy). Essentially, the people become

less distinct in the lower resolution image (Figure 2.9(b)). Now, look closely at the

window blinds behind the people. At higher resolution, in Figure 2.9(a), these appear

(a) High resolution (b) Low resolution—aliased

FIGURE 2.9

Aliasing in sampled imagery.

512.4 The sampling criterion

as normal window blinds. In Figure 2.9(b), which is sampled at a much lower resolu-

tion, a new pattern appears: the pattern appears to be curved—and if you consider

the blinds’ relative size the shapes actually appear to be much larger than normal

window blinds. So by reducing the resolution, we are seeing something different, an

alias of the true information—something that is not actually there at all but appears

to be there by result of sampling. This is the result of sampling at too low a fre-

quency: if we sample at high frequency, the interpolated result matches the original

signal; if we sample at too low a frequency, we can get the wrong signal. (For these

reasons, people on television tend to wear noncheckered clothes—or should not!).

Note that this effect can be seen, in the way described, in the printed version of this

book. This is because the printing technology is very high in resolution. If you were

to print this page offline (and sometimes even to view it), e.g., from a Google Books

sample, the nature of the effect of aliasing depends on the resolution of the printed

image, and so the aliasing effect might also be seen in the high resolution image as

well as in the low resolution version—which rather spoils the point.

In art, Dali’s picture Gala Contemplating the Mediterranean Sea, which at

20 meters becomes the portrait of Abraham Lincoln (Homage to Rothko) is a

classic illustration of sampling. At high resolution, you see a detailed surrealist

image, with Mrs Dali as a central figure. Viewed from a distance—or for the

shortsighted, without your spectacles on—the image becomes a (low resolution)

picture of Abraham Lincoln. For a more modern view of sampling, Unser (2000)

is well worth a look. A new approach (Donoho, 2006), compressive sensing, takes

advantage of the fact that many signals have components that are significant, or

nearly zero, leading to cameras which acquire significantly fewer elements to rep-

resent an image. This provides an alternative basis for compressed image acquisi-

tion without loss of resolution.

Obtaining the wrong signal is called aliasing: our interpolated signal is an

alias of its proper form. Clearly, we want to avoid aliasing, so according to the

sampling theorem, we must sample at twice the maximum frequency of the signal

coming out of the camera. The maximum frequency is defined to be 5.5 MHz, so

we must sample the camera signal at 11 MHz. (For information, when using a

computer to analyze speech we must sample the speech at a minimum frequency

of 12 kHz since the maximum speech frequency is 6 kHz.) Given the timing of a

video signal, sampling at 11 MHz implies a minimum image resolution of

5763 576 pixels. This is unfortunate: 576 is not an integer power of two which

has poor implications for storage and processing. Accordingly, since many image

processing systems have a maximum resolution of 5123 512, they must antici-

pate aliasing. This is mitigated somewhat by the observations that:

1. globally, the lower frequencies carry more information, whereas locally the

higher frequencies contain more information, so the corruption of high-

frequency information is of less importance; and

2. there is limited depth of focus in imaging systems (reducing high-frequency

content).

52 CHAPTER 2 Images, sampling, and frequency domain processing

But aliasing can, and does, occur and we must remember this when interpret-

ing images. A different form of this argument applies to the images derived from

digital cameras. The basic argument that the precision of the estimates of the

high-order frequency components is dictated by the relationship between the

effective sampling frequency (the number of image points) and the imaged struc-

ture, naturally still applies.

The effects of sampling can often be seen in films, especially in the rotating

wheels of cars, as illustrated in Figure 2.10. This shows a wheel with a single

spoke, for simplicity. The film is a sequence of frames starting on the left. The

sequence of frames plotted Figure 2.10(a) is for a wheel which rotates by 20�

between frames, as illustrated in Figure 2.10(b). If the wheel is rotating much fas-

ter, by 340� between frames, as in Figure 2.10(c) and Figure 2.10(d), to a human

viewer the wheel will appear to rotate in the opposite direction. If the wheel

rotates by 360� between frames, it will appear to be stationary. In order to per-

ceive the wheel as rotating forwards, the rotation between frames must be 180� at
most. This is consistent with sampling at at least twice the maximum frequency.

Our eye can resolve this in films (when watching a film, we bet you haven’t

thrown a wobbly because the car is going forwards whereas the wheels say it’s

going the other way) since we know that the direction of the car must be consis-

tent with the motion of its wheels, and we expect to see the wheels appear to go

the wrong way, sometimes.

2.5 The discrete Fourier transform
2.5.1 1D transform
Given that image processing concerns sampled data, we require a version of the

Fourier transform that handles this. This is known as the DFT. The DFT of a set

(a) Oversampled rotating wheel (b) Slow rotation

(d) Fast rotation(c) Undersampled rotating wheel

340°

20°

FIGURE 2.10

Correct and incorrect apparent wheel motion.

532.5 The discrete Fourier transform

of N points px (sampled at a frequency which at least equals the Nyquist sampling

rate) into sampled frequencies, Fpu, is

Fpu 5
1ffiffiffiffi
N

p
XN21

x50

px e
2j 2π

Nð Þxu (2.15)

This is a discrete analogue of the continuous Fourier transform: the continuous

signal is replaced by a set of samples, the continuous frequencies by sampled

ones, and the integral is replaced by a summation. If the DFT is applied to sam-

ples of a pulse in a window from sample 0 to sample N/22 1 (when the pulse

ceases), the equation becomes

Fpu 5
1ffiffiffiffi
N

p
XN221

x50

A e2j 2π
Nð Þxu (2.16)

And since the sum of a geometric progression can be evaluated according to

Xn
k50

a0r
k 5

a0ð12 rn11Þ
12 r

(2.17)

the DFT of a sampled pulse is given by

Fpu 5
Affiffiffiffi
N

p 12 e2j 2π
Nð Þ N

2ð Þu
12 e2j 2π

Nð Þu

 !
(2.18)

By rearrangement, we obtain:

Fpu 5
Affiffiffiffi
N

p e2j πu
2ð Þ 122

Nð Þ sinðπu=2Þ
sinðπu=NÞ (2.19)

The modulus of the transform is

jFpuj5
Affiffiffiffi
N

p sinðπu=2Þ
sinðπu=NÞ

����
���� (2.20)

since the magnitude of the exponential function is 1. The original pulse is plotted

in Figure 2.11(a), and the magnitude of the Fourier transform plotted against

frequency is given in Figure 2.11(b).

This is clearly comparable with the result of the continuous Fourier transform

of a pulse (Figure 2.3) since the transform involves a similar, sinusoidal signal.

The spectrum is equivalent to a set of sampled frequencies; we can build up the

sampled pulse by adding up the frequencies according to the Fourier description.

Consider a signal such as that shown in Figure 2.12(a). This has no explicit ana-

lytic definition, as such it does not have a closed Fourier transform; the Fourier

transform is generated by direct application of Eq. (2.15). The result is a set of

samples of frequency (Figure 2.12(b)).

The Fourier transform in Figure 2.12(b) can be used to reconstruct the original

signal in Figure 2.12(a), as illustrated in Figure 2.13. Essentially, the coefficients

54 CHAPTER 2 Images, sampling, and frequency domain processing

of the Fourier transform tell us how much there is of each of a set of sinewaves

(at different frequencies), in the original signal. The lowest frequency component

Fp0, for zero frequency, is called the d.c. component (it is constant and equivalent

to a sinewave with no frequency), and it represents the average value of the sam-

ples. Adding the contribution of the first coefficient Fp0 (Figure 2.13(b)) to the

contribution of the second coefficient Fp1 (Figure 2.13(c)) is shown in

Figure 2.13(d). This shows how addition of the first two frequency components

approaches the original sampled pulse. The approximation improves when the

contribution due to the fourth component, Fp3, is included, as shown in

Figure 2.13(e). Finally, adding up all six frequency components gives a close

approximation to the original signal, as shown in Figure 2.13(f).

This process is, of course, the inverse DFT. This can be used to reconstruct a

sampled signal from its frequency components by

px 5
XN21

u50

Fpu e
j 2π

Nð Þux (2.21)

if x < 5 1

otherwise0

x

Fpu

u

(a) Sampled pulse (b) DFT of sampled pulse

FIGURE 2.11

Transform pair for sampled pulse.

x

px Fpu

u

(a) Sampled signal (b) Transform of sampled signal

FIGURE 2.12

A sampled signal and its discrete transform.

552.5 The discrete Fourier transform

Note that there are several assumptions made prior to application of the DFT.

The first is that the sampling criterion has been satisfied. The second is that the

sampled function replicates to infinity. When generating the transform of a pulse,

Fourier theory assumes that the pulse repeats outside the window of interest.

(There are window operators that are designed specifically to handle difficulty at

the ends of the sampling window.) Finally, the maximum frequency corresponds

to half the sampling period. This is consistent with the assumption that the

sampling criterion has not been violated, otherwise the high-frequency spectral

estimates will be corrupt.

Re

j.t. 2 π
10

t

Re

t

Re

3

u = 0u = 0

t

Re

5

t

x

px Fp0

Fp1
.

.

e

j.t. .u
2 π
10

j.t. .u2 π
10

Fpu
.

.

e Fpu
.

.

e

j.t. 2 π
10

Fp0 + Fp1
.

.

e

t

(b) First coefficient Fp0

(d) Adding Fp1 and Fp0

(e) Adding Fp0, Fp1, Fp2, and Fp3 (f) Adding all six frequency components

(c) Second coefficient Fp1

(a) Original sampled signal

FIGURE 2.13

Signal reconstruction from its transform components.

56 CHAPTER 2 Images, sampling, and frequency domain processing

2.5.2 2D transform
Equation (2.15) gives the DFT of a 1D signal. We need to generate Fourier trans-

forms of images so we need a 2D DFT. This is a transform of pixels (sampled

picture points) with a 2D spatial location indexed by coordinates x and y. This

implies that we have two dimensions of frequency, u and v, which are the hori-

zontal and vertical spatial frequencies, respectively. Given an image of a set of

vertical lines, the Fourier transform will show only horizontal spatial frequency.

The vertical spatial frequencies are zero since there is no vertical variation along

the y-axis. The 2D Fourier transform evaluates the frequency data, FPu,v, from

the N3N pixels Px,y as

FPu;v 5
1

N

XN21

x50

XN21

y50

Px;y e
2j 2π

Nð Þðux1vyÞ (2.22)

The Fourier transform of an image can actually be obtained optically by trans-

mitting a laser through a photographic slide and forming an image using a lens.

The Fourier transform of the image of the slide is formed in the front focal plane

of the lens. This is still restricted to transmissive systems, whereas reflective for-

mation would widen its application potential considerably (since optical computa-

tion is just slightly faster than its digital counterpart). The magnitude of the 2D

DFT to an image of vertical bars (Figure 2.14(a)) is shown in Figure 2.14(b).

This shows that there are only horizontal spatial frequencies; the image is

constant in the vertical axis and there are no vertical spatial frequencies.

(a) Image of vertical bars (b) Fourier transform of bars

FIGURE 2.14

Applying the 2D DFT.

572.5 The discrete Fourier transform

The 2D inverse DFT transforms from the frequency domain back to the image

domain to reconstruct the image. The 2D inverse DFT is given by

Px;y 5
XN21

u50

XN21

v50

FPu;v e
j 2π

Nð Þðux1vyÞ (2.23)

The contribution of different frequencies illustrated in Figure 2.15(a)�(d)

shows the position of the image transform components (presented as log[magni-

tude]), Figure 2.15(f)�(i) the image constructed from that single component, and

Figure 2.15(j)�(m) the reconstruction (by the inverse Fourier transform) using

frequencies up to and including that component. There is also the image of the

magnitude of the Fourier transform (Figure 2.15(e)). We shall take the transform

components from a circle centered at the middle of the transform image. In

Figure 2.15, the first column is the transform components at radius 1 (which are

low-frequency components), the second column at radius 4, the third column is at

(a) Transform
radius 1

components

(f) Image by
radius 1

components

(j) Reconstruction
up to 1st

(k) Reconstruction
up to 4th

(I) Reconstruction
up to 9th

(m) Reconstruction
up to 25th

(n) Reconstruction
with all

(g) Image by
radius 4

components

(h) Image by
radius 9

components

(i) Image by radius
25 components

(b) Transform
radius 4

components

(c) Transform
radius 9

components

(d) Transform
radius 25

components

(e) Complete
transform

FIGURE 2.15

Image reconstruction and different frequency components.

58 CHAPTER 2 Images, sampling, and frequency domain processing

radius 9, and the fourth column is at radius 25 (the higher frequency components).

The last column has the complete Fourier transform image (Figure 2.15(e)), and

the reconstruction of the image from the transform (Figure 2.15(n)). As we

include more components, we include more detail; the lower order components

carry the bulk of the shape, not the detail. In the bottom row, the first components

plus the d.c. component give a very coarse approximation (Figure 2.15(j)). When

the components up to radius 4 are added, we can see the shape of a face

(Figure 2.15(k)); the components up to radius 9 allow us to see the face features

(Figure 2.15(l)), but they are not sharp; we can infer identity from the components

up to radius 25 (Figure 2.15(m)), noting that there are still some image artifacts on

the right-hand side of the image; when all components are added (Figure 2.15(n))

we return to the original image. This also illustrates coding, as the image can

be encoded by retaining fewer components of the image than are in the complete

transform—Figure 2.15(m) is a good example of where an image of acceptable qual-

ity can be reconstructed, even when about half of the components are discarded.

There are considerably better coding approaches than this, though we shall not con-

sider coding in this text, and compression ratios can be considerably higher and still

achieve acceptable quality. Note that it is common to use logarithms to display

Fourier transforms (Section 3.3.1), otherwise the magnitude of the d.c. component

can make the transform difficult to see.

One of the important properties of the Fourier transform is replication which

implies that the transform repeats in frequency up to infinity, as indicated in

Figure 2.8 for 1D signals. To show this for 2D signals, we need to investigate the

Fourier transform, originally given by FPu,v, at integer multiples of the number of

sampled points FPu1mM,v1nN (where m and n are integers). The Fourier transform

FPu1mM,v1nN is, by substitution in Eq. (2.22):

FPu1mN;v1nN 5
1

N

XN21

x50

XN21

y50

Px;y e
2j 2π

Nð Þððu1mNÞx1ðv1nNÞyÞ (2.24)

so

FPu1mN;v1nN 5
1

N

XN21

x50

XN21

y50

Px;y e
2j 2π

Nð Þðux1vyÞ 3 e2j2πðmx1nyÞ (2.25)

and if e2j2π(mx1ny)5 1 (since the term in brackets is always an integer and then

the exponent is always an integer multiple of 2π), then

FPu1mN;v1nN 5FPu;v (2.26)

which shows that the replication property does hold for the Fourier transform.

However, Eqs (2.22) and (2.23) are very slow for large image sizes. They are usu-

ally implemented by using the Fast Fourier Transform (FFT) which is a splendid

592.5 The discrete Fourier transform

rearrangement of the Fourier transform’s computation, which improves speed dra-

matically. The FFT algorithm is beyond the scope of this text but is also a

rewarding topic of study (particularly for computer scientists or software engi-

neers). The FFT can only be applied to square images whose size is an integer

power of 2 (without special effort). Calculation actually involves the separability

property of the Fourier transform. Separability means that the Fourier transform is

calculated in two stages: the rows are first transformed using a 1D FFT, then this

data is transformed in columns, again using a 1D FFT. This process can be

achieved since the sinusoidal basis functions are orthogonal. Analytically, this

implies that the 2D DFT can be decomposed as in Eq. (2.27):

1

N

XN21

x50

XN21

y50

Px;y e
2j 2π

Nð Þðux1vyÞ 5
1

N

XN21

x50

XN21

y50

Px;y e
2j 2π

Nð ÞðvyÞ
()

e2j 2π
Nð ÞðuxÞ (2.27)

showing how separability is achieved since the inner term expresses transforma-

tion along one axis (the y-axis) and the outer term transforms this along the other

(the x-axis).

Since the computational cost of a 1D FFT of N points is O(N log(N)), the cost

(by separability) for the 2D FFT is O(N2 log(N)), whereas the computational cost

of the 2D DFT is O(N3). This implies a considerable saving since it suggests that

the FFT requires much less time, particularly for large image sizes (so for a

1283 128 image, if the FFT takes minutes, the DFT will take days). The 2D FFT

is available in Mathcad using the icfft function which gives a result equivalent

FPu,v := .1

rows(P)

.1

rows(FP)

∑ ∑
rows(P)–1

y=0

cols(P)–1

x=0

Px,y.e

–j.2.π.(u.x + v.y)

rows(P)

(a) 2D DFT, Eq. (2.22)

(b) Inverse 2D DFT, Eq. (2.23)

Fourier(pic):=icfft(pic)
(c) 2D FFT

inv_Fourier(trans):=cfft(trans)

(d) Inverse 2D FFT

IFPx,y :=
rows(FP)–1

v=0

cols(FP)–1

u=0

FPu,v·e
j.2.π.(u.x + v.y)

rows(FP)∑ ∑

CODE 2.1

Implementing Fourier transforms.

60 CHAPTER 2 Images, sampling, and frequency domain processing

to Eq. (2.22). The inverse 2D FFT, Eq. (2.23), can be implemented using

the Mathcad cfft function. (The difference between many Fourier transform

implementations essentially concerns the chosen scaling factor.) The Mathcad

implementations of the 2D DFT and inverse 2D DFT are given in Code 2.1(a)

and Code 2.1(b), respectively. The implementations using the Mathcad functions

using the FFT are given in Code 2.1(c) and Code 2.1(d).

For reasons of speed, the 2D FFT is the algorithm commonly used in applica-

tion. One (unfortunate) difficulty is that the nature of the Fourier transform

produces an image which, at first, is difficult to interpret. The Fourier transform

of an image gives the frequency components. The position of each component

reflects its frequency: low-frequency components are near the origin and high-

frequency components are further away. As before, the lowest frequency compo-

nent for zero frequency, the d.c. component, represents the average value of the

samples. Unfortunately, the arrangement of the 2D Fourier transform places

the low-frequency components at the corners of the transform. The image of the

square in Figure 2.16(a) shows this in its transform (Figure 2.16(b)). A spatial

transform is easier to visualize if the d.c. (zero frequency) component is in

the center, with frequency increasing toward the edge of the image. This can be

arranged either by rotating each of the four quadrants in the Fourier transform by

180�. An alternative is to reorder the original image to give a transform which

shifts the transform to the center. Both operations result in the image in

Figure 2.16(c) wherein the transform is much more easily seen. Note that this is

aimed to improve visualization and does not change any of the frequency domain

information, only the way it is displayed.

To rearrange the image so that the d.c. component is in the center, the fre-

quency components need to be reordered. This can be achieved simply by multi-

plying each image point Px,y by 21(x1y). Since cos(2π)521, then 215 e2jπ

(a) Image of square (b) Original DFT (c) Rearranged DFT

FIGURE 2.16

Rearranging the 2D DFT for display purposes.

612.5 The discrete Fourier transform

(the minus sign is introduced just to keep the analysis neat) so we obtain the

transform of the multiplied image as

1

N

XN21

x50

XN21

y50

Px;y e
2j 2π

Nð Þðux1vyÞ 3 21ðx1yÞ 5
1

N

XN21

x50

XN21

y50

Px;y e
2j 2π

Nð Þðux1vyÞ 3 e2jπðx1yÞ

5
1

N

XN21

x50

XN21

y50

Px;y e
2j
�
2π
N

���
u1N

2

�
x1
�
v1N

2

�
y
�

5FPu1N
2
;v1N

2
(2.28)

According to Eq. (2.28), when pixel values are multiplied by 21(x1y), the

Fourier transform becomes shifted along each axis by half the number of samples.

According to the replication theorem, Eq. (2.26), the transform replicates along

the frequency axes. This implies that the center of a transform image will now be

the d.c. component. (Another way of interpreting this is that rather than look at

the frequencies centered on where the image is, our viewpoint has been shifted so

as to be centered on one of its corners—thus invoking the replication property.)

The operator rearrange, in Code 2.2, is used prior to transform calculation and

results in the image of Figure 2.16(c) and all later transform images.

The full effect of the Fourier transform is shown by application to an image of

much higher resolution. Figure 2.17(a) shows the image of a face and Figure 2.17(b)

shows its transform. The transform reveals that much of the information is carried in

the lower frequencies since this is where most of the spectral components concen-

trate. This is because the face image has many regions where the brightness does not

change a lot, such as the cheeks and forehead. The high-frequency components

reflect change in intensity. Accordingly, the higher frequency components arise

from the hair (and that awful feather!) and from the borders of features of the human

face, such as the nose and eyes.

Similar to the 1D Fourier transform, there are 2D Fourier transform pairs, illus-

trated in Figure 2.18. The 2D Fourier transform of a 2D pulse (Figure 2.18(a)) is

a 2D sinc function, in Figure 2.18(b). The 2D Fourier transform of a Gaussian

function, in Figure 2.18(c), is again a 2D Gaussian function in the frequency

domain, in Figure 2.18(d).

rearrange(picture):= for y∈0..rows(picture)–1
for x∈0..cols(picture)–1

rearranged_picy,x
← picturey,x·(–1)

(y+x)

rearranged_pic

CODE 2.2

Reordering for transform calculation.

62 CHAPTER 2 Images, sampling, and frequency domain processing

2.6 Other properties of the Fourier transform
2.6.1 Shift invariance
The decomposition into spatial frequency does not depend on the position of fea-

tures within the image. If we shift all the features by a fixed amount, or acquire

the image from a different position, the magnitude of its Fourier transform does

not change. This property is known as shift invariance. By denoting the delayed

version of p(t) as p(t2 τ), where τ is the delay, and the Fourier transform of the

shifted version as ℑ[p(t2 τ)], we obtain the relationship between a time-domain

shift in the time and frequency domains as

ℑ½pðt2 τÞ�5 e2jωτPðωÞ (2.29)

Accordingly, the magnitude of the Fourier transform is

jℑ½pðt2 τÞ�j5 je2jωτPðωÞj5 je2jωτ jjPðωÞj5 jPðωÞj (2.30)

If the magnitude of the exponential function is 1.0, then the magnitude of the

Fourier transform of the shifted image equals that of the original (unshifted) ver-

sion. We shall use this property in Chapter 7 where we use Fourier theory to

describe shapes. There, it will allow us to give the same description to different

instances of the same shape, but a different description to a different shape. You

do not get something for nothing: even though the magnitude of the Fourier trans-

form remains constant, its phase does not. The phase of the shifted transform is

hℑ½pðt2 τÞ�5 he2jωτPðωÞ (2.31)

(a) Image of face (b) Transform of face image

FIGURE 2.17

Applying the Fourier transform to the image of a face.

632.6 Other properties of the Fourier transform

The Mathcad implementation of a shift operator, Code 2.3, uses the modulus

operation to enforce the cyclic shift. The arguments fed to the function are the

image to be shifted (pic), the horizontal shift along the x-axis (x_value), and the

vertical shift along the y-axis (y_value).

0
10 20 30

0
10

20
30

0.2
0.4
0.6
0.8

1

Square
(a) Square

Transform domainImage domain

0
10 20 30

0
10

20
30

1

2

ft_square
(b) 2D sinc function

0
10 20 30

0
10

20
30

0.2
0.4
0.6
0.8

1

Gauss
(c) Gaussian

0
10 20 30

0
10

20
30

0.5

1

1.5

ft_Gauss
(d) Gaussian

FIGURE 2.18

2D Fourier transform pairs.

shift(pic,y_val,x_val) := NC←cols(pic)

for y∈0..NR–1
for x∈0..NC–1
shiftedy,x

←

picmod(y+y_val,NR),mod(x+x_val,NC)

shifted

NR←rows(pic)

CODE 2.3

Shifting an image.

64 CHAPTER 2 Images, sampling, and frequency domain processing

This process is illustrated in Figure 2.19. An original image (Figure 2.19(a)) is

shifted along the x- and y-axes (Figure 2.19(d)). The shift is cyclical, so parts of

the image wrap around; those parts at the top of the original image appear at the

base of the shifted image. The Fourier transform of the original and shifted

images is identical: Figure 2.19(b) appears the same as Figure 2.19(e). The phase

differs: the phase of the original image (Figure 2.19(c)) is clearly different from

the phase of the shifted image (Figure 2.19(f)).

The differing phase implies that, in application, the magnitude of the Fourier

transform of a face, say, will be the same irrespective of the position of the face

in the image (i.e., the camera or the subject can move up and down), assuming

that the face is much larger than its image version. This implies that if the Fourier

transform is used to analyze an image of a human face or one of cloth, to describe

it by its spatial frequency, we do not need to control the position of the camera,

or the object, precisely.

2.6.2 Rotation
The Fourier transform of an image rotates when the source image rotates. This

is to be expected since the decomposition into spatial frequency reflects the orien-

tation of features within the image. As such, orientation dependency is built into

the Fourier transform process.

This implies that if the frequency domain properties are to be used in image

analysis, via the Fourier transform, the orientation of the original image needs to

(a) Original image (b) Magnitude of Fourier
transform of original image

(c) Phase of Fourier transform
of original image

(d) Shifted image (e) Magnitude of Fourier
transform of shifted image

(f) Phase of Fourier transform
of shifted image

FIGURE 2.19

Illustrating shift invariance.

652.6 Other properties of the Fourier transform

be known or fixed. It is often possible to fix orientation or to estimate its value

when a feature’s orientation cannot be fixed. Alternatively, there are techniques

to impose invariance to rotation, say by translation to a polar representation,

though this can prove to be complex.

The effect of rotation is illustrated in Figure 2.20. An image (Figure 2.20(a))

is rotated by 90� to give the image in Figure 2.20(b). Comparison of the transform

of the original image (Figure 2.20(c)) with the transform of the rotated image

(Figure 2.20(d)) shows that the transform has been rotated by 90�, by the same

amount as the image. In fact, close inspection of Figure 2.20(c) and (d) shows

that the diagonal axis is consistent with the normal to the axis of the leaves

(where the change mainly occurs), and this is the axis that rotates.

2.6.3 Frequency scaling
By definition, time is the reciprocal of frequency. So if an image is compressed,

equivalent to reducing time, its frequency components will spread, corresponding

to increasing frequency. Mathematically, the relationship is that the Fourier trans-

form of a function of time multiplied by a scalar λ, p(λt), gives a frequency

domain function P(ω/λ), so

ℑ pðλtÞ½ �5 1

λ
P

ω
λ

	

(2.32)

This is illustrated in Figure 2.21 where the texture image (of a chain-link

fence) (Figure 2.21(a)) is reduced in scale (Figure 2.21(b)) thereby increasing the

spatial frequency. The DFT of the original texture image is shown in Figure 2.21(c)

that reveals that the large spatial frequencies in the original image are arranged in a

star-like pattern. As a consequence of scaling the original image, the spectrum will

spread from the origin consistent with an increase in spatial frequency, as shown in

Figure 2.21(d). This retains the star-like pattern, but with points at a greater distance

from the origin.

(a) Original image (b) Rotated image (c) Transform of
original image

(d) Transform of
rotated image

FIGURE 2.20

Illustrating rotation.

66 CHAPTER 2 Images, sampling, and frequency domain processing

The implications of this property are that if we reduce the scale of an image,

say by imaging at a greater distance, we will alter the frequency components. The

relationship is linear: the amount of reduction, say the proximity of the camera to

the target, is directly proportional to the scaling in the frequency domain.

2.6.4 Superposition (linearity)
The principle of superposition is very important in systems analysis. Essentially,

it states that a system is linear if its response to two combined signals equals the

sum of the responses to the individual signals. Given an output O which is a func-

tion of two inputs I1 and I2, the response to signal I1 is O(I1), that to signal I2 is

O(I2), and the response to I1 and I2, when applied together, is O(I11 I2); the

superposition principle states:

OðI1 1 I2Þ5OðI1Þ1OðI2Þ (2.33)

Any system which satisfies the principle of superposition is termed linear.

The Fourier transform is a linear operation since, for two signals p1 and p2,

ℑ½p1 1 p2�5ℑ½p1�1ℑ½p2� (2.34)

In application, this suggests that we can separate images by looking at their

frequency domain components. This is illustrated for 1D signals in Figure 2.22.

One signal is shown in Figure 2.22(a) and a second is shown in Figure 2.22(c).

The Fourier transforms of these signals are shown in Figure 2.22(b) and (d). The

addition of these signals is shown in Figure 2.22(e) and its transform in

Figure 2.22(f). The Fourier transform of the added signals differs little from the

addition of their transforms (Figure 2.22(g)). This is confirmed by subtraction of

the two (Figure 2.22(d)) (some slight differences can be seen, but these are due to

numerical error).

By way of example, given the image of a fingerprint in blood on cloth, it

is very difficult to separate the fingerprint from the cloth by analyzing the

(a) Texture image (b) Scaled texture
image

(c) Transform of
original texture

(d) Transform of scaled
texture

FIGURE 2.21

Illustrating frequency scaling.

672.6 Other properties of the Fourier transform

combined image. However, by translation to the frequency domain, the Fourier

transform of the combined image shows strong components due to the texture

(this is the spatial frequency of the cloth’s pattern) and weaker, more scattered,

components due to the fingerprint. If we suppress the frequency components due

to the cloth’s texture and invoke the inverse Fourier transform, then the cloth will

be removed from the original image. The fingerprint can now be seen in the

resulting image.

2.7 Transforms other than Fourier
2.7.1 Discrete cosine transform
The discrete cosine transform (DCT; Ahmed et al., 1974) is a real transform that

has great advantages in energy compaction. Its definition for spectral compo-

nents DPu,v is

DPu;v 5

1

N

XN21

x50

XN21

y50

Px;y if u5 0 and v5 0

2

N

XN21

x50

XN21

y50

Px;y 3 cos
ð2x1 1Þuπ

2N

0
@

1
A3 cos

ð2y1 1Þvπ
2N

0
@

1
A otherwise

�����������
(2.35)

0 200 0 200 0 200 0 200

0 200 0 200 0 200 0 200

(a) Signal 1 (b) ℑ (Signal 1) (c) Signal 2 (d) ℑ (Signal 2)

(e) Signal 1 + signal 2 (f) ℑ (Signal 1 + signal 2) (g) ℑ (Signal 1) +
ℑ (signal 2)

(h) Difference: (f)–(g)

FIGURE 2.22

Illustrating superposition.

68 CHAPTER 2 Images, sampling, and frequency domain processing

The inverse DCT is defined by

Px;y 5
2

N

XN21

u50

XN21

v50

DPu;v 3 cos
ð2x1 1Þuπ

2N

	

3 cos

ð2y1 1Þvπ
2N

	

(2.36)

A fast version of the DCT is available, like the FFT, and calculation can be

based on the FFT. Both implementations offer about the same speed. The

Fourier transform is not actually optimal for image coding since the DCT can

give a higher compression rate, for the same image quality. This is because the

cosine basis functions can afford for high-energy compaction. This can be seen

by comparison of Figure 2.23(b) with Figure 2.23(a), which reveals that the

DCT components are much more concentrated around the origin, than those for

the Fourier Transform. This is the compaction property associated with the

DCT. The DCT has actually been considered as optimal for image coding, and

this is why it is found in the JPEG and MPEG standards for coded image

transmission.

The DCT is actually shift variant, due to its cosine basis functions. In other

respects, its properties are very similar to the DFT, with one important exception:

it has not yet proved possible to implement convolution with the DCT. It is actu-

ally possible to calculate the DCT via the FFT. This has been performed in

Figure 2.23(b) since there is no fast DCT algorithm in Mathcad and, as shown

earlier, fast implementations of transform calculation can take a fraction of the

time of the conventional counterpart.

The Fourier transform essentially decomposes, or decimates, a signal into sine

and cosine components, so the natural partner to the DCT is the discrete sine

transform (DST). However, the DST transform has odd basis functions (sine)

rather than the even ones in the DCT. This lends the DST transform some less

desirable properties, and it finds much less application than the DCT.

(a) Fourier
transform

(b) Discrete cosine
transform

(c) Hartley
transform

FIGURE 2.23

Comparing transforms of the Lena image.

692.7 Transforms other than Fourier

2.7.2 Discrete Hartley transform
The Hartley transform (Hartley and More, 1942) is a form of the Fourier trans-

form, but without complex arithmetic, with result for the face image shown

in Figure 2.23(c). Oddly, though it sounds like a very rational development, the

Hartley transform was first invented in 1942, but not rediscovered and then

formulated in discrete form until 1983 (Bracewell, 1983, 1984). One advantage of

the Hartley transform is that the forward and inverse transforms are the same

operation; a disadvantage is that phase is built into the order of frequency compo-

nents since it is not readily available as the argument of a complex number. The

definition of the discrete Hartley transform (DHT) is that transform components

HPu,v are

HPu;v 5
1

N

XN21

x50

XN21

y50

Px;y 3 cos
2π
N

3 ðux1 vyÞ
	

1 sin
2π
N

3 ðux1 vyÞ
	
	

(2.37)

The inverse Hartley transform is the same process but applied to the trans-

formed image

Px;y 5
1

N

XN21

u50

XN21

v50

HPu;v 3 cos
2π
N

3 ðux1 vyÞ
	

1 sin
2π
N

3 ðux1 vyÞ
	
	

(2.38)

The implementation is then the same for both the forward and the inverse

transforms, as given in Code 2.4.

Again, a fast implementation is available, the Fast Hartley Transform

(Bracewell, 1984a,b) (though some suggest that it should be called the Bracewell

transform, eponymously). It is actually possible to calculate the DFT of a

function, F(u), from its Hartley transform, H(u). The analysis here is based on

Hartley(pic):= NC←cols(pic)

NR←rows(pic)

for v∈0.. NR – 1

for u∈0.. NC – 1

ΣΣtransv,u← .1

NC

NR–1 NC–1

x=0y=0
picy,x. cos

2.π.(u.x + v.y)
 + sin

NC

2.π.(u.x + v.y)

NR

trans

CODE 2.4

Implementing the Hartley transform.

70 CHAPTER 2 Images, sampling, and frequency domain processing

1D data, but only for simplicity since the argument extends readily to two dimen-

sions. By splitting the Hartley transform into its odd and even parts, O(u) and

E(u), respectively, we obtain:

HðuÞ5OðuÞ1EðuÞ (2.39)

where

EðuÞ5 HðuÞ1HðN2 uÞ
2

(2.40)

and

OðuÞ5 HðuÞ2HðN2 uÞ
2

(2.41)

The DFT can then be calculated from the DHT simply by

FðuÞ5EðuÞ2 j3OðuÞ (2.42)

Conversely, the Hartley transform can be calculated from the Fourier trans-

form by

HðuÞ5Re½FðuÞ�2 Im½FðuÞ� (2.43)

where Re[] and Im[] denote the real and the imaginary parts, respectively. This

emphasizes the natural relationship between the Fourier and the Hartley trans-

form. The image of Figure 2.23(c) has been calculated via the 2D FFT using

Eq. (2.43). Note that the transform in Figure 2.23(c) is the complete transform,

whereas the Fourier transform in Figure 2.23(a) shows only magnitude. Naturally,

as with the DCT, the properties of the Hartley transform mirror those of the

Fourier transform. Unfortunately, the Hartley transform does not have shift invari-

ance but there are ways to handle this. Also, convolution requires manipulation of

the odd and even parts.

2.7.3 Introductory wavelets
2.7.3.1 Gabor wavelet
Wavelets are a comparatively recent approach to signal processing, being introduced

only in the last decade (Daubechies, 1990). Their main advantage is that they allow

multiresolution analysis (analysis at different scales or resolution). Furthermore,

wavelets allow decimation in space and frequency, simultaneously. Earlier trans-

forms actually allow decimation in frequency, in the forward transform, and in time

(or position) in the inverse. In this way, the Fourier transform gives a measure of the

frequency content of the whole image: the contribution of the image to a particular

frequency component. Simultaneous decimation allows us to describe an image

in terms of frequency which occurs at a position, as opposed to an ability to

measure frequency content across the whole image. Clearly this gives us a greater

descriptional power, which can be used to good effect.

712.7 Transforms other than Fourier

First though, we need a basis function, so that we can decompose a signal.

The basis functions in the Fourier transform are sinusoidal waveforms at different

frequencies. The function of the Fourier transform is to convolve these sinusoids

with a signal to determine how much of each is present. The Gabor wavelet is

well suited to introductory purposes since it is essentially a sinewave modulated

by a Gaussian envelope. The Gabor wavelet, gw, is given by

gwðt;ω0; t0; aÞ5 e2jω0t e2
t2t0
að Þ2 (2.44)

where ω05 2πf0 is the modulating frequency, t0 dictates position, and a controls the

width of the Gaussian envelope which embraces the oscillating signal. An example

of Gabor wavelet is shown in Figure 2.24 which shows the real and the imaginary

parts (the modulus is the Gaussian envelope). Increasing the value of ω0 increases

the frequency content within the envelope, whereas increasing the value of a spreads

the envelope without affecting the frequency. So why does this allow simultaneous

analysis of time and frequency? Given that this function is the one convolved with

the test data, we can compare it with the Fourier transform. In fact, if we remove the

term on the right-hand side of Eq. (2.44), we return to the sinusoidal basis function

of the Fourier transform, the exponential in Eq. (2.1). Accordingly, we can return to

the Fourier transform by setting a to be very large. Alternatively, setting f0 to zero

removes frequency information. Since we operate in between these extremes, we

obtain position and frequency information simultaneously.

Actually, an infinite class of wavelets exists which can be used as an expansion

basis in signal decimation. One approach (Daugman, 1988) has generalized the

Gabor function to a 2D form aimed to be optimal in terms of spatial and spectral

resolution. These 2D Gabor wavelets are given by

gw2Dðx; yÞ5 1

σ
ffiffiffi
π

p e2
ðx2x0 Þ21ðy2y0 Þ2

2σ2

� �
e2j2πf0ððx2x0ÞcosðθÞ1ðy2y0ÞsinðθÞÞ (2.45)

where x0 and y0 control position, f0 controls the frequency of modulation along

either axis, and θ controls the direction (orientation) of the wavelet (as implicit in a

Re(gw (t))

t
(a) Real part

Im(gw (t))

t
(b) Imaginary part

FIGURE 2.24

An example of Gabor wavelet.

72 CHAPTER 2 Images, sampling, and frequency domain processing

2D system). Naturally, the shape of the area imposed by the 2D Gaussian function

could be elliptical if different variances were allowed along the x- and y-axes (the

frequency can also be modulated differently along each axis). Figure 2.25, of an

example 2D Gabor wavelet, shows that the real and imaginary parts are even and

odd functions, respectively; again, different values for f0 and σ control the frequency

and envelope’s spread, respectively; the extra parameter θ controls rotation.
The function of the wavelet transform is to determine where and how each

wavelet specified by the range of values for each of the free parameters occurs in

the image. Clearly, there is a wide choice which depends on application. An

example transform is given in Figure 2.26. Here, the Gabor wavelet parameters

have been chosen in such a way as to select face features: the eyes, nose, and

mouth have come out very well. These features are where there is local frequency

content with orientation according to the head’s inclination. Naturally, these are

not the only features with these properties, the cuff of the sleeve is highlighted

too! But this does show the Gabor wavelet’s ability to select and analyze localized

variation in image intensity.

However, the conditions under which a set of continuous Gabor wavelets will

provide a complete representation of any image (i.e., that any image can be recon-

structed) have only recently been developed. However, the theory is naturally

very powerful since it accommodates frequency and position simultaneously, and

further it facilitates multiresolution analysis—the analysis is then sensitive to

scale, which is advantageous, since objects which are far from the camera appear

smaller than those which are close. We shall find wavelets again, when proces-

sing images to find low-level features. Among applications of Gabor wavelets, we

can find measurement of iris texture to give a very powerful security system

Re(Gabor_wavelet)

(a) Real part

Im(Gabor_wavelet)

(b) Imaginary part

FIGURE 2.25

An example of 2-dimensional Gabor wavelet.

732.7 Transforms other than Fourier

(Daugman, 1993) and face feature extraction for automatic face recognition

(Lades et al., 1993). Wavelets continue to develop (Daubechies, 1990) and have

found applications in image texture analysis (Laine and Fan, 1993), in coding

(da Silva and Ghanbari, 1996), and in image restoration (Banham and Katsaggelos,

1996). Unfortunately, the discrete wavelet transform is not shift invariant, though

there are approaches aimed to remedy this (see, for example, Donoho, 1995).

As such, we shall not study it further and just note that there is an important class

of transforms that combine spatial and spectral sensitivity, and it is likely that this

importance will continue to grow.

2.7.3.2 Haar wavelet
Though Fourier laid the basis for frequency decomposition, the original wavelet

approach is now attributed to Alfred Haar’s work in 1909. This uses a binary

approach rather than a continuous signal and has led to fast methods for finding

features in images (Oren et al., 1997) (especially the object detection part of the

Viola�Jones face detection approach (Viola and Jones, 2001)). Essentially, the

binary functions can be considered to form averages over sets of points, thereby

giving means for compression and for feature detection. If we are to form a

new vector (at level h1 1) by taking averages of pairs of elements (and retaining

the integer representation) of the N points in the previous vector (at level h of the

log2(N) levels) as

ph11
i 5

ph23 i 1 ph23 i11

2
iA0 . . .

N

2
2 1; hA1; . . . ; log2ðNÞ (2.46)

For example, consider a vector of points at level 0 as

p0 5 ½1 3 21 19 17 19 1 21� (2.47)

(a) Original image (b) After Gabor wavelet transform

FIGURE 2.26

An example of Gabor wavelet transform.

74 CHAPTER 2 Images, sampling, and frequency domain processing

Then the first element in the new vector becomes (11 3)/25 2 and the next

element is (211 19)/25 20 and so on, so the next level is

p1 5 ½2 20 18 0� (2.48)

and is naturally half the number of points. If we also generate some detail, which

is how we return to the original points, then we have a vector

d1 5 ½2 1 1 2 1 1� (2.49)

and when each element of the detail d1 is successively added and subtracted from

the elements of p1 as ½p10 1 d10 p10 2 d10 p11 1 d11 p11 2 d11 p12 1 d12 p12 2 d12
p13 1 d13 p13 2 d13� by which we obtain

½21 ð21Þ 22 ð21Þ 201 1 202 1 181 ð21Þ 182 ð21Þ 01 1 02 1�
which returns us to the original vector p0 (Eq. (2.47)). If we continue to similarly

form a series of decompositions (averages of adjacent points), together with the

detail at each point, we generate

p2 5 ½11 9�; d2 5 ½2 9 9� (2.50)

p3 5 ½10�; d3 5 ½1� (2.51)

We can then store the image as a code:

p3 d3 d2 d1
� �

5 10 1 2 9 9 2 1 1 2 1 1 ��
(2.52)

The process is illustrated in Figure 2.27 for a sinewave. Figure 2.27(a) shows

the original sinewave, Figure 2.27(b) shows the decomposition to level 3, and it

is a close but discrete representation, whereas Figure 2.27(c) shows the decompo-

sition to level 6, which is very coarse. The original signal can be reconstructed

from the final code, and this is without error. If the signal is reconstructed by fil-

tering the detail to reduce the amount of stored data, the reconstruction of the

original signal in Figure 2.27(d) at level 0 is quite close to the original signal, and

the reconstruction at other levels is similarly close as expected. The reconstruc-

tion error is also shown in Figure 2.27(d)�(f). Components of the detail (of

magnitude less than one) were removed, achieving a compression ratio of approx-

imately 50%. Naturally, a Fourier transform would encode the signal better, as

the Fourier transform is best suited to representing a sinewave. Like Fourier, this

discrete approach can encode the signal, we can also reconstruct the original sig-

nal (reverse the process), and shows how the signal can be represented at different

scales since there are less points in the higher levels.

Equation (2.52) gives a set of numbers of the same size as the original data

and is an alternative representation from which we can reconstruct the original

data. There are two important differences:

1. we have an idea of scale by virtue of the successive averaging (p1 is similar

in structure to p0, but at a different scale) and

752.7 Transforms other than Fourier

2. we can compress (or code) the image by removing the small numbers in the

new representation (by setting them to zero, noting that there are efficient

ways of encoding structures containing large numbers of zeros).

A process of successive averaging and differencing can be expressed as a

function of the form in Figure 2.28. This is a mother wavelet which can be

Binary decomposition

Original signal, p0

Level 3, p3

Level 6, p6 Level 6, p6

Level 3, p3

Level 0, p0

Reconstruction after filtering/
compression

1000

–50

50

newp00, i

newp30, i

newp60, i

error60, i

error30, i

error00, i

–50

50

–50

50

–50

50

p00, i

p30, i

p60, i

200

100

0 1 2 3 4 0 1 2 3 4

–50

50

–50

50

20 30 100 20 30

1000 200

i i

i i

i i

(a) (d)

(b) (e)

(c) (f)

FIGURE 2.27

Binary signal decomposition and reconstruction.

76 CHAPTER 2 Images, sampling, and frequency domain processing

applied at different scales but retains the same shape at those scales. So we now

have a binary decomposition rather than the sinewaves of the Fourier transform.

To detect objects, these wavelets need to be arranged in two dimensions.

These can be arranged to provide for object detection, by selecting the 2D

arrangement of points. By defining a relationship that is a summation of the

points in an image prior to a given point,

spðx; yÞ5
X

x0,x;y0,y

pðx0; y0Þ (2.53)

Then we can achieve wavelet type features which are derived by using these

summations. Four of these wavelets are shown in Figure 2.29. These are placed at

selected positions in the image to which they are applied. There are white and

black areas: the sum of the pixels under the white area(s) is subtracted from the

sum of the pixels under the dark area(s), in a way similar to the earlier aver-

aging operation in Eq. (2.47). The first template (Figure 2.29(a)) will detect

shapes which are brighter on one side than the other; the second Figure 2.29(b)

will detect shapes which are brighter in a vertical sense; the third Figure 2.29(c)

will detect a dark object which has brighter areas on either side. There is a family

of these arrangements and that can apply at selected levels of scale. By collecting

f(t)

t

FIGURE 2.28

An example of Haar wavelet function.

(a) Horizontal (b) Vertical (c) Bar (d) Diagonal

FIGURE 2.29

An example of Haar wavelet image functions.

772.7 Transforms other than Fourier

the analysis, we can determine objects irrespective of their position, size (objects

further away will appear smaller), or rotation. We will dwell on these topics later

and how we find and classify shapes. The point here is that we can achieve some

form of binary decomposition in two dimensions, as opposed to the sine/cosine

decomposition of the Gabor wavelet while retaining selectivity to scale and posi-

tion (similar to the Gabor wavelet). This is also simpler, so the binary functions

can be processed more quickly.

2.7.4 Other transforms
Decomposing a signal into sinusoidal components was actually one of the first

approaches to transform calculus, and this is why the Fourier transform is so

important. The sinusoidal functions are actually called basis functions, the

implicit assumption is that the basis functions map well to the signal components.

As such, the Haar wavelets are binary basis functions. There is (theoretically) an

infinite range of basis functions. Discrete signals can map better into collections

of binary components rather than sinusoidal ones. These collections (or

sequences) of binary data are called sequency components and form the basis of

the Walsh transform (Walsh and Closed, 1923), which is a global transform when

compared with the Haar functions (like Fourier compared with Gabor). This has

found wide application in the interpretation of digital signals, though it is less

widely used in image processing (one disadvantage is the lack of shift invari-

ance). The Karhunen�Loéve transform (Loéve, 1948; Karhunen, 1960) (also

called the Hotelling transform from which it was derived, or more popularly

Principal Components Analysis—see Chapter 12, Appendix 3) is a way of analyz-

ing (statistical) data to reduce it to those data which are informative, discarding

those which are not.

2.8 Applications using frequency domain properties
Filtering is a major use of Fourier transforms, particularly because we can under-

stand an image, and how to process it, much better in the frequency domain. An

analogy is the use of a graphic equalizer to control the way music sounds.

In images, if we want to remove high-frequency information (like the hiss on

sound), then we can filter, or remove, it by inspecting the Fourier transform.

If we retain low-frequency components, we implement a low-pass filter. The low-

pass filter describes the area in which we retain spectral components; the size of

the area dictates the range of frequencies retained and is known as the filter’s

bandwidth. If we retain components within a circular region centered on the d.c.

component and inverse Fourier transform the filtered transform, then the resulting

image will be blurred. Higher spatial frequencies exist at the sharp edges of fea-

tures, so removing them causes blurring. But the amount of fluctuation is reduced

too; any high-frequency noise will be removed in the filtered image.

78 CHAPTER 2 Images, sampling, and frequency domain processing

The implementation of a low-pass filter that retains frequency components

within a circle of specified radius is the function low_filter, given in Code 2.5.

This operator assumes that the radius and center coordinates of the circle are

specified prior to its use. Points within the circle remain unaltered, whereas those

outside the circle are set to zero, black.

When applied to an image, we obtain a low-pass filtered version. In application

to an image of a face, the low spatial frequencies are the ones which change slowly

as reflected in the resulting, blurred image, Figure 2.30(a). The high-frequency com-

ponents have been removed as shown in the transform (Figure 2.30(b)). The radius

of the circle controls how much of the original image is retained. In this case, the

radius is 10 pixels (and the image resolution is 2563 256). If a larger circle were to

be used, more of the high-frequency detail would be retained (and the image would

look more like its original version); if the circle was very small, an even more

blurred image would result since only the lowest spatial frequencies would be

retained. This differs from the earlier Gabor wavelet approach which allows for

localized spatial frequency analysis. Here, the analysis is global: we are filtering the

frequency across the whole image.

Alternatively, we can retain high-frequency components and remove low-

frequency ones. This is a high-pass filter. If we remove components near the d.c.

low_filter(pic):= for y∈0.. rows(pic)–1
for x∈0.. cols(pic)–1

filtered

rows(pic)

2

2

y –
cols(pic)

 +
2

x –
2

 – radius2 ≤ 0
otherwise0

filtered y,x

← picy,x if

CODE 2.5

Implementing low-pass filtering.

(a) Low-pass filtered
image

(b) Low-pass filtered
transform

(c) High-pass filtered
image

(d) High-pass
filtered transform

FIGURE 2.30

Illustrating low- and high-pass filtering.

792.8 Applications using frequency domain properties

component and retain all the others, the result of applying the inverse Fourier

transform to the filtered image will be to emphasize the features that were

removed in low-pass filtering. This can lead to a popular application of the high-

pass filter: to “crispen” an image by emphasizing its high-frequency components.

An implementation using a circular region merely requires selection of the set of

points outside the circle rather than inside as for the low-pass operator. The effect

of high-pass filtering can be observed in Figure 2.30(c) that shows removal of the

low-frequency components: this emphasizes the hair and the borders of a face’s

features where brightness varies rapidly. The retained components are those

which were removed in low-pass filtering, as illustrated in the transform

(Figure 2.30(d)).

It is also possible to retain a specified range of frequencies. This is known as

band-pass filtering. It can be implemented by retaining frequency components

within an annulus centered on the d.c. component. The width of the annulus

represents the bandwidth of the band-pass filter.

This leads to digital signal processing theory. There are many considerations

to be made in the way you select and the manner in which frequency components

are retained or excluded. This is beyond a text on computer vision. For further

study in this area, Rabiner and Gold (1975) or Oppenheim et al. (1999), although

published (in their original form) a long time ago now, remains as popular intro-

ductions to Digital Signal Processing theory and applications.

It is actually possible to recognize the object within the low-pass filtered

image. Intuitively, this implies that we could just store the frequency components

selected from the transform data rather than all the image points. In this manner,

a fraction of the information would be stored and still provide a recognizable

image, albeit slightly blurred. This concerns image coding which is a popular tar-

get for image processing techniques, for further information, see Clarke (1985)

or a newer text (Woods, 2006). Note that the JPEG coding approach uses

frequency domain decomposition and is arguably the most ubiquitous image

coding technique used today.

2.9 Further reading
We shall meet the frequency domain throughout this book since it allows for an

alternative interpretation of operation, in the frequency domain as opposed to the

time domain. This will occur in low- and high-level feature extraction and in

shape description. Further, it actually allow for some of the operations we shall

cover. Further, because of the availability of the FFT, it is also used to speed up

algorithms.

Given these advantages, it is worth looking more deeply. My copy of

Fourier’s original book has a review “Fourier’s treatise is one of the very few

scientific books which can never be rendered antiquated by the progress of

80 CHAPTER 2 Images, sampling, and frequency domain processing

science”—penned by James Clerk Maxwell no less. For introductory study, there

is Who is Fourier (Lex, 1995) which offers a lighthearted and completely digest-

ible overview of the Fourier transform, it’s simply excellent for a starter view of

the topic. For further study (and entertaining study too!) of the Fourier transform,

try The Fourier Transform and its Applications by Bracewell (1986). A number

of the standard image processing texts include much coverage of transform calcu-

lus, such as Jain (1989), Gonzalez and Wintz (1987), and Pratt (2007). For more

coverage of the DCT, try Jain (1989); for an excellent coverage of the Walsh

transform, try Beauchamp’s (1975) superb text. For wavelets, try the book by

Wornell (1996), which introduces wavelets from a signal processing standpoint,

or there’s Mallat’s (1999) classic text. For general signal processing theory, there

are introductory texts (see, for example, Meade and Dillon (1986) or Ifeachor’s

excellent book (Ifeachor and Jervis, 2002)); for more complete coverage, try

Rabiner and Gold (1975) or Oppenheim et al. (1999) (as mentioned earlier).

Finally, on the implementation side of the FFT (and for many other signal proces-

sing algorithms), Numerical Recipes in C (Press et al., 2002) is an excellent book.

It is extremely readable, full of practical detail—well worth a look and is also on

the Web, together with other signal processing sites, as listed in Table 1.4.

2.10 References
Ahmed, N., Natarajan, T., Rao, K.R., 1974. Discrete cosine transform. IEEE Trans.

Comput. 90�93.

Banham, M.R., Katsaggelos, K., 1996. Spatially adaptive wavelet-based multiscale image

restoration. IEEE Trans. IP 5 (4), 619�634.

Beauchamp, K.G., 1975. Walsh Functions and Their Applications. Academic Press,

London.

Bracewell, R.N., 1983. The discrete Hartley transform. J. Opt. Soc. Am. 73 (12),

1832�1835.

Bracewell, R.N., 1984. The fast Hartley transform. Proc. IEEE 72 (8), 1010�1018.

Bracewell, R.N., 1986. The Fourier Transform and its Applications, revised second ed.

McGraw-Hill, Singapore.

Clarke, R.J., 1985. Transform Coding of Images. Addison-Wesley, Reading, MA.

da Silva, E.A.B., Ghanbari, M., 1996. On the performance of linear phase wavelet trans-

forms in low bit-rate image coding. IEEE Trans. IP 5 (5), 689�704.

Daubechies, I., 1990. The wavelet transform, time frequency localisation and signal analy-

sis. IEEE Trans. Inf. Theory 36 (5), 961�1004.

Daugman, J.G., 1988. Complete discrete 2D gabor transforms by neural networks for

image analysis and compression. IEEE Trans. Acoust. Speech Signal Process. 36 (7),

1169�1179.

Daugman, J.G., 1993. High confidence visual recognition of persons by a test of statistical

independence. IEEE Trans. PAMI 15 (11), 1148�1161.

Donoho, D.L., 1995. Denoising by soft thresholding. IEEE Trans. Inf. Theory 41 (3),

613�627.

812.10 References

Donoho, D.L., 2006. Compressed sensing. IEEE Trans. Inf. Theory 52 (4), 1289�1306.

Gonzalez, R.C., Wintz, P., 1987. Digital Image Processing, second ed. Addison-Wesley,

Reading, MA.

Hartley, R.L.V., More, A., 1942. Symmetrical Fourier analysis applied to transmission pro-

blems. Proc. IRE 144, 144�150.

Ifeachor, E.C., Jervis, B.W., 2002. Digital Signal Processing, second ed. Prentice Hall,

Hertfordshire.

Jain, A.K., 1989. Fundamentals of Computer Vision. Prentice Hall, Hertfordshire.

Karhunen, K., 1947. Über Lineare Methoden in der Wahrscheinlich-Keitsrechnung. Ann.

Acad. Sci. pp. 3�79. Fennicae, Ser. A.I. 37 (Translation in Selin, I., 1960. On Linear

Methods in Probability Theory, Doc. T-131. The RAND Corporation, Santa Monica, CA).

Lades, M., Vorbruggen, J.C., Buhmann, J., Lange, J., Madsburg, C.V.D., Wurtz, R.P.,

et al., 1993. Distortion invariant object recognition in the dynamic link architecture.

IEEE Trans. Comput. 42, 300�311.

Laine, A., Fan, J., 1993. Texture classification by wavelet packet signatures. IEEE Trans.

PAMI 15, 1186�1191.

Lex, T.C.O.L., 1995. (!!), Who is Fourier?: A Mathematical Adventure. Language Research

Foundation, Boston, MA.

Loéve, M., 1948. Fonctions Alétoires de Seconde Ordre. In: Levy, P. (Ed.), Processus

Stochastiques et Mouvement Brownien. Hermann, Paris.

Mallat, S., 1999. A Wavelet Tour of Signal Processing, second ed. Academic Press,

Burlington, MA.

Meade, M.L., Dillon, C.R., 1986. Signals and Systems, Models and Behaviour. Van

Nostrand Reinhold, Wokingham.

Oppenheim, A.V., Schafer, R.W., Buck, J.R., 1999. Digital Signal Processing, second ed.

Prentice Hall, Hertfordshire.

Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T., 1997. Pedestrian detection

using wavelet templates. In: Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’97), pp. 193�199.

Pratt, W.K., 2007. Digital Image Processing: PIKS Scientific Inside, fourth ed. Wiley,

Chichester.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 2002. Numerical Recipes

in C11: The Art of Scientific Computing, second ed. Cambridge University Press,

Cambridge, UK.

Rabiner, L.R., Gold, B., 1975. Theory and Application of Digital Signal Processing.

Prentice Hall, Englewood Cliffs, NJ.

Unser, M., 2000. Sampling—50 years after Shannon. Proc. IEEE 88 (4), 569�587.

Viola, P., Jones, M., 2001. Rapid object detection using a boosted cascade of simple fea-

tures. In: Proceedings of the IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’01), 1, pp. 511�519.

Walsh, J.L., Closed, A., 1923. Set of normal orthogonal functions. Am. J. Math. 45 (1),

5�24.

Woods, J.W., 2006. Multidimensional Signal, Image, and Video Processing and Coding.

Academic Press, Oxford, UK.

Wornell, G.W., 1996. Signal Processing with Fractals, a Wavelet-Based Approach.

Prentice Hall, Upper Saddle River, NJ.

82 CHAPTER 2 Images, sampling, and frequency domain processing

CHAPTER

3Basic image processing
operations

CHAPTER OUTLINE HEAD

3.1 Overview ... 83

3.2 Histograms .. 84

3.3 Point operators .. 86

3.3.1 Basic point operations ..86

3.3.2 Histogram normalization ...89

3.3.3 Histogram equalization ...90

3.3.4 Thresholding ..93

3.4 Group operations.. 98

3.4.1 Template convolution..98

3.4.2 Averaging operator..101

3.4.3 On different template size ...103

3.4.4 Gaussian averaging operator ..104

3.4.5 More on averaging ..107

3.5 Other statistical operators .. 109

3.5.1 Median filter ..109

3.5.2 Mode filter ...112

3.5.3 Anisotropic diffusion...114

3.5.4 Force field transform ..121

3.5.5 Comparison of statistical operators...122

3.6 Mathematical morphology... 123

3.6.1 Morphological operators ..124

3.6.2 Gray-level morphology...127

3.6.3 Gray-level erosion and dilation...128

3.6.4 Minkowski operators ...130

3.7 Further reading .. 134

3.8 References .. 134

3.1 Overview
We shall now start to process digital images. First, we shall describe the bright-

ness variation in an image using its histogram. We shall then look at operations

that manipulate the image so as to change the histogram, processes that shift and

Feature Extraction & Image Processing for Computer Vision.

© 2012 Mark Nixon and Alberto Aguado. Published by Elsevier Ltd. All rights reserved.
83

scale the result (making the image brighter or dimmer, in different ways). We

shall also consider thresholding techniques that turn an image from gray level to

binary. These are called single-point operations. After, we shall move to group

operations where the group is those points found inside a template. Some of the

most common operations on the groups of points are statistical, providing images

where each point is the result of, say, averaging the neighborhood of each point

in the original image. We shall see how the statistical operations can reduce noise

in the image, which is of benefit to the feature extraction techniques to be consid-

ered later. As such, these basic operations are usually for preprocessing for later

feature extraction or to improve display quality as summarized in Table 3.1.

3.2 Histograms
The intensity histogram shows how individual brightness levels are occupied in

an image; the image contrast is measured by the range of brightness levels. The

Table 3.1 Overview of Chapter 3

Main Topic Subtopics Main Points

Image
description

Portray variation in image
brightness content as a graph/
histogram

Histograms, image contrast

Point operations Calculate new image points as a
function of the point at the same
place in the original image. The
functions can be mathematical
or can be computed from the
image itself and will change the
image’s histogram. Finally,
thresholding turns an image
from gray level to a binary (black
and white) representation

Histogram manipulation; intensity
mapping: addition, inversion,
scaling, logarithm, exponent.
Intensity normalization;
histogram equalization.
Thresholding and optimal
thresholding

Group
operations

Calculate new image points as a
function of neighborhood of the
point at the same place in the
original image. The functions can
be statistical including mean
(average), median, and mode.
Advanced filtering techniques
including feature preservation.
Morphological operators
process an image according to
shape, starting with binary and
moving to gray-level operations

Template convolution
(including frequency domain
implementation). Statistical
operators: direct averaging,
median filter, and mode filter.
Anisotropic diffusion for image
smoothing. Other operators:
force field transform.
Mathematical morphology: hit or
miss transform, erosion, dilation
(including gray-level operators),
and Minkowski operators

84 CHAPTER 3 Basic image processing operations

histogram plots the number of pixels with a particular brightness level against the

brightness level. For 8-bit pixels, the brightness ranges from 0 (black) to 255

(white). Figure 3.1 shows an image of an eye and its histogram. The histogram

(Figure 3.1(b)) shows that not all the gray levels are used and the lowest and

highest intensity levels are close together, reflecting moderate contrast. The his-

togram has a region between 100 and 120 brightness values, which contains the

dark portions of the image, such as the hair (including the eyebrow) and the eye’s

iris. The brighter points relate mainly to the skin. If the image was darker, overall,

the histogram would be concentrated toward black. If the image was brighter, but

with lower contrast, then the histogram would be thinner and concentrated near

the whiter brightness levels.

This histogram shows us that we have not used all available gray levels.

Accordingly, we can stretch the image to use them all, and the image would

become clearer. This is essentially cosmetic attention to make the image’s

appearance better. Making the appearance better, especially in view of later

processing, is the focus of many basic image processing operations, as will be

covered in this chapter. The histogram can also reveal if there is much noise in

the image, if the ideal histogram is known. We might want to remove this noise

not only to improve the appearance of the image but also to ease the task of

(and to present the target better for) later feature extraction techniques. This

chapter concerns these basic operations that can improve the appearance and

quality of images.

The histogram can be evaluated by the operator histogram as given in Code 3.1.

The operator first initializes the histogram to zero. Then, the operator works by

counting up the number of image points that have an intensity at a particular value.

These counts for the different values form the overall histogram. The counts are

then returned as the 2D histogram (a vector of the count values) which can be plot-

ted as a graph (Figure 3.1(b)).

0 100 200

200

100

300

eye_histogrambright

Bright

(a) Image of an eye (b) Histogram of an eye image

FIGURE 3.1

An image and its histogram.

853.2 Histograms

3.3 Point operators
3.3.1 Basic point operations
The most basic operations in image processing are point operations where each

pixel value is replaced with a new value obtained from the old one. If we want to

increase the brightness to stretch the contrast, we can simply multiply all pixel

values by a scalar, say by 2, to double the range. Conversely, to reduce the con-

trast (though this is not usual), we can divide all point values by a scalar. If the

overall brightness is controlled by a level, l, (e.g., the brightness of global light)

and the range is controlled by a gain, k, the brightness of the points in a new pic-

ture, N, can be related to the brightness in old picture, O, by

Nx;y 5 k3Ox;y 1 l ’x; yA1;N (3.1)

This is a point operator that replaces the brightness at points in the picture

according to a linear brightness relation. The level controls overall brightness and

is the minimum value of the output picture. The gain controls the contrast, or

range, and if the gain is greater than unity, the output range will be increased;

this process is illustrated in Figure 3.2. So the image of the eye, processed by

k5 1.2 and l5 10 will become brighter (Figure 3.2(a)), and with better contrast,

though in this case the brighter points are mostly set near to white (255). These

factors can be seen in its histogram (Figure 3.2(b)).

The basis of the implementation of point operators was given earlier, for addi-

tion in Code 1.3. The stretching process can be displayed as a mapping between

the input and output ranges, according to the specified relationship, as in

Figure 3.3. Figure 3.3(a) is a mapping where the output is a direct copy of the input

(this relationship is the dotted line in Figure 3.3(c) and (d)); Figure 3.3(b) is the

mapping for brightness inversion where dark parts in an image become bright and

vice versa. Figure 3.3(c) is the mapping for addition, and Figure 3.3(d) is the map-

ping for multiplication (or division, if the slope was less than that of the input).

histogram(pic):= for bright∈0..255
pixels_at_level bright←0

for x∈0..cols(pic)–1
for y∈0..rows(pic)–1

pixels_at_level

pixels_at_level level←pixels_at_level level+1

level←picy,x

CODE 3.1

Evaluating the histogram.

86 CHAPTER 3 Basic image processing operations

b_eye_histbright

0 100 200
0

300

200

100

Bright

(a) Image of brighter eye (b) Histogram of brighter eye

FIGURE 3.2

Brightening an image.

(b) Brightness inversion(a) Copy

(c) Brightness addition (d) Brightness scaling by multiplication

Output brightness

White

Input brightness
Black

WhiteBlack

Output brightness

White

White

Input brightness
Black

Black

White

Output brightness

Black
Input brightness

WhiteBlack

White

Output brightness

Black

White
Input brightness

Black

FIGURE 3.3

Intensity mappings.

873.3 Point operators

In these mappings, if the mapping produces values that are smaller than the

expected minimum (say negative when zero represents black) or larger than a spec-

ified maximum, then a clipping process can be used to set the output values to a

chosen level. For example, if the relationship between input and output aims to

produce output points with intensity value greater than 255, as used for white, the

output value can be set to white for these points, as given in Figure 3.3(c).

The sawtooth operator is an alternative form of the linear operator and uses a

repeated form of the linear operator for chosen intervals in the brightness range.

The sawtooth operator is actually used to emphasize local contrast change (as in

images where regions of interest can be light or dark). This is illustrated in

Figure 3.4 where the range of brightness levels is mapped into four linear regions

by the sawtooth operator (Figure 3.4(b)). This remaps the intensity in the eye

image to highlight local intensity variation, as opposed to global variation, as

given in Figure 3.4(a). The image is now presented in regions, where the region

selection is controlled by its pixel’s intensities.

Finally, rather than simple multiplication, we can use arithmetic functions

such as logarithm to reduce the range or exponent to increase it. This can be

used, say, to equalize the response of a camera or to compress the range of dis-

played brightness levels. If the camera has a known exponential performance

and outputs a value for brightness that is proportional to the exponential of the

brightness of the corresponding point in the scene of view, the application of a

logarithmic point operator will restore the original range of brightness levels.

The effect of replacing brightness by a scaled version of its natural logarithm

(implemented as Nx,y5 20 ln(100Ox,y)) is shown in Figure 3.5(a); the effect of a

scaled version of the exponent (implemented as Nx,y5 20 exp(Ox,y/100)) is

shown in Figure 3.5(b). The scaling factors were chosen to ensure that the

resulting image can be displayed since the logarithm or exponent greatly

reduces or magnifies the pixel values, respectively. This can be seen in the

results: Figure 3.5(a) is dark with a small range of brightness levels, whereas

0 100 200

50

saw_toothbright

Bright

(a) Image of “sawn” eye (b) Sawtooth operator

FIGURE 3.4

Applying the sawtooth operator.

88 CHAPTER 3 Basic image processing operations

Figure 3.5(b) is much brighter, with greater contrast. Naturally, application of

the logarithmic point operator will change any multiplicative changes in bright-

ness to become additive. As such, the logarithmic operator can find application

in reducing the effects of multiplicative intensity change. The logarithm opera-

tor is often used to compress Fourier transforms, for display purposes. This is

because the d.c. component can be very large with contrast too large to allow

the other points to be seen.

In hardware, point operators can be implemented using LUTs that exist in

some framegrabber units. LUTs give an output that is programmed, and stored, in

a table entry that corresponds to a particular input value. If the brightness

response of the camera is known, it is possible to preprogram a LUT to make the

camera response equivalent to a uniform or flat response across the range of

brightness levels (in software, this can be implemented as a CASE function).

3.3.2 Histogram normalization
Popular techniques to stretch the range of intensities include histogram (intensity)

normalization. Here, the original histogram is stretched, and shifted, to cover all

the 256 available levels. If the original histogram of old picture O starts at Omin

and extends up to Omax brightness levels, then we can scale up the image so that

the pixels in the new picture N lie between a minimum output level Nmin and a

maximum level Nmax, simply by scaling up the input intensity levels according to

Nx;y 5
Nmax 2Nmin

Omax 2Omin

3 ðOx;y 2OminÞ1Nmin ’x; yA1;N (3.2)

A Matlab implementation of intensity normalization, appearing to mimic

Matlab’s imagesc function, the normalise function in Code 3.2, uses an output

(a) Logarithmic compression (b) Exponential expansion

FIGURE 3.5

Applying exponential and logarithmic point operators.

893.3 Point operators

ranging from Nmin5 0 to Nmax5 255. This is scaled by the input range that is

determined by applying the max and min operators to the input picture. Note that

in Matlab, a 2D array needs double application of the max and min operators,

whereas in Mathcad max(image) delivers the maximum. Each point in the picture

is then scaled as in Eq. (3.2) and the floor function is used to ensure an integer

output.

The process is illustrated in Figure 3.6 and can be compared with the original

image and histogram in Figure 3.1. An intensity normalized version of the eye

image is shown in Figure 3.6(a) which now has better contrast and appears better

to the human eye. Its histogram (Figure 3.6(b)) shows that the intensity now

ranges across all available levels (there is actually one black pixel!).

3.3.3 Histogram equalization
Histogram equalization is a nonlinear process aimed to highlight image bright-

ness in a way particularly suited to human visual analysis. Histogram equalization

aims to change a picture in such a way as to produce a picture with a flatter his-

togram, where all levels are equiprobable. In order to develop the operator, we

can first inspect the histograms. For a range of M levels, the histogram plots the

points per level against level. For the input (old) and output (new) images, the

function normalised=normalise(image)
%Histogram normalisation to stretch from black to white

%Usage: [new image]=normalise(image)
%Parameters: image-array of integers
%Author: Mark S. Nixon

%get dimensions
[rows,cols]=size(image);

%set minimum
minim=min(min(image));

%work out range of input levels
range=max(max(image))-minim;

%normalise the image
for x=1:cols %address all columns
 for y=1:rows %address all rows
 normalised(y,x)=floor((image(y,x)-minim)*255/range);
 end
end

CODE 3.2

Intensity normalization.

90 CHAPTER 3 Basic image processing operations

number of points per level is denoted as O(l) and N(l) (for 0, l,M), respec-

tively. For square images, there are N2 points in the input and output images, so

the sum of points per level in each should be equal:

XM
l50

OðlÞ5
XM
l50

NðlÞ (3.3)

Also, this should be the same for an arbitrarily chosen level p since we are

aiming for an output picture with a uniformly flat histogram. So the cumulative

histogram up to level p should be transformed to cover up to the level q in the

new histogram:

Xp
l50

OðlÞ5
Xq
l50

NðlÞ (3.4)

Since the output histogram is uniformly flat, the cumulative histogram up to

level p should be a fraction of the overall sum. So the number of points per level

in the output picture is the ratio of the number of points to the range of levels in

the output image:

NðlÞ5 N2

Nmax 2Nmin

(3.5)

(a) Intensity normalized eye (b) Histogram of intensity normalized eye

(c) Histogram of equalized eye (d) Histogram of histogram equalized eye

200

400

n_histbright

0 50 100 150 200 250
Bright

0 50 100 150 200 250
Bright

200

400

e_histbright

FIGURE 3.6

Illustrating intensity normalization and histogram equalization.

913.3 Point operators

So the cumulative histogram of the output picture is

Xq
l50

NðlÞ5 q3
N2

Nmax 2Nmin

(3.6)

By Eq. (3.4), this is equal to the cumulative histogram of the input image, so

q3
N2

Nmax 2Nmin

5
Xp
l50

OðlÞ (3.7)

This gives a mapping for the output pixels at level q, from the input pixels at

level p as,

q5
Nmax 2Nmin

N2
3
Xp
l50

OðlÞ (3.8)

This gives a mapping function that provides an output image that has an approxi-

mately flat histogram. The mapping function is given by phrasing Eq. (3.8) as an

equalizing function (E) of the level (q) and the image (O) as

Eðq;OÞ5 Nmax 2Nmin

N2
3
Xp
l50

OðlÞ (3.9)

The output image is

Nx;y 5EðOx;y;OÞ (3.10)

The result of equalizing the eye image is shown in Figure 3.6. The intensity

equalized image (Figure 3.6(c)) has much better-defined features (especially

around the eyes) than in the original version (Figure 3.1). The histogram

(Figure 3.6(d)) reveals the nonlinear mapping process whereby white and black are

not assigned equal weight, as they were in intensity normalization. Accordingly,

more pixels are mapped into the darker region and the brighter intensities become

better spread, consistent with the aims of histogram equalization.

Its performance can be very convincing since it is well mapped to the proper-

ties of human vision. If a linear brightness transformation is applied to the origi-

nal image, then the equalized histogram will be the same. If we replace pixel

values with ones computed according to Eq. (3.1), the result of histogram equali-

zation will not change. An alternative interpretation is that if we equalize images

(prior to further processing), then we need not worry about any brightness trans-

formation in the original image. This is to be expected, since the linear operation

of the brightness change in Eq. (3.2) does not change the overall shape of the his-

togram but only its size and position. However, noise in the image acquisition

process will affect the shape of the original histogram, and hence the equalized

version. So the equalized histogram of a picture will not be the same as the equal-

ized histogram of a picture with some noise added to it. You cannot avoid noise

in electrical systems, however well you design a system to reduce its effect.

92 CHAPTER 3 Basic image processing operations

Accordingly, histogram equalization finds little use in generic image processing

systems though it can be potent in specialized applications. For these reasons,

intensity normalization is often preferred when a picture’s histogram requires

manipulation.

In implementation, the function equalise in Code 3.3, we shall use an output

range where Nmin5 0 and Nmax5 255. The implementation first determines the

cumulative histogram for each level of the brightness histogram. This is then used as

a LUT for the new output brightness at that level. The LUT is used to speed imple-

mentation of Eq. (3.9) since it can be precomputed from the image to be equalized.

An alternative argument against use of histogram equalization is that it is a

nonlinear process and is irreversible. We cannot return to the original picture after

equalization, and we cannot separate the histogram of an unwanted picture. On

the other hand, intensity normalization is a linear process and we can return to

the original image, should we need to, or separate pictures, if required.

3.3.4 Thresholding
The last point operator of major interest is called thresholding. This operator

selects pixels that have a particular value or are within a specified range. It can

newpic

for bright ∈ 0..255

for x∈0..cols(pic)–1
for y∈0..rows(pic)–1

equalise(pic):= range 255←
number rows(pic).cols(pic)←

pixels_at_levelbright 0←

pixels_at_levelpicy,x pixels_at_levelpicy,x+1
←

for level∈0..255
sum 0←

sum sum+pixels_at_levellevel←

histlevel floor ·sum+0.00001range

number
←

for y∈0..rows(pic)–1
newpicy,x histpicy,x←

⎛
⎝ ⎠

⎞

for x∈0..cols(pic)–1

CODE 3.3

Histogram equalization.

933.3 Point operators

be used to find objects within a picture if their brightness level (or range) is

known. This implies that the object’s brightness must be known as well. There

are two main forms: uniform and adaptive thresholding. In uniform thresholding,

pixels above a specified level are set to white, those below the specified level are

set to black. Given the original eye image, Figure 3.7 shows a thresholded image

where all pixels above 160 brightness levels are set to white and those below 160

brightness levels are set to black. By this process, the parts pertaining to the facial

skin are separated from the background; the cheeks, forehead, and other bright

areas are separated from the hair and eyes. This can therefore provide a way of

isolating points of interest.

Uniform thresholding clearly requires knowledge of the gray level, or the tar-

get features might not be selected in the thresholding process. If the level is not

known, histogram equalization or intensity normalization can be used, but with

the restrictions on performance stated earlier. This is, of course, a problem of

image interpretation. These problems can only be solved by simple approaches,

such as thresholding, for very special cases. In general, it is often prudent to

investigate the more sophisticated techniques of feature selection and extraction,

to be covered later. Prior to that, we shall investigate group operators that are a

natural counterpart to point operators.

There are more advanced techniques, known as optimal thresholding. These

usually seek to select a value for the threshold that separates an object from its

background. This suggests that the object has a different range of intensities to

the background, in order that an appropriate threshold can be chosen, as illus-

trated in Figure 3.8. Otsu’s method (Otsu and Threshold, 1979) is one of the most

popular techniques of optimal thresholding; there have been surveys (Sahoo et al.,

1988; Lee et al., 1990; Glasbey, 1993) that compare the performance different

methods can achieve. Essentially, Otsu’s technique maximizes the likelihood that

the threshold is chosen so as to split the image between an object and its

FIGURE 3.7

Thresholding the eye image.

94 CHAPTER 3 Basic image processing operations

background. This is achieved by selecting a threshold that gives the best separa-

tion of classes, for all pixels in an image. The theory is beyond the scope of this

section, and we shall merely survey its results and give their implementation. The

basis is use of the normalized histogram where the number of points at each level

is divided by the total number of points in the image. As such, this represents a

probability distribution for the intensity levels as

pðlÞ5 NðlÞ
N2

(3.11)

This can be used to compute the zero- and first-order cumulative moments of

the normalized histogram up to the kth level as

ωðkÞ5
Xk
l51

pðlÞ (3.12)

and

μðkÞ5
Xk
l51

lUpðlÞ (3.13)

The total mean level of the image is given by

μT5
XNmax

l51

lUpðlÞ (3.14)

The variance of the class separability is then the ratio

σ2
BðkÞ5

ðμTUωðkÞ2μðkÞÞ2
ωðkÞð12ωðkÞÞ ’kA1;Nmax (3.15)

Number of points

Background

Brightness

Object

Optimal threshold value

FIGURE 3.8

Optimal thresholding.

953.3 Point operators

The optimal threshold is the level for which the variance of class separability is

at its maximum, namely, the optimal threshold Topt is that for which the variance

σ2
BðToptÞ5 max

1#k,Nmax

ðσ2
BðkÞÞ (3.16)

A comparison of uniform thresholding with optimal thresholding is given in

Figure 3.9 for the eye image. The threshold selected by Otsu’s operator is actually

slightly lower than the value selected manually, and so the thresholded image

does omit some detail around the eye, especially in the eyelids. However, the

selection by Otsu is automatic, as opposed to manual and this can be to

application advantage in automated vision. Consider, for example, the need to iso-

late the human figure in Figure 3.10(a). This can be performed automatically by

Otsu as shown in Figure 3.10(b). Note, however, that there are some extra points,

(a) Thresholding at level 160 (b) Thresholding by Otsu (level = 127)

FIGURE 3.9

Thresholding the eye image: manual and automatic.

(a) Walking subject (b) Automatic thresholding by Otsu

FIGURE 3.10

Thresholding an image of a walking subject.

96 CHAPTER 3 Basic image processing operations

due to illumination, that have appeared in the resulting image together with the

human subject. It is easy to remove the isolated points, as we will see later, but

more difficult to remove the connected ones. In this instance, the size of the

human shape could be used as information to remove the extra points though you

might like to suggest other factors that could lead to their removal.

The code implementing Otsu’s technique is given in Code 3.4 that follows

Eqs (3.11)�(3.16) to directly provide the results in Figures 3.9 and 3.10. Here,

the histogram function of Code 3.1 is used to give the normalized histogram. The

remaining code refers directly to the earlier description of Otsu’s technique.

Also, we have so far considered global techniques, methods that operate on

the entire image. There are also locally adaptive techniques that are often used to

binarize document images prior to character recognition. As mentioned before,

surveys of thresholding are available, and one approach (Rosin, 2001) targets

thresholding of images whose histogram is unimodal (has a single peak). One sur-

vey (Trier and Jain, 1995) compares global and local techniques with reference to

document image analysis. These techniques are often used in statistical pattern

recognition: the thresholded object is classified according to its statistical proper-

ties. However, these techniques find less use in image interpretation, where a

common paradigm is that there is more than one object in the scene, such as

Figure 3.7, where the thresholding operator has selected many objects of potential

interest. As such, only uniform thresholding is used in many vision applications

since objects are often occluded (hidden), and many objects have similar ranges

of pixel intensity. Accordingly, more sophisticated metrics are required to sepa-

rate them, by using the uniformly thresholded image, as discussed in later chap-

ters. Further, the operation to process the thresholded image, say to fill in the

holes in the silhouette or to remove the noise on its boundary or outside, is mor-

phology which is covered later in Section 3.6.

μ(k,histogram):=
k

l·histograml – 1Σ
l=1

Σ l·histograml – 1μT(histogram):=
256

l=1

ω(k,histogram):=
k

histograml – 1Σ
l=1

for k∈1..255

find_value(max(values),values)

Otsu(image):= image_hist
histogram(image)

rows(image)·cols(image)
←

2(μT(image_hist)·ω(k,image_hist) – μ(k,image_hist))
valuesk ω(k,image_hist)·(1 – ω(k,image_hist))

←

CODE 3.4

Optimal thresholding by Otsu’s technique.

973.3 Point operators

3.4 Group operations
3.4.1 Template convolution
Group operations calculate new pixel values from a pixel’s neighborhood by

using a “grouping” process. The group operation is usually expressed in terms of

template convolution where the template is a set of weighting coefficients. The

template is usually square, and its size is usually odd to ensure that it can be posi-

tioned appropriately. The size is usually used to describe the template; a 33 3

template is three pixels wide by three pixels long. New pixel values are calculated

by placing the template at the point of interest. Pixel values are multiplied by the

corresponding weighting coefficient and added to an overall sum. The sum (usu-

ally) evaluates a new value for the center pixel (where the template is centered)

and this becomes the pixel in a, new, output image. If the template’s position has

not yet reached the end of a line, the template is then moved horizontally by one

pixel and the process repeats.

This is illustrated in Figure 3.11 where a new image is calculated from an

original one by template convolution. The calculation obtained by template con-

volution for the center pixel of the template in the original image becomes the

point in the output image. Since the template cannot extend beyond the image,

the new image is smaller than the original image since a new value cannot be

computed for points in the border of the new image. When the template reaches

the end of a line, it is repositioned at the start of the next line. For a 33 3 neigh-

borhood, nine weighting coefficients wt are applied to points in the original image

to calculate a point in the new image. The position of the new point (at the cen-

ter) is shaded in the template.

New image Original image

XX

FIGURE 3.11

Template convolution process.

98 CHAPTER 3 Basic image processing operations

To calculate the value in new image, N, at point with coor dinates (x,y), the

template in Figure 3.12 operates on an original image O according to

Nx;y 5
w0 3Ox21;y21 1 w1 3Ox;y21 1 w2 3Ox11;y21 1
w3 3Ox21;y 1 w4 3Ox;y 1 w5 3Ox11;y 1
w6 3Ox21;y11 1 w7 3Ox;y11 1 w8 3Ox11;y11

’x; yA2; N2 1

(3.17)

Note that we cannot ascribe values to the picture’s borders. This is because

when we place the template at the border, parts of the template fall outside the

image and have no information from which to calculate the new pixel value. The

width of the border equals half the size of the template. To calculate values for

the border pixels, we now have three choices:

1. set the border to black (or deliver a smaller picture);

2. assume (as in Fourier) that the image replicates to infinity along both

dimensions and calculate new values by cyclic shift from the far border; or

3. calculate the pixel value from a smaller area.

None of these approaches is optimal. The results here use the first option and

set border pixels to black. Note that in many applications, the object of interest is

imaged centrally or, at least, imaged within the picture. As such, the border infor-

mation is of little consequence to the remainder of the process. Here, the border

points are set to black, by starting functions with a zero function which sets all

the points in the picture initially to black (0).

An alternative representation for this process is given by using the convolution

notation as

N5W �O (3.18)

where N is the new image that results from convolving the template W (of weight-

ing coefficients) with the image O.

The Matlab implementation of a general template convolution operator convolve
is given in Code 3.5. This function accepts, as arguments, the picture image and the

template to be convolved with it, i.e., template. The result of template convolution is

w0

w8

w5

w2

w4

w7

w1

w6

w3

FIGURE 3.12

33 3 Template and weighting coefficients.

993.4 Group operations

a picture convolved. The operator first initializes the temporary image temp to black

(zero brightness levels). Then the size of the template is evaluated. These give the

range of picture points to be processed in the outer for loops that give the coordinates

of all points resulting from template convolution. The template is convolved at each

picture point by generating a running summation of the pixel values within the tem-

plate’s window multiplied by the respective template weighting coefficient. Finally,

the resulting image is normalized to ensure that the brightness levels are occupied

appropriately.

Template convolution is usually implemented in software. It can, of course, be

implemented in hardware and requires a two-line store, together with some further

function convolved=convolve(image,template)
%New image point brightness convolution of template with image
%Usage:[new image]=convolve(image,template of point values)
%Parameters:image-array of points
% template-array of weighting coefficients
%Author: Mark S. Nixon

%get image dimensions
[irows,icols]=size(image);

%get template dimensions
[trows,tcols]=size(template);

%set a temporary image to black
temp(1:irows,1:icols)=0;

%half of template rows is
trhalf=floor(trows/2);
%half of template cols is
tchalf=floor(tcols/2);

%then convolve the template
for x=trhalf+1:icols-trhalf %address all columns except border
 for y=tchalf+1:irows-tchalf %address all rows except border
 sum=0;
 for iwin=1:trows %address template columns
 for jwin=1:tcols %address template rows
 sum=sum+image(y+jwin-tchalf-1,x+iwin-trhalf-1)*

template(jwin,iwin);
 end
 end
 temp(y,x)=sum;
 end
end

%finally, normalise the image
convolved=normalise(temp);

CODE 3.5

Template convolution operator.

100 CHAPTER 3 Basic image processing operations

latches, for the (input) video data. The output is the result of template convolu-

tion, summing the result of multiplying weighting coefficients by pixel values.

This is called pipelining since the pixels, essentially, move along a pipeline of

information. Note that two-line stores can be used if only the video fields are pro-

cessed. To process a full frame, one of the fields must be stored if it is presented

in interlaced format.

Processing can be analog, using operational amplifier circuits and CCD for

storage along bucket brigade delay lines. Finally, an alternative implementation is

to use a parallel architecture: for Multiple Instruction Multiple Data (MIMD)

architectures, the picture can be split into blocks (spatial partitioning); Single

Instruction Multiple Data (SIMD) architectures can implement template convolu-

tion as a combination of shift and add instructions.

3.4.2 Averaging operator
For an averaging operator, the template weighting functions are unity (or 1/9 to

ensure that the result of averaging nine white pixels is white, not more than

white!). The template for a 33 3 averaging operator, implementing Eq. (3.17), is

given by the template in Figure 3.13, where the location of the point of interest

is again shaded. The result of averaging the eye image with a 33 3 operator is

shown in Figure 3.14. This shows that much of the detail has now disappeared

1/9

1/9

1/9

1/9

1/9

1/9 1/9 1/9

1/9

FIGURE 3.13

33 3 Averaging operator template coefficients.

FIGURE 3.14

Applying direct averaging.

1013.4 Group operations

revealing the broad image structure. The eyes and eyebrows are now much clearer

from the background, but the fine detail in their structure has been removed.

For a general implementation (Code 3.6), we can define the width of the oper-

ator as winsize, the template size is winsize3winsize. We then form the average

of all points within the area covered by the template. This is normalized (divided

by) the number of points in the template’s window. This is a direct implementa-

tion of a general averaging operator (i.e., without using the template convolution

operator in Code 3.5).

In order to implement averaging by using the template convolution operator,

we need to define a template. This is illustrated for direct averaging in Code 3.7,

even though the simplicity of the direct averaging template usually precludes

such implementation. The application of this template is also shown in Code 3.7.

(Also note that there are averaging operators in Mathcad and Matlab, which can

also be used for this purpose.)

The effect of averaging is to reduce noise, which is its advantage. An associ-

ated disadvantage is that averaging causes blurring that reduces detail in an

image. It is also a low-pass filter since its effect is to allow low spatial frequen-

cies to be retained and to suppress high frequency components. A larger template,

for x∈half..cols(pic)–half–1
for y∈half..rows(pic)–half–1

new

ave(pic,winsize):= new zero(pic)←

half floor
winsize⎛

⎝
⎛
⎝2

←

winsize–1 winsize–1

Σ Σ
jwin=0iwin=0

picy+iwin–half,x+jwin–half

(winsize·winsize)
newy,x floor←

CODE 3.6

Direct averaging.

averaging_template(winsize):= sum ← winsize.winsize

for y∈0..winsize–1
for x∈0..winsize–1

←templatey,x 1

template
sum

smoothed:=tm_conv(p,averaging_template(3))

CODE 3.7

Direct averaging by template convolution.

102 CHAPTER 3 Basic image processing operations

say 33 3 or 53 5, will remove more noise (high frequencies) but reduce the level

of detail. The size of an averaging operator is then equivalent to the reciprocal of

the bandwidth of a low-pass filter it implements.

Smoothing was earlier achieved by low-pass filtering via the Fourier transform

(Section 2.8). In fact, the Fourier transform actually gives an alternative method

to implement template convolution and to speed it up, for larger templates. In

Fourier transforms, the process that is dual to convolution is multiplication (as

in Section 2.3). So template convolution (denoted *) can be implemented by mul-

tiplying the Fourier transform of the template ℑ(T) with the Fourier transform of

the picture, ℑ(P), to which the template is to be applied. It is perhaps a bit con-

fusing that we appear to be multiplying matrices, but the multiplication is point-

by-point in that the result at each point is that of multiplying the (single) points at

the same positions in the two matrices. The result needs to be inverse transformed

to return to the picture domain.

P � T5ℑ21ðℑðPÞ3ℑðTÞÞ (3.19)

The transform of the template and the picture need to be the same size before

we can perform the point-by-point multiplication. Accordingly, the image contain-

ing the template is zero-padded prior to its transform which simply means that zer-

oes are added to the template in positions which lead to a template of the same size

as the image. The process is illustrated in Code 3.8 and starts by calculation of the

transform of the zero-padded template. The convolution routine then multiplies

the transform of the template by the transform of the picture point-by-point (using

the vectorize operator, symbolized by the arrow above the operation). When the

routine is invoked, it is supplied with a transformed picture. The resulting trans-

form is reordered prior to inverse transformation to ensure that the image is pre-

sented correctly. (Theoretical study of this process is presented in Section 5.3.2

where we show how the same process can be used to find shapes in images.)

3.4.3 On different template size
Templates can be larger than 33 3. Since they are usually centered on a point of

interest, to produce a new output value at that point, they are usually of odd

result

new_smooth:=conv(p,square)

conv(pic,temp):= pic_spectrum Fourier(pic)←
temp_spectrum Fourier(temp)←

result inv_Fourier(rearrange(convolved_spectrum))←
convolved_spectrum (pic_spectrum.temp_spectrum)←

CODE 3.8

Template convolution by the Fourier transform.

1033.4 Group operations

dimension. For reasons of speed, the most common sizes are 33 3, 53 5, and

73 7. Beyond this, say 93 9, many template points are used to calculate a single

value for a new point, and this imposes high computational cost, especially for

large images. (For example, a 93 9 operator covers 9 times more points than a

33 3 operator.) Square templates have the same properties along both image

axes. Some implementations use vector templates (a line), either because their

properties are desirable in a particular application or for reasons of speed.

The effect of larger averaging operators is to smooth the image more and to

remove more detail while giving greater emphasis to the large structures. This is

illustrated in Figure 3.15. A 53 5 operator (Figure 3.15(a)) retains more detail

than a 73 7 operator (Figure 3.15(b)) and much more than a 93 9 operator

(Figure 3.15(c)). Conversely, the 93 9 operator retains only the largest structures

such as the eye region (and virtually removing the iris), whereas this is retained

more by the operators of smaller size. Note that the larger operators leave a larger

border (since new values cannot be computed in that region), and this can be seen

in the increase in border size for the larger operators, in Figure 3.15(b) and (c).

3.4.4 Gaussian averaging operator
The Gaussian averaging operator has been considered to be optimal for image

smoothing. The template for the Gaussian operator has values set by the Gaussian

relationship. The Gaussian function g at coordinates (x,y) is controlled by the

variance σ2 according to

gðx; y;σÞ5 1

2πσ2
e2

x21y2

2σ2

� �
(3.20)

Equation (3.20) gives a way to calculate coefficients for a Gaussian template

that is then convolved with an image. The effects of selection of Gaussian tem-

plates of differing size are shown in Figure 3.16. The Gaussian function essen-

tially removes the influence of points greater than 3σ in (radial) distance from the

(a) 5 × 5 (b) 7 × 7 (c) 9 × 9

FIGURE 3.15

Illustrating the effect of window size.

104 CHAPTER 3 Basic image processing operations

center of the template. The 33 3 operator (Figure 3.16(a)) retains many more of

the features than those retained by direct averaging (Figure 3.14). The effect of

larger size is to remove more detail (and noise) at the expense of losing features.

This is reflected in the loss of internal eye component by the 53 5 and the 73 7

operators in Figure 3.16(b) and (c), respectively.

A surface plot of the 2D Gaussian function of Eq. (3.20) has the famous bell

shape, as shown in Figure 3.17. The values of the function at discrete points are

the values of a Gaussian template. Convolving this template with an image gives

Gaussian averaging: the point in the averaged picture is calculated from the sum

of a region where the central parts of the picture are weighted to contribute more

than the peripheral points. The size of the template essentially dictates appropriate

choice of the variance. The variance is chosen to ensure that template coefficients

(a) 3 × 3 (b) 5 × 5 (c) 7 × 7

FIGURE 3.16

Applying Gaussian averaging.

Gaussian_template(19, 4)

FIGURE 3.17

Gaussian function.

1053.4 Group operations

drop to near zero at the template’s edge. A common choice for the template size

is 53 5 with variance unity, giving the template shown in Figure 3.18.

This template is then convolved with the image to give the Gaussian blurring

function. It is actually possible to give the Gaussian blurring function antisymmet-

ric properties by scaling the x and y coordinates. This can find application when

an object’s shape, and orientation, is known prior to image analysis.

By reference to Figure 3.16, it is clear that the Gaussian filter can offer

improved performance compared with direct averaging: more features are retained

while the noise is removed. This can be understood by Fourier transform theory.

In Section 2.5.2 (Chapter 2), we found that the Fourier transform of a square is a

2D sinc function. This has a frequency response where the magnitude of the

transform does not reduce in a smooth manner and has regions where it becomes

negative, called sidelobes. These can have undesirable effects since there are high

frequencies that contribute more than some lower ones, a bit paradoxical in low-

pass filtering to remove noise. In contrast, the Fourier transform of a Gaussian

function is another Gaussian function, which decreases smoothly without these

sidelobes. This can lead to better performance since the contributions of the fre-

quency components reduce in a controlled manner.

In a software implementation of the Gaussian operator, we need a function

implementing Eq. (3.20), the Gaussian_template function in Code 3.9. This is

used to calculate the coefficients of a template to be centered on an image point.

The two arguments are winsize, the (square) operator’s size, and the standard

deviation σ that controls its width, as discussed earlier. The operator coefficients

are normalized by the sum of template values, as before. This summation is stored

in sum, which is initialized to zero. The center of the square template is then eval-

uated as half the size of the operator. Then, all template coefficients are calcu-

lated by a version of Eq. (3.20) that specifies a weight relative to the center

coordinates. Finally, the normalized template coefficients are returned as the

Gaussian template. The operator is used in template convolution, via convolve, as
in direct averaging (Code 3.5).

0.002 0.013 0.022 0.013 0.002

0.013 0.060 0.098 0.060 0.013

0.022 0.098 0.162 0.098 0.022

0.013 0.060 0.098 0.060 0.013

0.002 0.013 0.022 0.013 0.002

FIGURE 3.18

Template for the 53 5 Gaussian averaging operator (σ5 1.0).

106 CHAPTER 3 Basic image processing operations

3.4.5 More on averaging
Code 3.8 is simply a different implementation of direct averaging. It achieves the

same result, but by transform domain calculus. It can be faster to use the trans-

form rather than the direct implementation. The computational cost of a 2D FFT

is of the order of 2N2 log(N). If the transform of the template is precomputed,

there are two transforms required and there is one multiplication for each of the

N2 transformed points. The total cost of the Fourier implementation of template

convolution is then of the order of

CFFT 5 4N2 logðNÞ1N2 (3.21)

The cost of the direct implementation for an m3m template is then m2 multi-

plications for each image point, so the cost of the direct implementation is of the

order of

Cdir 5N2m2 (3.22)

function template=gaussian_template(winsize,sigma)
%Template for Gaussian averaging

%Usage:[template]=gaussian_template(number, number)

%Parameters: winsize-size of template (odd, integer)
% sigma-variance of Gaussian function
%Author: Mark S. Nixon

%centre is half of window size
centre=floor(winsize/2)+1;

%we'll normalise by the total sum
sum=0;

*(i-centre)))/(2*sigma*sigma))

%so work out the coefficients and the running total
for i=1:winsize
 for j=1:winsize
 template(j,i)=exp(-(((j-centre)*(j-centre))+((i-centre)

 sum=sum+template(j,i);
 end
end

%and then normalise
template=template/sum;

CODE 3.9

Gaussian template specification.

1073.4 Group operations

For Cdir,CFFT, we require

N2m2 , 4N2 logðNÞ1N2 (3.23)

If the direct implementation of template matching is faster than its Fourier

implementation, we need to choose m so that

m2 , 4 logðNÞ1 1 (3.24)

This implies that for a 2563 256 image a direct implementation is fastest for

33 3 and 53 5 templates, whereas a transform calculation is faster for larger

ones. An alternative analysis (Campbell, 1969) has suggested that (Gonzalez and

Wintz, 1987) “if the number of non-zero terms in (the template) is less than 132

then a direct implementation . . . is more efficient than using the FFT approach”.

This implies a considerably larger template than our analysis suggests. This is in

part due to higher considerations of complexity than our analysis has included.

There are, naturally, further considerations in the use of transform calculus, the

most important being the use of windowing (such as Hamming or Hanning)

operators to reduce variance in high-order spectral estimates. This implies that

template convolution by transform calculus should perhaps be used when large

templates are involved, and only when speed is critical. If speed is indeed critical,

it might be better to implement the operator in dedicated hardware, as described

earlier.

The averaging process is actually a statistical operator since it aims to estimate

the mean of a local neighborhood. The error in the process is naturally high, for a

population of N samples, the statistical error is of the order of

Error5
Meanffiffiffiffi

N
p (3.25)

Increasing the averaging operator’s size improves the error in the estimate of

the mean but at the expense of fine detail in the image. The average is of course

an estimate optimal for a signal corrupted by additive Gaussian noise (see

Appendix 2, Section 11.1). The estimate of the mean maximized the probability

that the noise has its mean value, namely zero. According to the central limit the-

orem, the result of adding many noise sources together is a Gaussian-distributed

noise source. In images, noise arises in sampling, in quantization, in transmission,

and in processing. By the central limit theorem, the result of these (independent)

noise sources is that image noise can be assumed to be Gaussian. In fact, image

noise is not necessarily Gaussian distributed, giving rise to more statistical opera-

tors. One of these is the median operator that has demonstrated capability to

reduce noise while retaining feature boundaries (in contrast to smoothing which

blurs both noise and the boundaries) and the mode operator that can be viewed as

optimal for a number of noise sources, including Rayleigh noise, but is very diffi-

cult to determine for small, discrete, populations.

108 CHAPTER 3 Basic image processing operations

3.5 Other statistical operators
3.5.1 Median filter
The median is another frequently used statistic; the median is the center of a

rank-ordered distribution. The median is usually taken from a template centered

on the point of interest. Given the arrangement of pixels in Figure 3.19(a), the

pixel values are arranged into a vector format (Figure 3.19(b)). The vector is then

sorted into ascending order (Figure 3.19(c)). The median is the central component

of the sorted vector; this is the fifth component since we have nine values.

The median operator is usually implemented using a template, here we shall

consider a 33 3 template. Accordingly, we need to process the nine pixels in a

template centered on a point with coordinates (x,y). In a Mathcad implementation,

these nine points can be extracted into vector format using the operator unsorted
in Code 3.10. This requires an integer pointer to nine values, x1. The modulus

operator is then used to ensure that the correct nine values are extracted.

We then arrange the nine pixels, within the template, in ascending order using

the Mathcad sort function (Code 3.11).

2 8 7

4 0 6

3 5 7

2 4 3 8 0 5 7 6 7

(a) 3 × 3 Template (b) Unsorted vector

0 2 3 4 5 6 7 7 8

Median↑

(c) Sorted vector, giving median

FIGURE 3.19

Finding the median from a 33 3 template.

x1:=0..8

unsortedx1:=p
x+mod(x1,3)–1,x+floor

⎛
⎝

⎛
⎝

x1

3
–1

CODE 3.10

Reformatting a neighborhood into a vector.

1093.5 Other statistical operators

This gives the rank-ordered list, and the median is the central component of

the sorted vector, in this case the fifth component (Code 3.12).

These functions can then be grouped to give the full median operator as given

in Code 3.13.

The median can of course be taken from larger template sizes. The develop-

ment here has aimed not only to demonstrate how the median operator works but

also to provide a basis for further development. The rank ordering process is com-

putationally demanding (slow) and motivates study into the deployment of fast

algorithms, such as Quicksort (e.g., Huang et al. (1979) is an early approach),

though other approaches abound (Weiss, 2006). The computational demand also

has motivated use of template shapes other than a square. A selection of alterna-

tive shapes is shown in Figure 3.20. Common alternative shapes include a cross

or a line (horizontal or vertical), centered on the point of interest, which can

sorted:=sort(unsorted)

CODE 3.11

Using the Mathcad sort function.

our_median:=sorted4

CODE 3.12

Evaluating the median.

med(pic):=

for x∈1..cols(pic)–2
for y∈1..rows(pic)–2

for x1∈ 0..8

newpic

newpic zero(pic)←

unsortedx1 pic
y+mod(x1,3)–1,x+floor ⎛

⎝
⎛
⎝

x1

3
–1

←

sorted sort(unsorted)←
newpicy,x sorted4←

CODE 3.13

Determining the median.

110 CHAPTER 3 Basic image processing operations

afford much faster operation since they cover fewer pixels. The basis of the

arrangement presented here could be used for these alternative shapes, if required.

The median has a well-known ability to remove salt and pepper noise. This

form of noise, arising from, say, decoding errors in picture transmission systems,

can cause isolated white and black points to appear within an image. It can also

arise when rotating an image, when points remain unspecified by a standard rota-

tion operator (Chapter 10, Appendix 1), as in a texture image, rotated by 10� in

Figure 3.21(a). When a median operator is applied, the salt and pepper noise

points will appear at either end of the rank-ordered list and are removed by the

median process, as shown in Figure 3.21(b). The median operator has practical

advantage due to its ability to retain edges (the boundaries of shapes in images)

while suppressing the noise contamination. As such, like direct averaging, it

remains a worthwhile member of the stock of standard image processing tools.

(a) Cross (b) Horizontal line (c) Vertical line

FIGURE 3.20

Alternative template shapes for median operator.

(a) Rotated fence (b) Median filtered

FIGURE 3.21

Illustrating median filtering.

1113.5 Other statistical operators

For further details concerning properties and implementation, see Hodgson et al.

(1985). (Note that practical implementation of image rotation is a Computer

Graphics issue and is usually by texture mapping; further details can be found in

Hearn and Baker (1997).)

3.5.2 Mode filter
The mode is the final statistic of interest, though there are more advanced filtering

operators to come. The mode is of course very difficult to determine for small

populations and theoretically does not even exist for a continuous distribution.

Consider, for example, determining the mode of the pixels within a square 53 5

template. Naturally, it is possible for all 25 pixels to be different, so each could

be considered to be the mode. As such we are forced to estimate the mode: the

truncated median filter, as introduced by Davies (1988), aims to achieve this. The

truncated median filter is based on the premise that for many non-Gaussian distri-

butions, the order of the mean, the median, and the mode is the same for many

images, as illustrated in Figure 3.22. Accordingly, if we truncate the distribution

(i.e., remove part of it, where the part selected to be removed in Figure 3.22 is

from the region beyond the mean), then the median of the truncated distribution

will approach the mode of the original distribution.

The implementation of the truncated median, trun_med, operator is given

in Code 3.14. The operator first finds the mean and the median of the current

window. The distribution of intensity of points within the current window is

truncated on the side of the mean so that the median now bisects the distribu-

tion of the remaining points (as such not affecting symmetrical distributions);

if the median is less than the mean, the point at which the distribution is trun-

cated, is

Number of points

Mode
Median

Mean

Brightness

FIGURE 3.22

Arrangement of mode, median, and mean.

112 CHAPTER 3 Basic image processing operations

upper5median1ðmedian2minðdistributionÞÞ
5 2Umedian2minðdistributionÞ (3.26)

If the median is greater than the mean, then we need to truncate at a lower

point (before the mean), given by

lower5 2Umedian2maxðdistributionÞ (3.27)

The median of the remaining distribution then approaches the mode. The trun-

cation is performed by storing pixels’ values in a vector trun. A pointer, cc, is
incremented each time a new point is stored. The median of the truncated vector

is then the output of the truncated median filter at that point. Naturally, the win-

dow is placed at each possible image point, as in template convolution. However,

there can be several iterations at each position to ensure that the mode is

approached. In practice, only few iterations are usually required for the median to

converge to the mode. The window size is usually large, say 73 7 or 93 9 or

even more.

ha←floor
wsze

2

⎛
⎟
⎝

⎞
⎟
⎠

win←submatrix(p,y−ha,y+ha,x−ha,x+ha)
med←median(win)

upper←2⋅med−min(win)
lower←2⋅med−max(win)
cc←0

cc←cc+1

truncc←winj,i

truncc←winj,i

cc←cc+1

if (winj,i>lower)⋅(med>ave)

if (winj,i<upper)⋅(med<ave)

for i∈0..wsze−1
for j∈0..wsze−1

newpicy,x←median(trun) if cc>0
newpicy,x←med otherwise

for y∈ha..rows(p)−ha−1
for x∈ha..cols(p)−ha−1

newpic

trun_med(p,wsze) := newpic←zero(p)

ave←mean(win)

CODE 3.14

The truncated median operator.

1133.5 Other statistical operators

The action of the operator is illustrated in Figure 3.23 when applied to a

1283 128 part of the ultrasound image (Figure 1.1(c)), from the center of the

image and containing a cross-sectional view of an artery. Ultrasound results in par-

ticularly noisy images, in part, because the scanner is usually external to the body.

The noise is actually multiplicative Rayleigh noise for which the mode is the opti-

mal estimate. This noise obscures the artery that appears in cross section in

Figure 3.23(a); the artery is basically elliptical in shape. The action of the 93 9

truncated median operator (Figure 3.23(b)) is to remove noise while retaining fea-

ture boundaries, while a larger operator shows better effect (Figure 3.23(c)).

Close examination of the result of the truncated median filter is that a selec-

tion of boundaries is preserved, which are not readily apparent in the original

ultrasound image. This is one of the known properties of median filtering: an abil-

ity to reduce noise while retaining feature boundaries. Indeed, there have actually

been many other approaches to speckle filtering; the most popular include direct

averaging (Shankar, 1986), median filtering, adaptive (weighted) median filtering

(Loupas and McDicken, 1987), and unsharp masking (Bamber and Daft, 1986).

3.5.3 Anisotropic diffusion
The most advanced form of smoothing is achieved by preserving the boundaries

of the image features in the smoothing process (Perona and Malik, 1990). This is

one of the advantages of the median operator and a disadvantage of the Gaussian

smoothing operator. The process is called anisotropic diffusion by virtue of its

basis. Its result is illustrated in Figure 3.24(b) where the feature boundaries (such

as those of the eyebrows or the eyes) in the smoothed image are crisp and the

skin is more matte in appearance. This implies that we are filtering within the

(a) Part of ultrasound image (b) 9 × 9 Operator (c) 13 × 13 Operator

FIGURE 3.23

Applying truncated median filtering.

114 CHAPTER 3 Basic image processing operations

features and not at their edges. By way of contrast, the Gaussian operator result

in Figure 3.24(c) smoothes not just the skin but also the boundaries (the eyebrows

in particular seem quite blurred) giving a less pleasing and less useful result.

Since we shall later use the boundary information to interpret the image, its pres-

ervation is of much interest.

As ever, there are some parameters to select to control the operation, so we

shall consider the technique’s basis so as to guide their selection. Further, it is

computationally more complex than Gaussian filtering. The basis of anisotropic

diffusion is, however, rather complex, especially here, and invokes concepts of

low-level feature extraction, which are covered in Chapter 4. One strategy you

might use is to mark this page, then go ahead and read Sections 4.1 and 4.2 and

return here. Alternatively, you could just read on since that is exactly what we

shall do. The complexity is because the process not only invokes low-level fea-

ture extraction (to preserve feature boundaries) but also its basis actually invokes

concepts of heat flow, as well as introducing the concept of scale space. So it will

certainly be a hard read for many, but comparison of Figure 3.24(b) with

Figure 3.24(c) shows that it is well worth the effort.

The essential idea of scale space is that there is a multiscale representation

of images, from low resolution (a coarsely sampled image) to high resolution

(a finely sampled image). This is inherent in the sampling process where the

coarse image is the structure and the higher resolution increases the level of

detail. As such, we can derive a scale space set of images by convolving an origi-

nal image with a Gaussian function, by Eq. (3.24)

Px;yðσÞ5Px;yð0Þ � gðx; y;σÞ (3.28)

where Px,y(0) is the original image, g(x,y,σ) is the Gaussian template derived from

Eq. (3.20), and Px,y(σ) is the image at level σ. The coarser level corresponds to

(a) Original image (b) Anisotropic diffusion (c) Gaussian smoothing

FIGURE 3.24

Filtering by anisotropic diffusion and the Gaussian operator.

1153.5 Other statistical operators

larger values of the standard deviation σ; conversely the finer detail is given by

smaller values. (Scale space will be considered again in Section 4.4.2 as it pervades

the more modern operators). We have already seen that the larger values of σ
reduce the detail and are then equivalent to an image at a coarser scale, so this is a

different view of the same process. The difficult bit is that the family of images

derived this way can equivalently be viewed as the solution of the heat equation:

@P=@t5rPx;yðtÞ (3.29)

where r denotes del, the (directional) gradient operator from vector algebra, and

with the initial condition that P05Px,y(0). The heat equation itself describes the

temperature T changing with time t as a function of the thermal diffusivity

(related to conduction) κ as

@T=@t5κr2T (3.30)

and in 1D form, this is

@T=@t5κ
@2T

@x2
(3.31)

So the temperature measured along a line is a function of time, distance, the ini-

tial and boundary conditions, and the properties of a material. The direct relation

of this with image processing is clearly an enormous ouch! There are clear simi-

larities between Eqs (3.31) and (3.29). This is the same functional form and

allows for insight, analysis, and parameter selection. The heat equation,

Eq. (3.29), is the anisotropic diffusion equation:

@P=@t5rUðcx;yðtÞrPx;yðtÞÞ (3.32)

where rU is the divergence operator (which essentially measures how the den-

sity within a region changes), with diffusion coefficient cx,y. The diffusion coef-

ficient applies to the local change in the image rPx,y(t) in different directions.

If we have a lot of local change, we seek to retain it since the amount of change

is the amount of boundary information. The diffusion coefficient indicates how

much importance we give to local change: how much of it is retained.

(The equation reduces to isotropic diffusion—Gaussian filtering—if the diffu-

sivity is constant since rc5 0.) There is no explicit solution to this equation.

By approximating differentiation by differencing (this is explored more in

Section 4.2) the rate of change of the image between time step t and time step

t1 1, we have

@P=@t5Pðt1 1Þ2PðtÞ (3.33)

This implies we have an iterative solution, and for later consistency, we shall

denote the image P at time step t1 1 as P, t11. 5P(t1 1), so we then have

P, t11.2P, t. 5rUðcx;yðtÞrP,t.
x;y Þ (3.34)

116 CHAPTER 3 Basic image processing operations

And again by approximation, using differences evaluated this time over the four

compass directions North, South, East, and West, we have

rNðPx;yÞ5Px;y21 2Px;y (3.35)

rSðPx;yÞ5Px;y11 2Px;y (3.36)

rEðPx;yÞ5Px21;y 2Px;y (3.37)

rWðPx;yÞ5Px11;y 2Px;y (3.38)

The template and weighting coefficients for these are shown in Figure 3.25.

When we use these as an approximation to the right-hand side in Eq. (3.34),

we then have rUðcx;yðtÞrP, t.
x;y Þ5λðcNx;yrNðPÞ1 cSx;yrSðPÞ1 cEx;yrEðPÞ1

cWx;yrWðPÞÞ that gives
P,t11.2P,t.5λðcNx;yrNðPÞ1cSx;yrSðPÞ1cEx;yrEðPÞ1cWx;yrWðPÞÞ jP5P,t.

x;y

(3.39)

where 0#λ# 1/4 and cNx,y, cSx,y, cEx,y, and cWx,y denote the conduction coeffi-

cients in the four compass directions. By rearrangement of this, we obtain the

equation we shall use for the anisotropic diffusion operator

P,t11.5P,t.1λðcNx;yrNðPÞ1cSx;yrSðPÞ1cEx;yrEðPÞ1cWx;yrWðPÞÞ jP5P,t.
x;y

(3.40)

This shows that the solution is iterative: images at one time step (denoted by

, t1 1.) are computed from images at the previous time step (denoted , t.),

given the initial condition that the first image is the original (noisy) image. Change

(in time and in space) has been approximated as the difference between two adja-

cent points, which gives the iterative equation and shows that the new image is

formed by adding a controlled amount of the local change consistent with the main

idea: that the smoothing process retains some of the boundary information.

We are not finished yet though, since we need to find values for cNx,y, cSx,y,

cEx,y, and cWx,y. These are chosen to be a function of the difference along the

compass directions, so that the boundary (edge) information is preserved. In this

way, we seek a function that tends to zero with increase in the difference

1

1 1– 4

1

FIGURE 3.25

Approximations by spatial difference in anisotropic diffusion.

1173.5 Other statistical operators

(an edge or boundary with greater contrast) so that diffusion does not take place

across the boundaries, keeping the edge information. As such, we seek

cNx;y 5 gðjjrNðPÞjjÞ (3.41)

cSx;y 5 gðjjrSðPÞjjÞ
cEx;y 5 gðjjrEðPÞjjÞ
cWx;y 5 gðjjrWðPÞjjÞ

and one function that can achieve this is

gðx; kÞ5 e2x2=k2 (3.42)

(There is potential confusion with using the same symbol as for the Gaussian

function, Eq. (3.20), but we have followed the original authors’ presentation.)

This function clearly has the desired properties since when the values of the dif-

ferences r are large, the function g is very small, conversely when r is small,

then g tends to unity. k is another parameter whose value we have to choose: it

controls the rate at which the conduction coefficient decreases with increasing dif-

ference magnitude. The effect of this parameter is shown in Figure 3.26. Here,

the solid line is for the smaller value of k, and the dotted one is for a larger value.

Evidently, a larger value of k means that the contribution of the difference

reduces less than for a smaller value of k. In both cases, the resulting function is

near unity for small differences and near zero for large differences, as required.

An alternative to this is to use the function

g2ðx; kÞ5 1

ð11 ðx2=k2ÞÞ (3.43)

which has similar properties to the function in Eq. (3.42).

0 20 40

0.5

1

g(Δ, 10)

g(Δ, 30)

Δ

FIGURE 3.26

Controlling the conduction coefficient in anisotropic diffusion.

118 CHAPTER 3 Basic image processing operations

This all looks rather complicated, so let’s recap. First, we want to filter an

image by retaining boundary points. These are retained according to the value of

k chosen in Eq. (3.42). This function is operated in the four compass directions, to

weight the brightness difference in each direction, Eq. (3.41). These contribute to

an iterative equation which calculates a new value for an image point by consider-

ing the contribution from its four neighboring points, Eq. (3.40). This needs choice

of one parameter λ. Further, we need to choose the number of iterations for which

calculation proceeds. For information, Figure 3.24(b) was calculated over 20 itera-

tions, and we need to use sufficient iterations to ensure that convergence has been

achieved. Figure 3.27 shows how we approach this. Figure 3.27(a) is after a single

iteration, Figure 3.27(b) after 2, Figure 3.27(c) after 5, Figure 3.27(d) after 10, and

Figure 3.27(e) after 20. Manifestly, we could choose to reduce the number of itera-

tions, accepting a different result—or even go further.

We also need to choose values for k and λ. By analogy, k is the conduction

coefficient and low values preserve edges and high values allow diffusion (con-

duction) to occur—how much smoothing can take place. The two parameters are

naturally interrelated though λ largely controls the amount of smoothing. Given

that low values of both parameters mean that no filtering effect is observed, we

can investigate their effect by setting one parameter to a high value and varying

the other. In Figure 3.28(a)�(c), we use a high value of k which means that edges

are not preserved, and we can observe that different values of λ control the

amount of smoothing. (A discussion of how this Gaussian filtering process is

achieved can be inferred from Section 4.2.4.) Conversely, we can see how differ-

ent values for k control the level of edge preservation in Figure 3.28(d)�(f) where

some structures around the eye are not preserved for larger values of k.

The original presentation of anisotropic diffusion (Perona and Malik, 1990) is

extremely lucid and well worth a read if you consider selecting this technique.

Naturally, it has greater detail on formulation and analysis of results than space

here allows for (and is suitable at this stage). Among other papers on this topic,

one (Black et al., 1998) studied the choice of conduction coefficient leading to a

function that preserves sharper edges and improves automatic termination. As

ever, with techniques that require much computation, there have been approaches

that speed implementation or achieve similar performance faster (e.g., Fischl and

Schwartz, 1999).

(a) One iteration (b) Two iterations (c) Five iterations (d) Ten iterations (e) Final result

FIGURE 3.27

Iterations of anisotropic diffusion.

1193.5 Other statistical operators

Bilateral filtering is a nonlinear filter introduced by Tomasi and Manduchi

(1998). It derives from Gaussian blur, but it prevents blurring across feature

boundaries by decreasing the filter weight when the intensity difference is too

large. Essentially, the output combines smoothing with edge preservation, so the

output J at point s is a function of

Js 5
1

kðsÞ
X
cAΩ

f ðc2 sÞgðPc 2PsÞPc (3.44)

where Ω is the window of interest, P is image data, and k(s) is for normalization.

f is Gaussian smoothing in space, and g is Gaussian smoothing on the difference in

intensity, thereby forming a result which is akin with that of bilateral filtering—

indeed, the relationship has already been established (Barash, 2002). One of the

major advantages is that the number of iterations is reduced and optimized versions

are available, which do not need parameter selection (Weiss, 2006; Paris and

Durand, 2008). Another method is based on the use of the frequency domain and

uses linear filtering (Dabov et al., 2007). Naturally, this begs the question: when

will denoising approaches be developed which are at the performance limit? One

such study (Chatterjee and Milanfar, 2010) concluded that “despite the phenomenal

recent progress in the quality of denoising algorithms, some room for improvement

still remains for a wide class of general images.” Denoising is not finished yet.

(a) k = 100 and λ = 0.05 (b) k = 100 and λ = 0.15 (c) k = 100 and λ = 0.25

(d) k = 5 and λ = 0.25 (e) k = 15 and λ = 0.25 (f) k = 25 and λ = 0.25

FIGURE 3.28

Applying anisotropic diffusion.

120 CHAPTER 3 Basic image processing operations

3.5.4 Force field transform
There are of course many more image filtering operators; we have so far covered

those that are among the most popular. There are others which offer alternative

insight, sometimes developed in the context of a specific application. For exam-

ple, Hurley developed a transform called the force field transform (Hurley et al.,

2002, 2005) that uses an analogy to gravitational force. The transform pretends

that each pixel exerts a force on its neighbors, which is inversely proportional to

the square of the distance between them. This generates a force field where the

net force at each point is the aggregate of the forces exerted by all the other pixels

on a “unit test pixel” at that point. This very large-scale summation affords very

powerful averaging that reduces the effect of noise. The approach was developed

in the context of ear biometrics, recognizing people by their ears, that has unique

advantage as a biometric in that the shape of people’s ears does not change with

age, and of course—unlike a face—ears do not smile! The force field transform

of an ear (Figure 3.29(a)) is shown in Figure 3.29(b). Here, the averaging process

is reflected in the reduction of the effects of hair. The transform itself has

highlighted ear structures, especially the top of the ear and the lower “keyhole”

(the notch).

The image shown is actually the magnitude of the force field. The transform

itself is a vector operation and includes direction (Hurley et al., 2002). The trans-

form is expressed as the calculation of the force F between two points at positions

ri and rj which is dependent on the value of a pixel at point ri as

FiðrjÞ5PðriÞ
ri 2 rj

jri 2 rjj3
(3.45)

(a) Image of ear (b) Magnitude of force field transform

FIGURE 3.29

Illustrating the force field transform.

1213.5 Other statistical operators

which assumes that the point rj is of unit “mass.” This is a directional force

(which is why the inverse square law is expressed as the ratio of the difference to

its magnitude cubed), and the magnitude and directional information has been

exploited to determine an ear “signature” by which people can be recognized. In

application, Eq. (3.45) can be used to define the coefficients of a template that is

convolved with an image (implemented by the FFT to improve speed), as with

many of the techniques that have been covered in this chapter; a Mathcad imple-

mentation is also given (Hurley et al., 2002). Note that this transform actually

exposes low-level features (the boundaries of the ears), which is the focus of the

next chapter. How we can determine shapes is a higher level process, and how

the processes by which we infer or recognize identity from the low- and the high-

level features will be covered in Chapter 8.

3.5.5 Comparison of statistical operators
The different image filtering operators are shown by way of comparison in

Figure 3.30. All operators are 53 5 and are applied to the earlier ultrasound

image (Figure 3.23(a)). Figure 3.30(a), (b), (c), and (d) are the result of the mean

(direct averaging), Gaussian averaging, median, and truncated median, respec-

tively. We have just shown the advantages of anisotropic diffusion compared with

Gaussian smoothing, so we will not repeat it here. Each operator shows a differ-

ent performance: the mean operator removes much noise but blurs feature bound-

aries; Gaussian averaging retains more features but shows little advantage over

direct averaging (it is not Gaussian-distributed noise anyway); the median opera-

tor retains some noise but with clear feature boundaries, whereas the truncated

median removes more noise but along with picture detail. Clearly, the increased

size of the truncated median template, by the results shown in Figure 3.23(b) and

(c), can offer improved performance. This is to be expected since by increasing

the size of the truncated median template, we are essentially increasing the size

of the distribution from which the mode is found.

(a) Mean (b) Gaussian average (c) Median (d) Truncated
 median

FIGURE 3.30

Comparison of filtering operators.

122 CHAPTER 3 Basic image processing operations

As yet, however, we have not yet studied any quantitative means to evaluate

this comparison. We can only perform subjective appraisal of the images shown

in Figure 3.30. This appraisal has been phrased in terms of the contrast bound-

aries perceived in the image and on the basic shape that the image presents.

Accordingly, better appraisal is based on the use of feature extraction. Boundaries

are the low-level features studied in Chapter 4; shape is a high-level feature stud-

ied in Chapter 5. Also, we shall later use the filtering operators as a basis for

finding objects which move in sequences of images (see Section 9.2.1).

3.6 Mathematical morphology
Mathematical morphology analyzes images by using operators developed using

set theory (Serra, 1986; Serra and Soille, 1994). It was originally developed for

binary images and was extended to include gray-level data. The word morphology

actually concerns shapes: in mathematical morphology we process images accord-

ing to shape, by treating both as sets of points. In this way, morphological opera-

tors define local transformations that change pixel values that are represented as

sets. The ways pixel values are changed are formalized by the definition of the

hit or miss transformation.

In the hit and miss transformation, an object represented by a set X is exam-

ined through a structural element represented by a set B. Different structuring ele-

ments are used to change the operations on the set X. The hit or miss

transformation is defined as the point operator

X � B5 x B1
xCX-B2

xCXcg
���

(3.46)

In this equation, x represents one element of X, which is a pixel in an image.

The symbol Xc denotes the complement of X (the set of image pixels which is not

in the set X) and the structuring element B is represented by two parts, B1 and B2,

that are applied to the set X or to its complement Xc. The structuring element is a

shape and this is how mathematical morphology operations process images

according to shape properties. The operation of B1 on X is a “hit”; the operation

of B2 on Xc is a “miss.” The subindex x in the structural element indicates that it

is moved to the position of the element x. That is, in a manner similar to other

group operators, B defines a window that is moved through the image.

Figure 3.31 illustrates a binary image and a structuring element. Image pixels

are divided into those belonging to X and those belonging to its complement Xc.

The figure shows a structural element and its decomposition into the two sets B1

and B2. Each subset is used to analyze the set X and its complement. Here, we

use black for the elements of B1 and white for B2 to indicate that they are applied

to X and Xc, respectively.

Equation (3.46) defines a process that moves the structural element B to be

placed at each pixel in the image, and it performs a pixel by pixel comparison

1233.6 Mathematical morphology

against the template B. If the value of the image is the same as that of the struc-

turing element, then the image’s pixel forms part of the resulting set X�B. An

important feature of this process is that it is not invertible. That is, information is

removed in order to suppress or enhance geometrical features in an image.

3.6.1 Morphological operators
The simplest form of morphological operators is defined when either B1 or B2 is

empty. When B1 is empty, Eq. (3.46) defines an erosion (reduction), and when B2

is empty, it defines a dilation (increase). That is, an erosion operation is given by

X~B5 fxjB1
xCXg (3.47)

and a dilation is given by

X"B5 fxjB2
xCXcg (3.48)

In the erosion operator, the hit or miss transformation establishes that a pixel x

belongs to the eroded set if each point of the element B1 translated to x is on X.

Since all the points in B1 need to be in X, this operator removes the pixels at the

borders of objects in the set X. Thus, it actually erodes or shrinks the set. One of

the most common applications of this is to remove noise in thresholded images.

This is illustrated in Figure 3.32(a) where we have a noisy binary image, the

image is eroded in Figure 3.32(b), removing noise but making the letters smaller,

and this is corrected by opening in Figure 3.32(c). We shall show how we can

use shape to improve this filtering process—put the morph into morphology.

Figure 3.33 illustrates the operation of the erosion operator. Figure 3.33(a)

contains a 33 3 template that defines the structural element B1. The center pixel

is the origin of the set. Figure 3.33(b) shows an image containing a region of

black pixels that defines the set X. Figure 3.33(c) shows the result of the erosion.

X = Xc
 =

B2B B1

FIGURE 3.31

Image and structural element.

124 CHAPTER 3 Basic image processing operations

The eroded set is formed only from black pixels, and we use gray to highlight the

pixels that were removed from X by the erosion operator. For example, when

the structural element is moved to the position shown as a grid in Figure 3.33(c),

the central pixel is removed since only five pixels of the structural element are in X.

The dilation operator defined in Eq. (3.48) establishes that a point belongs to

the dilated set when all the points in B2 are in the complement. This operator

erodes or shrinks the complement and when the complement is eroded, the set X

is dilated.

Figure 3.34 illustrates a dilation process. The structural element shown in

Figure 3.34(a) defines the set B2. We indicate its elements in white since it should

be applied to the complement of X. Figure 3.34(b) shows an image example and

Figure 3.34(c) the result of the dilation. The black and gray pixels belong to the

dilation of X. We use gray to highlight the pixels that are added to the set. During

the dilation, we place the structural element on each pixel in the complement, i.e.,

the white pixels in Figure 3.34(b). When the structural element is not fully con-

tained, it is removed from the complement, so it becomes part of X. For example,

when the structural element is moved to the position shown as a grid in

Figure 3.34(c), the central pixel is removed from the complement since one of the

pixels in the template is in X.

(c) Dilation(b) Erosion(a) Original image

FIGURE 3.32

Filtering by morphology.

(c) Erosion(b) Image(a) Structural element

FIGURE 3.33

Example of the erosion operator.

1253.6 Mathematical morphology

There is an alternative formulation for the dilation operator that defines the

transformation over the set X instead to its complement. This definition is

obtained by observing that when all elements of B2 are in Xc is equivalent to none

of the elements in the negation of B2 are in X. That is, dilation can also be written

as intersection of translated sets as

X"B5 fxjxA:B2
xg (3.49)

Here the symbol : denotes negation, and it changes the structural element

from being applied to the complement to the set. For example, the negation of the

structural element in Figure 3.34(a) is the set in Figure 3.33(a). Thus, Eq. (3.49)

defines a process where a point is added to the dilated set when at least one ele-

ment of :B2 is in X. For example, when the structural element is at the position

shown in Figure 3.34(c), one element in X is in the template, thus the central

point is added to the dilation.

Neither dilation nor erosion specify a required shape for the structuring ele-

ment. Generally, it is defined to be square or circular, but other shapes like a

cross or a triangle can be used. Changes in the shape will produce subtle changes

in the results, but the main feature of the structural element is given by its size

since this determines the “strength” of the transformation. In general, applications

prefer to use small structural elements (for speed) and perform a succession of

transformations until a desirable result is obtained. Other operators can be defined

by sequences of erosions and dilations. For example, the opening operator is

defined by an erosion followed by a dilation, i.e.,

X3B5 ðX~BÞ"B (3.50)

Similarly, a closing operator is defined by a dilation followed of an erosion, i.e.,

X � B5 ðX"BÞ~B (3.51)

Closing and opening operators are generally used as filters that remove dots

characteristic of pepper noise and to smooth the surface of shapes in images.

(c) Dilation(b) Image(a) Structural element

FIGURE 3.34

Example of the dilation operator.

126 CHAPTER 3 Basic image processing operations

These operators are generally applied in succession and the number of times they

are applied depends on the structural element size and image structure.

In addition to filtering, morphological operators can also be used to develop

other image processing techniques. For example, edges can be detected by sub-

tracting the original image and the one obtained by an erosion or dilation.

Another example is the computation of skeletons that are thin representations of a

shape. A skeleton can be computed as the union of subtracting images obtained

by applying erosions and openings with structural elements of increasing sizes.

3.6.2 Gray-level morphology
In Eq. (3.46), pixels belong to either the set X or its complement. Thus, it applies

only to binary images. Gray scale or gray-level morphology extends Eq. (3.46) to

represent functions as sets, thus morphology operators can be applied to gray-level

images. There are two alternative representations of functions as sets: the cross sec-

tion (Serra, 1986; Serra and Soille, 1994) and the umbra (Sternberg, 1986). The

cross-sectional representation uses multiple thresholds to obtain a pile of binary

images. Thus, the definition of Eq. (3.46) can be applied to gray-level images by con-

sidering a collection of binary images as a stack of binary images formed at each

threshold level. The formulation and implementation of this approach is cumbersome

since it requires multiple structural elements and operators over the stack. The umbra

approach is more intuitive and it defines sets as the points contained below func-

tions. The umbra of a function f(x) consists of all points that satisfy f(x), i.e.,

UðXÞ5 fðx; zÞjz, f ðxÞg (3.52)

Here, x represents a pixel and f(x) its gray level. Thus, the space (x,z) is formed

by the combination of all pixels and gray levels. For images, x is defined in 2D,

thus all the points of the form (x,z) define a cube in 3D space. An umbra is a collec-

tion of points in this 3D space. Notice that morphological definitions are for dis-

crete sets, thus the function is defined at discrete points and for discrete gray levels.

Figure 3.35 illustrates the concept of an umbra. For simplicity we show f(x) as

1D function. In Figure 3.35(a), the umbra is drawn as a collection of points below

the curve. The complement of the umbra is denoted as Uc(X), and it is given by the

points on and above the curve. The union of U(X) and Uc(X) defines all the image

points and gray-level values (x,z). In gray-level morphology, images and structural

elements are represented by umbrae. Figure 3.35(b) illustrates the definition of two

structural elements. The first example defines a structural element for the umbra,

i.e., B1. Similar to an image function, the umbra of the structural elements is

defined by the points under the curve. The second example in Figure 3.35(b)

defines a structural element for the complement, i.e., B2. Similar to the complement

of the umbra, this operator defines the points on and over the curve.

The hit or miss transformation in Eq. (3.46) is extended to gray-level functions

by considering the inclusion operator in the umbrae, i.e.,

UðX � BÞ5 ðx; zÞ UðB1
x;zÞCUðXÞ-UðB2

x;zÞCUcðXÞg
��n

(3.53)

1273.6 Mathematical morphology

Similar to the binary case, this equation defines a process that evaluates the

inclusion of the translated structural element B. At difference of the binary defini-

tion, the structural element is translated along the pixels and gray-level values,

i.e., to the points (x,z). Thus, a point (x,z) belongs to the umbra of the hit or miss

transformation, if the umbrae of the elements B1 and B2 translated to (x,z) are

included in the umbra and its complement, respectively. The inclusion operator is

defined for the umbra and its complement in different ways. An umbra is con-

tained in other umbra if corresponding values of its function are equal or lower.

For the complement, an umbra is contained if corresponding values of its function

are equal or greater.

We can visualize the process in Eq. (3.53) by translating the structural element

in the example given in Figure 3.35. To know if a point (x,z) is in the transformed

set, we move the structural element B1 to the point and see if its umbra fully

intersects U(X). If that is the case, the umbra of the structural element is con-

tained in the umbra of the function and UðB1
x;tÞCUðXÞ is true. Similarly, to test

for UðB2
x;tÞCUcðXÞ; we move the structural element B2 and see if it is contained

in the upper region of the curve. If both conditions are true, then the point where

the operator is translated belongs to the umbra of the hit or miss transformation.

3.6.3 Gray-level erosion and dilation
Based on the generalization in Eq. (3.53), it is possible to reformulate operators

developed for binary morphology, so they can be applied to gray-level data. The

erosion and dilation defined in Eqs (3.47) and (3.48) are generalized to gray-level

morphology as

UðX~BÞ5 fðx; zÞjUðB1
x;zÞCUðXÞg (3.54)

z

x x

z

U c(x)

B 1

z

x

B 2

f (x)

U (x)

(b) Structural elements(a) Umbra

U (B 1)

U (B 2)

FIGURE 3.35

Gray-level morphology.

128 CHAPTER 3 Basic image processing operations

and

UðX"BÞ5 fðx; zÞjUðB2
x;zÞCUcðXÞg (3.55)

The erosion operator establishes that the point (x,z) belongs to the umbra of the

eroded set if each point of the umbra of the element B1 translated to the point (x,z) is

under the umbra of X. A common way to visualize this process is to think that we

move the structural element upward in the gray-level axis. The erosion border is the

highest point we can reach without going out of the umbra. Similar to the binary

case, this operator removes the borders of the set X by increasing the separation in

holes. Thus, it actually erodes or shrinks the structures in an image. Figure 3.36(a)

illustrates the erosion operator for the image in Figure 3.35(a). Figure 3.36(a) shows

the result of the erosion for the structural element shown in the right. For clarity, we

have marked the origin of the structure element with a black spot. In the result, only

the black pixels form the eroded set, and we use gray to highlight the pixels that

were removed from the umbra of X. It is easy to see that when the structural element

is translated to a point that is removed, its umbra intersects Uc(X).

Analogous to binary morphology, the dilation operator can be seen as an ero-

sion of the complement of the umbra of X. That is, a point belongs to the dilated

set when all the points in the umbra of B2 are in Uc(X). This operator erodes or

shrinks the set Uc(X). When the complement is eroded, the umbra of X is dilated.

The dilation operator fills holes decreasing the separation between prominent

structures. This process is illustrated in Figure 3.36(b) for the example given in

Figure 3.36(a). The structural element used is shown to the right in Figure 3.36

(b). In the results, the black and gray pixels belong to the dilation. We use gray to

highlight points that are added to the set. Points are removed from the comple-

ment and added to U(X) by translating the structural element looking for points

where the structural element is not fully included in Uc(X). It is easy to see that

when the structural element is translated to a point that is added to the dilation,

its umbra intersects U(X).

(a) Erosion (b) Dilation

z

x

z

x

FIGURE 3.36

Gray-level operators.

1293.6 Mathematical morphology

Similar to Eq. (3.49), dilation can be written as intersection of translated sets,

thus it can be defined as an operator on the umbra of an image, i.e.,

UðX"BÞ5 fðx; zÞjðx; zÞAUð:B2
x;zÞg (3.56)

The negation changes the structural element from being applied to the comple-

ment of the umbra to the umbra. That is, it changes the sign of the umbra to be

defined below the curve. For example in Figure 3.36(b), it easy to see that if the

structural element :B2 is translated to any point added during the dilation, it

intersects at least in one point.

3.6.4 Minkowski operators
Equations (3.54)�(3.56) require the computation of intersections of the pixels of

a structural element that is translated to all the points in the image and for each

gray-level value. Thus, its computation involves significant processing. However,

some simplifications can be made. For the erosion process in Eq. (3.54), the value

of a pixel can be simply computed by comparing the gray-level values of the

structural element and corresponding image pixels. The highest position that we

can translate the structural element without intersecting the complement is given

by the minimum value of the difference between the gray level of the image pixel

and the corresponding pixel in the structural element, i.e.,

~ðxÞ5miniff ðx2 iÞ2BðiÞg (3.57)

Here, B(i) denotes the value of the ith pixel of the structural element.

Figure 3.37(a) illustrates a numerical example for this equation. The structural

element has three pixels with values 0, 1, and 0, respectively. The subtractions

for the position shown in Figure 3.37(a) are 42 05 4, 62 15 5, and 72 05 7.

Thus, the minimum value is 4. As shown in Figure 3.37(a), this corresponds to

the highest gray-level value that we can move up to the structural element, and it

is still fully contained in the umbra of the function.

(a) Erosion (b) Dilation

z

x

6

8

10

1

4
3
2

5

7

9

11

0

z

x

6

8

10

1

4
3
2

5

7

9

11

0

FIGURE 3.37

Example of Minkowski difference and addition.

130 CHAPTER 3 Basic image processing operations

Similar to Eq. (3.57), the dilation can be obtained by comparing the gray-level

values of the image and the structural element. For the dilation we have that

"ðxÞ5maxiff ðx2 iÞ1BðiÞg (3.58)

Figure 3.37(b) illustrates a numerical example of this equation. For the posi-

tion of the structural element in Figure 3.37(b), the summation gives the values

81 05 8, 81 15 9, and 41 05 4. As shown in the figure, the maximum value

of 9 corresponds to the point where the structural element still intersects the

umbra; thus this point should be added to the dilation.

Equations (3.57) and (3.58) are known as the Minkowski operators and they

formalize set operations as summations and differences. Thus, they provide defi-

nitions very useful for computer implementations. Code 3.15 shows the imple-

ment of the erosion operator based on Eq. (3.57). Similar to Code 3.5, the value

pixels in the output image are obtained by translating the operator along the

image pixels. The code subtracts the value of corresponding image and template

pixels, and it sets the value of the pixel in the output image to the minima.

function eroded = Erosion(image,template)
%Implementation of erosion operator
%Parameters: Template and image array of points

%get the image and template dimensions
[irows,icols]=size(image);
[trows,tcols]=size(template);

%create result image
eroded(1:irows,1:icols)=uint8(0);

%half of template
trhalf=floor(trows/2);
tchalf=floor(tcols/2);

%Erosion
for x=trhalf+1:icols-trhalf %columns in the image except border

for y=tchalf+1:irows-tchalf %rows in the image except border
min=256;
for iwin=1:tcols %template columns

for jwin=1:trows %template rows
xi=x-trhalf-1+iwin;
yi=y-tchalf-1+jwin;
sub=double(image(xi,yi))-double(template(iwin,jwin));
if sub<min & sub>0

min=sub;
end

end
end

eroded(x,y)=uint8(min);
end

end

CODE 3.15

Erosion implementation.

1313.6 Mathematical morphology

Code 3.16 shows the implement of the dilation operator based on Eq. (3.58).

This code is similar to Code 3.15, but corresponding values of the image and the

structural element are added, and the maximum value is set as the result of the

dilation.

Figure 3.38 shows an example of the results obtained from the erosion and

dilation using Codes 3.15 and 3.16. The original image shown in Figure 3.38(a)

has 1283 128 pixels, and we used a flat structural element defined by an image

with 93 9 pixels set to zero. For its simplicity, flat structural elements are very

common in applications, and they are generally set to zero to avoid creating

offsets in the gray levels. In Figure 3.38, we can see that the erosion operation

function dilated = Dilation(image,template)
%Implementation of dilation operator
%Parameters: Template and image array of points

%get the image and template dimensions
[irows,icols]=size(image);
[trows,tcols]=size(template);

%create result image
dilated(1:irows,1:icols)=uint8(0);

%half of template
trhalf=floor(trows/2);
tchalf=floor(tcols/2);

%Dilation
for x=trhalf+1:icols-trhalf %columns in the image except border

for y=tchalf+1:irows-tchalf %rows in the image except border
max=0;
for iwin=1:tcols %template columns
for jwin=1:trows %template rows

xi=x-trhalf-1+iwin;
yi=y-tchalf-1+jwin;
sub=double(image(xi,yi))+double(template(iwin,jwin));
if sub>max & sub>0

max=sub;
end

end
end
dilated(x,y)=uint8(max);

end
end

CODE 3.16

Dilation implementation.

132 CHAPTER 3 Basic image processing operations

reduces the objects in the image while dilation expands white regions. We also

used the erosion and dilation in succession to perform the opening show in

Figure 3.38(d). The opening operation has a tendency to form regular regions of

similar size to the original image while removing peaks and small regions. The

“strength” of the operators is defined by the size of the structural elements. In

these examples, we use a fixed size and we can see that it strongly modifies

regions during dilation and erosion. Elaborate techniques have combined multire-

solution structures and morphological operators to analyze an image with opera-

tors of different sizes (Montiel et al., 1995). We shall see the deployment

of morphology later, to improve the results when finding moving objects in

sequences of images (see Section 9.2.1.2).

(b) Erosion(a) Original image

(d) Opening(c) Dilation

FIGURE 3.38

Examples of morphology operators.

1333.6 Mathematical morphology

3.7 Further reading
Many texts cover basic point and group operators in much detail, in particular

some texts give many more examples, such as Russ (2002) and Seul et al. (2000).

Books with a C implementation often concentrate on more basic techniques

including low-level image processing (Lindley, 1991; Parker, 1994). Some of the

more advanced texts include more coverage of low-level operators, such as

Rosenfeld and Kak (1982) and Castleman (1996). Parker (1994) includes C code

for nearly all the low-level operations in this chapter and Seul et al. (2000) has

code too, and there is MATLAB code in Gonzalez et al. (2003). For study of the

effect of the median operator on image data, see Bovik et al. (1987). Some of the

newer techniques receive little treatment in the established literature, except for

Chan and Shen (2005) (with extensive coverage of noise filtering too). The

Truncated Median Filter is covered again in Davies (2005). Notwithstanding the

discussion on more recent denoising operators at the end of Section 3.5.3; for fur-

ther study of the effects of different statistical operators on ultrasound images, see

Evans and Nixon (1995) and Evans and Nixon (1996). The concept of scale

space allows for considerably more-refined analysis than is given here and we

shall revisit it later. It was originally introduced by Witkin (1983) and further

developed by others including Koenderink (1984) (who also considers the heat

equation). There is even a series of conferences devoted to scale space and

morphology.

3.8 References
Bamber, J.C., Daft, C., 1986. Adaptive filtering for reduction of speckle in ultrasonic

pulse-echo images. Ultrasonics 24 (3), 41�44.

Barash, D., 2002. A fundamental relationship between bilateral filtering, adaptive smooth-

ing and the nonlinear diffusion equation. IEEE Trans. PAMI 24 (6), 844�849.

Black, M.J., Sapiro, G., Marimont, D.H., Meeger, D., 1998. Robust anisotropic diffusion.

IEEE Trans. IP 7 (3), 421�432.

Bovik, A.C., Huang, T.S., Munson, D.C., 1987. The effect of median filtering on edge esti-

mation and detection. IEEE Trans. PAMI 9 (2), 181�194.

Campbell, J.D., 1969. Edge Structure and the Representation of Pictures. PhD Thesis,

University of Missouri, Columbia, SC.

Castleman, K.R., 1996. Digital Image Processing. Prentice Hall, Englewood Cliffs, NJ.

Chan, T., Shen, J., 2005. Image Processing and Analysis: Variational, PDE, Wavelet, and

Stochastic Methods. Society for Industrial and Applied Mathematics.

Chatterjee, P., Milanfar, P., 2010. Is denoising dead? IEEE Trans. IP 19 (4), 895�911.

Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K., 2007. Image denoising by sparse 3-D

transform-domain collaborative filtering. IEEE Trans. IP 16 (8), 2080�2095.

Davies, E.R., 1988. On the noise suppression characteristics of the median, truncated

median and mode filters. Pattern Recog. Lett. 7 (2), 87�97.

134 CHAPTER 3 Basic image processing operations

Davies, E.R., 2005. Machine Vision: Theory, Algorithms and Practicalities, third ed.

Morgan Kaufmann (Elsevier).

Evans, A.N., Nixon, M.S., 1995. Mode filtering to reduce ultrasound speckle for feature

extraction. Proc. IEE Vision Image Signal Process. 142 (2), 87�94.

Evans, A.N., Nixon, M.S., 1996. Biased motion-adaptive temporal filtering for speckle

reduction in echocardiography. IEEE Trans. Med. Imaging 15 (1), 39�50.

Fischl, B., Schwartz, E.L., 1999. Adaptive nonlocal filtering: a fast alternative to anisotro-

pic diffusion for image enhancement. IEEE Trans. PAMI 21 (1), 42�48.

Glasbey, C.A., 1993. An analysis of histogram-based thresholding algorithms. CVGIP:

Graph. Models Image Process. 55 (6), 532�537.

Gonzalez, R.C., Wintz, P., 1987. Digital Image Processing, second ed. Addison-Wesley,

Reading, MA.

Gonzalez, R.C., Woods, R.E., Eddins, S., 2003. Digital Image Processing Using

MATLAB, first ed. Prentice Hall.

Hearn, D., Baker, M.P., 1997. Computer Graphics C Version, second ed. Prentice Hall,

Upper Saddle River, NJ.

Hodgson, R.M., Bailey, D.G., Naylor, M.J., Ng, A., McNeill, S.J., 1985. Properties, imple-

mentations and applications of rank filters. Image Vision Comput. 3 (1), 3�14.

Huang, T., Yang, G., Tang, G., 1979. A fast two-dimensional median filtering algorithm.

IEEE Trans. Acoust. Speech Signal Process. 27 (1), 13�18.

Hurley, D.J., Nixon, M.S., Carter, J.N., 2002. Force field energy functionals for image fea-

ture extraction. Image Vision Comput. 20, 311�317.

Hurley, D.J., Nixon, M.S., Carter, J.N., 2005. Force field feature extraction for ear bio-

metrics. Comput. Vision Image Understanding 98 (3), 491�512.

Koenderink, J., 1984. The structure of images. Biol. Cybern. 50, 363�370.

Lee, S.A., Chung, S.Y., Park, R.H., 1990. A comparative performance study of several

global thresholding techniques for segmentation. CVGIP 52, 171�190.

Lindley, C.A., 1991. Practical Image Processing in C. Wiley, New York, NY.

Loupas, T., McDicken, W.N., 1987. Noise reduction in ultrasound images by digital filter-

ing. Br. J. Radiol. 60, 389�392.

Montiel, M.E., Aguado, A.S., Garza, M., Alarcón, J., 1995. Image manipulation using

M-filters in a pyramidal computer model. IEEE Trans. PAMI 17 (11), 1110�1115.

Otsu, N., Threshold, A, 1979. Selection method from gray-level histograms. IEEE Trans.

SMC 9 (1), 62�66.

Paris, S., Durand, F., 2008. A fast approximation of the bilateral filter using a signal pro-

cessing approach. Int. J. Comput. Vision 81 (1), 24�52.

Parker, J.R., 1994. Practical Computer Vision Using C. Wiley, New York, NY.

Perona, P., Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion.

IEEE Trans. PAMI 17 (7), 620�639.

Rosenfeld, A., Kak, A.C., 1982. second ed. Digital Picture Processing, vols. 1 and 2.

Academic Press, Orlando, FL.

Rosin, P.L., 2001. Unimodal thresholding. Pattern Recog. 34 (11), 2083�2096.

Russ, J.C., 2002. The Image Processing Handbook, fourth ed. CRC Press (IEEE Press),

Boca Raton, FL.

Sahoo, P.K., Soltani, S., Wong, A.K.C., Chen, Y.C., 1988. Survey of thresholding techni-

ques. CVGIP 41 (2), 233�260.

Serra, J., 1986. Introduction to mathematical morphology. Comput. Vision Graph. Image

Process. 35, 283�305.

1353.8 References

Serra, J.P., Soille, P. (Eds.), 1994. Mathematical Morphology and its Applications to Image

Processing. Kluwer Academic Publishers.

Seul, M., O’Gorman, L., Sammon, M.J., 2000. Practical Algorithms for Image Analysis:

Descriptions, Examples, and Code. Cambridge University Press, Cambridge.

Shankar, P.M., 1986. Speckle reduction in ultrasound B scans using weighted averaging in

spatial compounding. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33 (6),

754�758.

Sternberg, S.R., 1986. Gray scale morphology. Comput. Vision Graph. Image Process. 35,

333�355.

Tomasi, C., Manduchi, R., 1998. Bilateral filtering for gray and color images. Proceedings

of the ICCV, Bombay, India, pp. 839�846.

Trier, O.D., Jain, A.K., 1995. Goal-directed evaluation of image binarisation methods.

IEEE Trans. PAMI 17 (12), 1191�1201.

Weiss, B., 2006. Fast median and bilateral filtering. Proc. ACM SIGGRAPH 2006,

519�526.

Witkin, A., 1983. Scale-space filtering: a new approach to multi-scale description.

Proceedings of the International Joint Conference on Artificial Intelligence, pp.

1019�1021.

136 CHAPTER 3 Basic image processing operations

CHAPTER

4Low-level feature extraction
(including edge detection)

CHAPTER OUTLINE HEAD

4.1 Overview ... 138

4.2 Edge detection... 140

4.2.1 First-order edge-detection operators ...140

4.2.1.1 Basic operators ... 140

4.2.1.2 Analysis of the basic operators... 142

4.2.1.3 Prewitt edge-detection operator ... 145

4.2.1.4 Sobel edge-detection operator..146

4.2.1.5 The Canny edge detector...153

4.2.2 Second-order edge-detection operators ...161

4.2.2.1 Motivation ... 161

4.2.2.2 Basic operators: the Laplacian ... 163

4.2.2.3 The Marr�Hildreth operator ..165

4.2.3 Other edge-detection operators ..170

4.2.4 Comparison of edge-detection operators ...171

4.2.5 Further reading on edge detection..173

4.3 Phase congruency.. 173

4.4 Localized feature extraction ... 180

4.4.1 Detecting image curvature (corner extraction)180

4.4.1.1 Definition of curvature ... 180

4.4.1.2 Computing differences in edge direction182

4.4.1.3 Measuring curvature by changes in intensity (differentiation)184

4.4.1.4 Moravec and Harris detectors ..188

4.4.1.5 Further reading on curvature ... 192

4.4.2 Modern approaches: region/patch analysis ..193

4.4.2.1 Scale invariant feature transform..193

4.4.2.2 Speeded up robust features... 196

4.4.2.3 Saliency .. 198

4.4.2.4 Other techniques and performance issues198

4.5 Describing image motion .. 199

4.5.1 Area-based approach ..200

4.5.2 Differential approach ..204

4.5.3 Further reading on optical flow ..211

4.6 Further reading .. 212

4.7 References .. 212

Feature Extraction & Image Processing for Computer Vision.

© 2012 Mark Nixon and Alberto Aguado. Published by Elsevier Ltd. All rights reserved.
137

4.1 Overview
We shall define low-level features to be those basic features that can be extracted

automatically from an image without any shape information (information about

spatial relationships). As such, thresholding is actually a form of low-level feature

extraction performed as a point operation. Naturally, all of these approaches can be

used in high-level feature extraction, where we find shapes in images. It is well

known that we can recognize people from caricaturists’ portraits. That is the first

low-level feature we shall encounter. It is called edge detection and it aims to pro-

duce a line drawing, like one of a face in Figure 4.1(a) and (d), something akin to

a caricaturist’s sketch, though without the exaggeration a caricaturist would imbue.

There are very basic techniques and more advanced ones and we shall look at some

of the most popular approaches. The first-order detectors are equivalent to first-

order differentiation and, naturally, the second-order edge-detection operators are

equivalent to a one-higher level of differentiation. An alternative form of edge

detection is called phase congruency and we shall again see the frequency domain

used to aid analysis, this time for low-level feature extraction.

We shall also consider corner detection which can be thought of as detecting

those points where lines bend very sharply with high curvature, such as the

lizard’s head in Figure 4.1(b) and (e). These are another low-level feature that

(a) Face image (b) Natural image (a holiday
snap no less)

(c) Consecutive images of
walking subject

(d) Edge detection (e) Point detection (f) Motion detection

FIGURE 4.1

Low-level feature detection.

138 CHAPTER 4 Low-level feature extraction (including edge detection)

again can be extracted automatically from the image. These are largely techniques

for localized feature extraction, in this case the curvature, and the more modern

approaches extend to the detection of localized regions or patches of interest.

Finally, we shall investigate a technique that describes motion, called optical

flow. This is illustrated in Figure 4.1(c) and (f) with the optical flow from images

of a walking man: the bits that are moving fastest are the brightest points, like the

hands and the feet. All of these can provide a set of points, albeit points with different

properties, but all are suitable for grouping for shape extraction. Consider a square

box moving through a sequence of images. The edges are the perimeter of the box;

the corners are the apices; the flow is how the box moves. All these can be collected

together to find the moving box. The approaches are summarized in Table 4.1. We

Table 4.1 Overview of Chapter 4

Main Topic Subtopics Main Points

First-order
edge
detection

What is an edge and how we detect
it; the equivalence of operators to
first-order differentiation and the
insight this brings; the need for
filtering and more sophisticated
first-order operators

Difference operation, Roberts
cross, smoothing, Prewitt,
Sobel, Canny; basis of the
operators and frequency
domain analysis

Second-
order edge
detection

Relationship between first- and
second-order differencing operations;
the basis of a second-order operator;
the need to include filtering and
better operations

Second-order differencing;
Laplacian, zero-crossing
detection; Marr�Hildreth,
Laplacian of Gaussian,
difference of Gaussian; scale
space

Other edge
operators

Alternative approaches and
performance aspects; comparing
different operators

Other noise models, Spacek;
other edge models, Petrou and
Susan

Phase
congruency

Inverse Fourier transform, phase for
feature extraction; alternative form of
edge and feature detection

Frequency domain analysis;
detecting a range of features;
photometric invariance,
wavelets

Localized
feature
extraction

Finding localized low-level features,
extension from curvature to
patches; nature of curvature and
computation from: edge information,
by change in intensity, and by
correlation; motivation of patch
detection and principles of modern
approaches

Planar curvature, corners;
curvature estimation by:
change in edge direction,
intensity change, Harris corner
detector; modern feature
detectors, scale space; SIFT,
SURF, and saliency operators

Optical flow
estimation

Movement and the nature of optical
flow; estimating the optical flow by
differential approach; need for other
approaches (including matching
regions)

Detection by differencing;
optical flow, aperture problem,
smoothness constraint;
differential approach, Horn and
Schunk method; correlation

1394.1 Overview

shall start with the edge-detection techniques, with the first-order operators, which

accord with the chronology of development. The first-order techniques date back by

more than 30 years.

4.2 Edge detection
4.2.1 First-order edge-detection operators
4.2.1.1 Basic operators
Many approaches to image interpretation are based on edges, since analysis

based on edge detection is insensitive to change in the overall illumination

level. Edge detection highlights image contrast. Detecting contrast, which is

difference in intensity, can emphasize the boundaries of features within an

image, since this is where image contrast occurs. This is, naturally, how human

vision can perceive the perimeter of an object, since the object is of different

intensity to its surroundings. Essentially, the boundary of an object is a step

change in the intensity levels. The edge is at the position of the step change. To

detect the edge position we can use first-order differentiation since this empha-

sizes change; first-order differentiation gives no response when applied to sig-

nals that do not change. The first edge-detection operators to be studied here are

group operators which aim to deliver an output that approximates the result of

first-order differentiation.

A change in intensity can be revealed by differencing adjacent points.

Differencing horizontally adjacent points will detect vertical changes in inten-

sity and is often called a horizontal edge detector by virtue of its action. A

horizontal operator will not show up horizontal changes in intensity since the

difference is zero. (This is the form of edge detection used within the anisotro-

pic diffusion smoothing operator in the previous chapter.) When applied to an

image P the action of the horizontal edge detector forms the difference

between two horizontally adjacent points, as such detecting the vertical edges,

Ex, as:

Exx;y 5 jPx;y 2Px11;yj ’xA1;N2 1; yA1;N (4.1)

In order to detect horizontal edges, we need a vertical edge detector which

differences vertically adjacent points. This will determine horizontal intensity

changes but not vertical ones, so the vertical edge detector detects the horizontal

edges, Ey, according to:

Eyx;y 5 jPx;y 2Px;y11j ’xA1;N; yA1;N2 1 (4.2)

Figure 4.2(b) and (c) shows the application of the vertical and horizontal

operators to the synthesized image of the square shown in Figure 4.2(a).

140 CHAPTER 4 Low-level feature extraction (including edge detection)

The left-hand vertical edge in Figure 4.2(b) appears to be beside the square by vir-

tue of the forward differencing process. Likewise, the upper edge in Figure 4.2(c)

appears above the original square.

Combining the two gives an operator E that can detect vertical and horizontal

edges together, that is,

Ex;y 5 jPx;y 2Px11;y 1Px;y 2Px;y11j ’x; yA1;N2 1 (4.3)

which gives:

Ex;y 5 j23Px;y 2Px11;y 2Px;y11j ’x; yA1;N2 1 (4.4)

Equation (4.4) gives the coefficients of a differencing template which can be

convolved with an image to detect all the edge points, such as those shown in

Figure 4.2(d). As in the previous chapter, the current point of operation (the posi-

tion of the point we are computing a new value for) is shaded. The template

shows only the weighting coefficients and not the modulus operation. Note that

the bright point in the lower right corner of the edges of the square in Figure 4.2(d)

is much brighter than the other points. This is because it is the only point to be

detected as an edge by both the vertical and the horizontal operators and is therefore

much brighter than the other edge points. In contrast, the top left-hand corner point

is detected by neither operator and so does not appear in the final image.

(a) Original image (b) Vertical edges, Eq. (4.1)

(c) Horizontal edges, Eq. (4.2) (d) All edges, Eq. (4.4)

FIGURE 4.2

First-order edge detection.

1414.2 Edge detection

The template in Figure 4.3 is convolved with the image to detect edges. The

direct implementation of this operator, i.e., using Eq. (4.4) rather than template

convolution, is given in Code 4.1. Naturally, template convolution could be used,

but it is unnecessarily complex in this case.

Uniform thresholding (Section 3.3.4) is often used to select the brightest

points, following application of an edge-detection operator. The threshold level

controls the number of selected points; too high a level can select too few points,

whereas too low a level can select too much noise. Often, the threshold level is

chosen by experience or by experiment, but it can be determined automatically by

considering edge data (Venkatesh and Rosin, 1995) or empirically (Haddon,

1988). For the moment, let us concentrate on the development of edge-detection

operators rather than on their application.

4.2.1.2 Analysis of the basic operators
Taylor series analysis reveals that differencing adjacent points provides an esti-

mate of the first-order derivative at a point. If the difference is taken between

points separated by Δx then by Taylor expansion for f(x1Δx) we obtain:

f ðx1ΔxÞ5 f ðxÞ1Δx3 f 0ðxÞ1 Δx2

2!
3 f vðxÞ1OðΔx3Þ (4.5)

By rearrangement, the first-order derivative f 0(x) is:

f 0ðxÞ5 f ðx1ΔxÞ2 f ðxÞ
Δx

2OðΔxÞ (4.6)

2

–1

–1

0

FIGURE 4.3

Template for first-order difference.

edge(pic):= newpic←zero(pic)
for x∈0.. cols(pic)–2
 for y∈0.. rows(pic)–2

newpicy,x← 2.picy,x–picy,x+1–picy+1,x
newpic

CODE 4.1

First-order edge detection.

142 CHAPTER 4 Low-level feature extraction (including edge detection)

This shows that the difference between adjacent points is an estimate of the

first-order derivative, with error O(Δx). This error depends on the size of the

interval Δx and on the complexity of the curve. When Δx is large this error can

be significant. The error is also large when the high-order derivatives take large

values. In practice, the short sampling of image pixels and the reduced high-

frequency content make this approximation adequate. However, the error can be

reduced by spacing the differenced points by one pixel. This is equivalent to com-

puting the first-order difference delivered by Eq. (4.1) at two adjacent points, as a

new horizontal difference Exx where

Exxx;y 5Exx11;y 1Exx;y 5Px11;y 2Px;y 1Px;y 2Px21;y 5Px11;y 2Px21;y (4.7)

This is equivalent to incorporating spacing to detect the edges Exx by:

Exxx;y 5 jPx11;y 2Px21;yj ’xA2;N2 1; yA1;N (4.8)

To analyze this, again by Taylor series, we expand f(x2Δx) as:

f ðx2ΔxÞ5 f ðxÞ2Δx3 f 0ðxÞ1 Δx2

2!
3 f vðxÞ2OðΔx3Þ (4.9)

By differencing Eq. (4.9) from Eq. (4.5), we obtain the first-order derivative as

f 0ðxÞ5 f ðx1ΔxÞ2 f ðx2ΔxÞ
2Δx

2OðΔx2Þ (4.10)

Equation (4.10) suggests that the estimate of the first-order difference is now

the difference between points separated by one pixel, with error O(Δx2). If

Δx, 1, this error is clearly smaller than the error associated with differencing

adjacent pixels, in Eq. (4.6). Again, averaging has reduced noise or error. The

template for a horizontal edge-detection operator is given in Figure 4.4(a).This

template gives the vertical edges detected at its center pixel. A transposed version

of the template gives a vertical edge-detection operator (Figure 4.4(b)).

The Roberts cross operator (Roberts, 1965) was one of the earliest edge-

detection operators. It implements a version of basic first-order edge detection

and uses two templates that differentiate pixel values in a diagonal manner, as

1
1

–1
–1

0

(a) Mx (b) My

0

FIGURE 4.4

Templates for improved first-order difference.

1434.2 Edge detection

opposed to along the axes’ directions. The two templates are called M1 and M2

and are given in Figure 4.5.

In implementation, the maximum value delivered by application of these tem-

plates is stored as the value of the edge at that point. The edge point Ex,y is then

the maximum of the two values derived by convolving the two templates at an

image point Px,y:

Ex;y 5maxfjM1 � Px;yj; jM2 � Px;yjg ’x; yA1;N2 1 (4.11)

The application of the Roberts cross operator to the image of the square is

shown in Figure 4.6. The results of the two templates are shown in Figure 4.6(a)

and (b), and the result delivered by the Roberts operator is shown in Figure 4.6(c).

Note that the corners of the square now appear in the edge image, by virtue of the

diagonal differencing action, whereas they were less apparent in Figure 4.2(d)

(where the top left corner did not appear).

An alternative to taking the maximum is to simply add the results of the two

templates together to combine horizontal and vertical edges. There are of course

more varieties of edges and it is often better to consider the two templates as pro-

viding components of an edge vector: the strength of the edge along the horizon-

tal and vertical axes. These give components of a vector and can be added in a

+1+1
–1

(a) M– (b) M

+

–1 00
0 0

FIGURE 4.5

Templates for Roberts cross operator.

(a) M – (b) M + (c) M

FIGURE 4.6

Applying the Roberts cross operator.

144 CHAPTER 4 Low-level feature extraction (including edge detection)

vectorial manner (which is perhaps more usual for the Roberts operator). The

edge magnitude is the length of the vector and the edge direction is the vector’s

orientation, as shown in Figure 4.7.

4.2.1.3 Prewitt edge-detection operator
Edge detection is akin to differentiation. Since it detects change it is bound to

respond to noise, as well as to step-like changes in image intensity (its frequency

domain analog is high-pass filtering as illustrated in Figure 2.30(c)). It is therefore

prudent to incorporate averaging within the edge-detection process. We can then

extend the vertical template, Mx, along three rows, and the horizontal template,

My, along three columns. These give the Prewitt edge-detection operator (Prewitt

and Mendelsohn, 1966) that consists of two templates (Figure 4.8).

This gives two results: the rate of change of brightness along each axis. As

such, this is the vector illustrated in Figure 4.7: the edge magnitude, M, is the

length of the vector and the edge direction, θ, is the angle of the vector.

Mðx; yÞ5
ffi
Mxðx; yÞ2 1Myðx; yÞ2

q
(4.12)

θðx; yÞ5 tan21 Myðx; yÞ
Mxðx; yÞ

� �
(4.13)

M

Mx

θ

My

FIGURE 4.7

Edge detection in vectorial format.

1111
0 0

–1 –1 –1

–1
–1
–1

0
00

0
1
1

(a) Mx (b) My

FIGURE 4.8

Templates for Prewitt operator.

1454.2 Edge detection

Again, the signs of Mx and My can be used to determine the appropriate quad-

rant for the edge direction. A Mathcad implementation of the two templates of

Figure 4.8 is given in Code 4.2. In this code, both templates operate on a 33 3

subpicture (which can be supplied, in Mathcad, using the submatrix function).

Again, template convolution could be used to implement this operator, but (as

with direct averaging and basic first-order edge detection) it is less suited to sim-

ple templates. Also, the provision of edge magnitude and direction would require

extension of the template convolution operator given earlier (Code 3.5).

When applied to the image of the square (Figure 4.9(a)) we obtain the edge

magnitude and direction (Figure 4.9(b) and (d)), respectively (where Figure 4.9(d)

does not include the border points but only the edge direction at processed

points). The edge direction shown in Figure 4.9(d) is measured in degrees where

0� and 360� are horizontal, to the right, and 90� is vertical, upward. Though the

regions of edge points are wider due to the operator’s averaging properties, the

edge data is clearer than the earlier first-order operator, highlighting the regions

where intensity changed in a more reliable fashion (compare, for example, the

upper left corner of the square which was not revealed earlier). The direction is

less clear in an image format and is better exposed by Mathcad’s vector format

in Figure 4.9(c). In vector format, the edge-direction data is clearly less well

defined at the corners of the square (as expected, since the first-order derivative is

discontinuous at these points).

4.2.1.4 Sobel edge-detection operator
When the weight at the central pixels, for both Prewitt templates, is doubled, this

gives the famous Sobel edge-detection operator which, again, consists of two

masks to determine the edge in vector form. The Sobel operator was the most

popular edge-detection operator until the development of edge-detection techni-

ques with a theoretical basis. It proved popular because it gave, overall, a better

performance than other contemporaneous edge-detection operators, such as the

Prewitt operator. The templates for the Sobel operator can be found in

Figure 4.10.

The Mathcad implementation of these masks is very similar to the implemen-

tation of the Prewitt operator, Code 4.2, again operating on a 33 3 subpicture.

This is the standard formulation of the Sobel templates, but how do we form

larger templates, say for 53 5 or 73 7? Few textbooks state its original

Prewitt33_x(pic):=
2

y=0

picy,0 –
2

y=0

picy,2

2

x=0

pic0,x –
2

x=0

Prewitt33_ y(pic):= pic2,x

(a)Mx (b)My

∑∑∑∑

CODE 4.2

Implementing the Prewitt operator.

146 CHAPTER 4 Low-level feature extraction (including edge detection)

derivation, but it has been attributed (Heath et al., 1997) as originating from a

PhD thesis (Sobel, 1970). Unfortunately a theoretical basis, that can be used to

calculate the coefficients of larger templates, is rarely given. One approach to a

theoretical basis is to consider the optimal forms of averaging and of differencing.

Gaussian averaging has already been stated to give optimal averaging. The bino-

mial expansion gives the integer coefficients of a series that, in the limit, approxi-

mates the normal distribution. Pascal’s triangle gives sets of coefficients for a

1

1
2

1 2 1
0 0

–1 –2 –1

–1

–1
–2 0

0
0
0

(a) Mx (b) My

FIGURE 4.10

Templates for Sobel operator.

(a) Original image (b) Edge magnitude

prewitt_vec0, 1, prewitt_vec0, 0

dir =

313

298

273

269

242

225

331

315

276

268

225

210

3

1

13

199

181

183

3

2

43

117

178

179

24

42

88

91

133

155

47

63

88

92

116

132

(c) Vector format (d) Edge direction

FIGURE 4.9

Applying the Prewitt operator.

1474.2 Edge detection

smoothing operator which, in the limit, approaches the coefficients of a Gaussian

smoothing operator. Pascal’s triangle is then:

Window size
2 1 1
3 1 2 1
4 1 3 3 1
5 1 4 6 4 1

This gives the (unnormalized) coefficients of an optimal discrete smoothing

operator (it is essentially a Gaussian operator with integer coefficients). The rows

give the coefficients for increasing the size of template or window. The coeffi-

cients of smoothing within the Sobel operator (Figures 4.10) are those for a win-

dow size of 3. In Mathcad, by specifying the size of the smoothing window as

winsize, the template coefficients smoothx_win can be calculated at each window

point x_win according to Code 4.3.

The differencing coefficients are given by Pascal’s triangle for subtraction:

Window size
2 1 − 1
3 1 0 − 1
4 1 1 − 1 − 1
5 1 2 0 − 2 − 1

This can be implemented by subtracting the templates derived from two adjacent

expansions for a smaller window size. Accordingly, we require an operator which

can provide the coefficients of Pascal’s triangle for arguments which are of window

size n and a position k. The operator is the Pascal(k,n) operator in Code 4.4.

The differencing template, diffx_win, is then given by the difference between

two Pascal expansions, as given in Code 4.5.

smoothx_win:=
(winsize–1)!

(winsize–1–x_win)!.x_win!

CODE 4.3

Smoothing function.

Pascal(k,n):= if(k≥0)⋅(k≤n)n!

(n–k)!⋅k!
otherwise0

CODE 4.4

Pascal’s triangle.

148 CHAPTER 4 Low-level feature extraction (including edge detection)

These give the coefficients of optimal differencing and optimal smoothing.

This general form of the Sobel operator combines optimal smoothing along one

axis, with optimal differencing along the other. This general form of the Sobel

operator is given in Code 4.6 which combines the differencing function along one

axis, with smoothing along the other.

This generates another template for the Mx template for a Sobel operator,

given for 53 5 in Code 4.7.

All template-based techniques can be larger than 53 5, so, as with any group

operator, there is a 73 7 Sobel and so on. The virtue of a larger edge-detection

template is that it involves more smoothing to reduce noise, but edge blurring

diffx_win:= Pascal(x_win, winsize–2)–Pascal(x_win–1, winsize–2)

CODE 4.5

Differencing function.

Sobel_x(pic):=
winsize–1

x_win=0

winsize–1

y_win=0
smoothy_win.diffx_win.picy_win,x_win

(a)Mx

Sobel_ y(pic):=
winsize–1

x_win=0

winsize–1

y_win=0
smoothx_win.diffy_win.picy_win,x_win

(b)My

∑

∑ ∑

∑

CODE 4.6

Generalized Sobel templates.

Sobel_template_x =

1

4

6

4

1

2

8

12

8

2

0

0

0

0

0

–2

–8

–12

–8

–2

–1

–4

–6

–4

–1

CODE 4.7

53 5 Sobel template Mx.

1494.2 Edge detection

becomes a great problem. The estimate of edge direction can be improved with

more smoothing since it is particularly sensitive to noise. There are circular edge

operators designed specifically to provide accurate edge-direction data.

The Sobel templates can be invoked by operating on a matrix of dimension

equal to the window size, from which edge magnitude and gradient are calculated.

The Sobel function (Code 4.8) convolves the generalized Sobel template (of size

chosen to be winsize) with the picture supplied as argument, to give outputs

which are the images of edge magnitude and direction, in vector form.

The results of applying the 33 3 Sobel operator can be seen in Figure 4.11.

The original face image (Figure 4.11(a)) has many edges in the hair and in the

region of the eyes. This is shown in the edge magnitude image (Figure 4.11(b)).

When this is thresholded at a suitable value, many edge points are found, as

Sobel(pic,winsize):=

edge_mag←zero(pic)
edge_dir←zero(pic)
for x∈w2.. cols(pic)–1–w2
 for y∈w2.. rows(pic)–1–w2
 x_mag←Sobel_x(submatrix(pic,y–w2,y+w2,x–w2,x+w2))
 y_mag←Sobel_y(submatrix(pic,y–w2,y+w2,x–w2,x+w2))

(edge_mag edge_dir)

w2←floor
winsize

2

⎛
⎝⎜

⎞
⎠⎟

edge_diry,x←direction(x_mag,y_mag)

edge_magy,x←floor
magnitude(x_mag,y_mag)

mag_normalise
⎛
⎝⎜

⎞
⎠⎟

CODE 4.8

Generalized Sobel operator.

(a) Original image (b) Sobel edge magnitude (c) Thresholded magnitude

FIGURE 4.11

Applying the Sobel operator.

150 CHAPTER 4 Low-level feature extraction (including edge detection)

shown in Figure 4.11(c). Note that in areas of the image where the brightness

remains fairly constant, such as the cheek and shoulder, there is little change

which is reflected by low-edge magnitude and few points in the thresholded data.

The Sobel edge-direction data can be arranged to point in different ways, as

can the direction provided by the Prewitt operator. If the templates are inverted to

be of the form shown in Figure 4.12, the edge direction will be inverted around

both the axes. If only one of the templates is inverted, the measured edge direc-

tion will be inverted about the chosen axis.

This gives four possible directions for measurement of the edge direction pro-

vided by the Sobel operator, two of which (for the templates that are shown in

Figures 4.10 and 4.12) are illustrated in Figure 4.13(a) and (b), respectively,

where inverting the Mx template does not highlight discontinuity at the corners.

(The edge magnitude of the Sobel applied to the square is not shown but is simi-

lar to that derived by application of the Prewitt operator (Figure 4.9(b))). By

swapping the Sobel templates, the measured edge direction can be arranged to be

normal to the edge itself (as opposed to tangential data along the edge). This is

illustrated in Figure 4.13(c) and (d) for swapped versions of the templates given

in Figures 4.10 and 4.12, respectively. The rearrangement can lead to simplicity

in algorithm construction when finding shapes, as to be shown later. Any algo-

rithm which uses edge direction for finding shapes must know precisely which

arrangement has been used, since the edge direction can be used to speed algo-

rithm performance, but it must map precisely to the expected image data if used

in that way.

Detecting edges by template convolution again has a frequency domain inter-

pretation. The magnitude of the Fourier transform of a 53 5 Sobel template of

Code 4.7 is given in Figure 4.14. The Fourier transform is given in relief in

Figure 4.14(a) and as a contour plot in Figure 4.14(b). The template is for hori-

zontal differencing action, My, which highlights vertical change. Accordingly, its

transform reveals that it selects vertical spatial frequencies, while smoothing the

horizontal ones. The horizontal frequencies are selected from a region near the

origin (low-pass filtering), whereas the vertical frequencies are selected away

from the origin (high-pass). This highlights the action of the Sobel operator, com-

bining smoothing of the spatial frequencies along one axis with differencing of

–1

–1
–2

–1

1
0

–1

1
0

–2

2
02

1

1

0
0
0

(a) –Mx (b) –My

FIGURE 4.12

Inverted templates for Sobel operator.

1514.2 Edge detection

sobel_vec0,0, sobel_vec0,1

sobel_vec0,0
T, sobel_vec0,1

T –sobel_vec0,0
T, –sobel_vec0,1

T

–sobel_vec0,0, sobel_vec0,1

(a) Mx, My (b) –Mx, My

(c) My, Mx (d) – My, – Mx

FIGURE 4.13

Alternative arrangements of edge direction.

T
Fourier_of_Sobel Fourier_of_Sobel

(a) Relief plot (b) Contour plot

0 2 4 6
0

2

4

6

⎛
⎝⎜

⎞
⎠⎟

FIGURE 4.14

Fourier transform of the Sobel operator.

152 CHAPTER 4 Low-level feature extraction (including edge detection)

the other. In Figure 4.14, the smoothing is of horizontal spatial frequencies while

the differencing is of vertical spatial frequencies.

An alternative frequency domain analysis of the Sobel can be derived via the

z-transform operator. This is more than the domain of signal processing courses

in electronic and electrical engineering and is included here for completeness and

for linkage with signal processing. Essentially z21 is a unit time-step delay opera-

tor, so z can be thought of a unit (time-step) advance, so f(t2 τ)5 z21f(t) and

f(t1 τ)5 zf(t), where τ is the sampling interval. Given that we have two spatial

axes x and y we can then express the Sobel operator of Figure 4.12(a) using delay

and advance via the z-transform notation along the two axes as

2 z21
x z21

y 1 0 1 zxz
21
y

Sðx; yÞ52 2z21
x 1 0 1 2zx

2 z21
x zy 1 01 zxzy

(4.14)

including zeros for the null template elements. Given that there is a standard sub-

stitution (by conformal mapping, evaluated along the frequency axis) z215 e2jωt

to transform from the time domain (z) to the frequency domain (ω), then we have

Sobelðωx;ωyÞ52 e2jωxt e2jωyt1 ejωxt e2jωyt22e2jωxt12ejωxt2 e2jωxt ejωyt1 ejωxt ejωyt

5 ðe2jωyt121 ejωytÞð2 e2jωxt1 ejωxtÞ

5 e

2jωyt

2
1 e

jωyt

2

0
@

1
A

2

ð2e2jωxt1 ejωxtÞ

58j cos2
ωyt

2

0
@

1
AsinðωxtÞ ð4:15Þ

where the transform Sobel is a function of spatial frequency, ωx, ωy, along the x

and the y axes. This conforms rather nicely the separation between smoothing

along one axis (the first part of Eq. (4.15)) and differencing along the other—here

by differencing (high-pass) along the x axis and averaging (low-pass) along the y

axis. This provides an analytic form of the function shown in Figure 4.14; the

relationship between the DFT and this approach is evident by applying the DFT

relationship (Eq. (2.15)) to the components of the Sobel operator.

4.2.1.5 The Canny edge detector
The Canny edge-detection operator (Canny, 1986) is perhaps the most popular

edge-detection technique at present. It was formulated with three main objectives:

1. optimal detection with no spurious responses;

2. good localization with minimal distance between detected and true edge

position; and

3. single response to eliminate multiple responses to a single edge.

1534.2 Edge detection

The first requirement aims to reduce the response to noise. This can be

effected by optimal smoothing; Canny was the first to demonstrate that Gaussian

filtering is optimal for edge detection (within his criteria). The second criterion

aims for accuracy: edges are to be detected, in the right place. This can be

achieved by a process of nonmaximum suppression (which is equivalent to peak

detection). Nonmaximum suppression retains only those points at the top of a

ridge of edge data, while suppressing all others. This results in thinning: the out-

put of nonmaximum suppression is thin lines of edge points, in the right place.

The third constraint concerns location of a single edge point in response to a

change in brightness. This is because more than one edge can be denoted to be

present, consistent with the output obtained by earlier edge operators.

Canny showed that the Gaussian operator was optimal for image smoothing.

Recalling that the Gaussian operator g(x,y,σ) is given by:

gðx; y;σÞ5 e
2ðx21y2 Þ

2σ2 (4.16)

By differentiation, for unit vectors Ux5 [1,0] and Uy5 [0,1] along the coordi-

nate axes, we obtain

rgðx; yÞ5 @gðx; y;σÞ
@x

Ux 1
@gðx; y;σÞ

@y
Uy

52
x

σ2
e

2ðx21y2Þ
2σ2

Ux 2
y

σ2
e

2ðx21y2Þ
2σ2

Uy

(4.17)

Equation (4.17) gives a way to calculate the coefficients of a derivative of

Gaussian template that combines first-order differentiation with Gaussian smooth-

ing. This is a smoothed image, and so the edge will be a ridge of data. In order to

mark an edge at the correct point (and to reduce multiple response), we can con-

volve an image with an operator which gives the first derivative in a direction

normal to the edge. The maximum of this function should be the peak of the edge

data, where the gradient in the original image is sharpest, and hence the location

of the edge. Accordingly, we seek an operator, Gn, which is a first derivative of a

Gaussian function g in the direction of the normal, n\:

Gn 5
@g

@n\
(4.18)

where n\ can be estimated from the first-order derivative of the Gaussian func-

tion g convolved with the image P, and scaled appropriately as

n\ 5
rðP � gÞ
jrðP � gÞj (4.19)

154 CHAPTER 4 Low-level feature extraction (including edge detection)

The location of the true edge point is at the maximum point of Gn convolved

with the image. This maximum is when the differential (along n\) is zero:

@ðGn � PÞ
@n\

5 0 (4.20)

By substituting Eq. (4.18) in Eq. (4.20), we get

@2ðG � PÞ
@n\2

5 0 (4.21)

Equation (4.21) provides the basis for an operator which meets one of

Canny’s criteria, namely that edges should be detected in the correct place. This

is nonmaximum suppression, which is equivalent to retaining peaks (and thus

equivalent to differentiation perpendicular to the edge), which thins the response

of the edge-detection operator to give edge points which are in the right place,

without multiple response and with minimal response to noise. However, it is vir-

tually impossible to achieve an exact implementation of Canny given the require-

ment to estimate the normal direction.

A common approximation is, as illustrated in Figure 4.15, as follows:

1. use Gaussian smoothing (as in Section 3.4.4) (Figure 4.15(a));

2. use the Sobel operator (Figure 4.15(b));

3. use nonmaximal suppression (Figure 4.15(c)); and

4. threshold with hysteresis to connect edge points (Figure 4.15(d)).

Note that the first two stages can be combined using a version of Eq. (4.17)

but are separated here so that all stages in the edge-detection process can be

shown clearly. An alternative implementation of Canny’s approach (Deriche,

1987) used Canny’s criteria to develop 2D recursive filters, claiming performance

and implementation advantage over the approximation here.

Nonmaximum suppression essentially locates the highest points in the edge

magnitude data. This is performed by using edge-direction information to check

that points are at the peak of a ridge. Given a 33 3 region, a point is at a

(a) Gaussian
smoothing

(b) Sobel edge
detection

(c) Nonmaximum
suppression

(d) Hysteresis
thresholding

FIGURE 4.15

Stages in Canny edge detection.

1554.2 Edge detection

maximum if the gradient at either side of it is less than the gradient at the point.

This implies that we need values of gradient along a line which is normal to the

edge at a point. This is illustrated in Figure 4.16, which shows the neighboring

points to the point of interest, Px,y, the edge direction at Px,y and the normal to the

edge direction at Px,y. The point Px,y is to be marked as maximum if its gradient,

M(x,y), exceeds the gradient at points 1 and 2, M1 and M2, respectively. Since we

have a discrete neighborhood, M1 and M2 need to be interpolated. First-order inter-

polation using Mx and My at Px,y and the values of Mx and My for the neighbors

gives

M1 5
My

Mx
Mðx1 1; y2 1Þ1 Mx2My

Mx
Mðx; y2 1Þ (4.22)

and

M2 5
My

Mx
Mðx2 1; y1 1Þ1 Mx2My

Mx
Mðx; y1 1Þ (4.23)

The point Px,y is then marked as a maximum if M(x,y) exceeds both M1 and

M2, otherwise it is set to zero. In this manner the peaks of the ridges of edge mag-

nitude data are retained, while those not at the peak are set to zero. The imple-

mentation of nonmaximum suppression first requires a function which generates

the coordinates of the points between which the edge magnitude is interpolated.

This is the function get_coords in Code 4.9 which requires the angle of the nor-

mal to the edge direction, returning the coordinates of the points beyond and

behind the normal.

Edge
direction
at Px,y

Normal
to edge
direction

Px–1,y–1

Px,y+1 Px+1,y+1

Px+1,y

Px+1,y–1
M1

M2

Mx

My Px,yPx–1,y

Px–1,y+1

Px,y–1

FIGURE 4.16

Interpolation in nonmaximum suppression.

156 CHAPTER 4 Low-level feature extraction (including edge detection)

The nonmaximum suppression operator, non_max, in Code 4.10 then interpo-

lates the edge magnitude at the two points either side of the normal to the edge

direction. If the edge magnitude at the point of interest exceeds these two then it

get_coords(angle):= δ←0.000000000000001

(x1 y1 x2 y2)

.cos angle+
π
8

2x1← –5.0–liec δ
⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

x2←ceil .cos angle–
π
8

2 –0.5–δ
⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

y2←ceil .–sin angle–
π
8

2 –0.5–δ
⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

.–sin angle–
π
8

y1←ceil 2 –0.5–δ
⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

CODE 4.9

Generating coordinates for interpolation.

non_max(edges):=

new_edge

for i∈1..cols(edges0,0)–2
for j∈1..rows(edges0,0)–2

Mx←(edges0,0)j,i

My← (edges0,1)j,i

otherwiseo←
–π

2
adds←get_coords(o)

M1←

+(Mx–My).(edges0,2)j+adds0,3,i+adds0,2

My.(edges0,2)j+adds0,1,i+adds0,0...

adds←get_coords(o+π)

+(Mx–My).(edges0,2)j+adds0,3,i+adds0,2

My.(edges0,2)j+adds0,1,i+adds0,0...M2←

new_edgej,i←(edges0,2)j,i
if isbigger

new_edgej,i←0 otherwise

isbigger←Mx.(edges0,2)j,i
>M1 Mx.(edges0,2)j,i

≥M2

+
.Mx.(edges0,2)j,i

< M1 Mx.(edges0,2)j,i
≤M2

if My ≠ 0o←atan
Mx
My

⎛
⎝⎜

⎞
⎠⎟

if(My=0).(Mx>0)o←
π

2
⎛
⎝⎜

⎞
⎠⎟

CODE 4.10

Nonmaximum suppression.

1574.2 Edge detection

is retained, otherwise it is discarded. Note that the potential singularity in Eqs

(4.22) and (4.23) can be avoided by use of multiplication in the magnitude com-

parison, as opposed to division in interpolation, as it is in Code 4.10. In practice

however, this implementation, Codes 4.9 and 4.10, can suffer from numerical

imprecision and ill conditioning. Accordingly, it is better to implement a hand-

crafted interpretation of Eqs (4.22) and (4.23) applied separately to the four quad-

rants. This is too lengthy to be included here, but a version is included with the

worksheets for this chapter.

The transfer function associated with hysteresis thresholding is shown in

Figure 4.17. Points are set to white once the upper threshold is exceeded and set

to black when the lower threshold is reached. The arrows reflect possible move-

ment: there is only one way to change from black to white and vice versa.

The application of nonmaximum suppression and hysteresis thresholding is

illustrated in Figure 4.18. This contains a ridge of edge data, the edge magnitude.

The action of nonmaximum suppression is to select the points along the top

of the ridge. Given that the top of the ridge initially exceeds the upper threshold,

the thresholded output is set to white until the peak of the ridge falls beneath

the lower threshold. The thresholded output is then set to black until the peak

of the ridge exceeds the upper switching threshold.

Hysteresis thresholding requires two thresholds, an upper and a lower thresh-

old. The process starts when an edge point from nonmaximum suppression is

found to exceed the upper threshold. This is labeled as an edge point (usually

white, with a value 255) and forms the first point of a line of edge points. The

neighbors of the point are then searched to determine whether or not they exceed

the lower threshold, as shown in Figure 4.19. Any neighbor that exceeds the

lower threshold is labeled as an edge point and its neighbors are then searched to

determine whether or not they exceed the lower threshold. In this manner, the first

edge point found (the one that exceeded the upper threshold) becomes a seed

Thresholded data

White

BrightnessBlack

Lower switching threshold
Upper switching threshold

FIGURE 4.17

Hysteresis thresholding transfer function.

158 CHAPTER 4 Low-level feature extraction (including edge detection)

point for a search. Its neighbors, in turn, become seed points if they exceed the

lower threshold, and so the search extends, along branches arising from neighbors

that exceeded the lower threshold. For each branch, the search terminates at

points that have no neighbors above the lower threshold.

In implementation, hysteresis thresholding clearly requires recursion, since

the length of any branch is unknown. Having found the initial seed point, the

seed point is set to white and its neighbors are searched. The coordinates of each

point are checked to see whether it is within the picture size, according to the

operator check, given in Code 4.11.

The neighborhood (as shown in Figure 4.19) is then searched by a function

connect (Code 4.12) that is fed with the nonmaximum suppressed edge image,

the coordinates of the seed point whose connectivity is under analysis and the

lower switching threshold. Each of the neighbors is searched if its value exceeds

the lower threshold, and the point has not already been labeled as white

Hysteresis thresholded edge data

Upper switching threshold

Lower switching threshold

Nonmaximum suppression

FIGURE 4.18

Action of nonmaximum suppression and hysteresis thresholding.

≥ Lower

Seed ≥ upper

≥ Lower

≥ Lower
≥ Lower

≥ Lower

≥ Lower
≥ Lower

≥ Lower

FIGURE 4.19

Neighborhood search for hysteresis thresholding.

check(xc,yc,pic):= 1 if (xc≥1)⋅(xc≤cols(pic)–2)⋅(yc≥1)⋅(yc≤rows(pic)–2)
0 otherwise

CODE 4.11

Checking points are within an image.

1594.2 Edge detection

(otherwise the function would become an infinite loop). If both conditions are sat-

isfied (and the point is within the picture), then the point is set to white and

becomes a seed point for further analysis. This implementation tries to check the

seed point as well, even though it has already been set to white. The operator

could be arranged not to check the current seed point, by direct calculation with-

out the for loops, and this would be marginally faster. Including an extra

Boolean constraint to inhibit check of the seed point would only slow the opera-

tion. The connect routine is recursive: it is called again by the new seed point.

The process starts with the point that exceeds the upper threshold. When such

a point is found, it is set to white and it becomes a seed point where connectivity

analysis starts. The calling operator for the connectivity analysis, hyst_thr, which
starts the whole process is given in Code 4.13. When hyst_thr is invoked, its

arguments are the coordinates of the point of current interest, the nonmaximum

suppressed edge image, n_edg (which is eventually delivered as the hysteresis

thresholded image), and the upper and lower switching thresholds, upp and low,
respectively. For display purposes, this operator requires a later operation to

remove points which have not been set to white (to remove those points which

are below the upper threshold and which are not connected to points above the

lower threshold). This is rarely used in application since the points set to white

are the only ones of interest in later processing.

connect(x,y,nedg,low):=

nedgy1,x1←255

nedg←connect(x1,y1,nedg,low)

if(nedgy1,x1≥low)⋅(nedgy1,x1≠255)⋅check
 (x1,y1,nedg)

for x1∈x−1.. x+1
for y1∈y−1.. y+1

nedg

CODE 4.12

Connectivity analysis after seed point location.

hyst_thr(n_edg,upp,low):= for x∈1.. cols(n_edg)–2
for y∈1.. rows(n_edg)–2
if[(n_edgy,x

≥ upp)·(n_edgy,x ≠255)]

n_edgy,x←255

n_edg←connect(x,y,n_edg,low)

n_edg

CODE 4.13

Hysteresis thresholding operator.

160 CHAPTER 4 Low-level feature extraction (including edge detection)

A comparison with the results of uniform thresholding is shown in

Figure 4.20. Figure 4.20(a) shows the result of hysteresis thresholding of a Sobel

edge-detected image of the eye with an upper threshold set to 40 brightness

values and a lower threshold of 10 brightness values. Figure 4.20(b) and (c)

shows the result of uniform thresholding applied to the image with thresholds of

40 and 10 brightness values, respectively. Uniform thresholding can select too

few points if the threshold is too high, and too many if it is too low. Hysteresis

thresholding naturally selects all the points as shown in Figure 4.20(b) and some of

those as shown in Figure 4.20(c), those connected to the points in Figure 4.20(b).

In particular, part of the nose is partly present in Figure 4.20(a), whereas it is absent

in Figure 4.20(b) and masked by too many edge points in Figure 4.20(c). Also, the

eyebrow is more complete in Figure 4.20(a) whereas it is only partial in

Figure 4.20(b), and complete (but obscured) in Figure 4.20(c). Hysteresis threshold-

ing therefore has an ability to detect major features of interest in the edge image, in

an improved manner to uniform thresholding.

The action of the Canny operator on a larger image is shown in Figure 4.21,

in comparison with the result of the Sobel operator. Figure 4.21(a) is the original

image of a face, Figure 4.21(b) is the result of the Canny operator (using a 53 5

Gaussian operator with σ5 1.0 and with upper and lower thresholds set appropri-

ately), and Figure 4.21(c) is the result of a 33 3 Sobel operator with uniform

thresholding. The retention of major detail by the Canny operator is very clear;

the face is virtually recognizable in Figure 4.21(b), whereas it is less clear in

Figure 4.21(c).

4.2.2 Second-order edge-detection operators
4.2.2.1 Motivation
First-order edge detection is based on the premise that differentiation highlights

change; image intensity changes in the region of a feature boundary. The process

(a) Hysteresis thresholding,
upper level = 40,
lower level = 10

(b) Uniform thresholding,
level = 40

(c) Uniform thresholding,
level = 10

FIGURE 4.20

Comparing hysteresis thresholding with uniform thresholding.

1614.2 Edge detection

is illustrated in Figure 4.22 where Figure 4.22(a) is a cross section through image

data. The result of first-order edge detection, f 0(x)5 df/dx in Figure 4.22(b), is a

peak where the rate of change of the original signal, f(x) in Figure 4.22(a), is

greatest. There are of course higher order derivatives; applied to the same cross

section of data, the second-order derivative, f v(x)5 d2f/dx2) in Figure 4.22(c), is

0 2 4

–2

–1

1

2

6
f (x)

x

(a) Cross section through image data

0 2 4

1

2

d

6

dx
f (x)

x

(b) First-order edge detection

0 2 4

–1

1

d2

6dx2
f (x)

x

(c) Second-order edge detection

FIGURE 4.22

First- and second-order edge detection.

(a) Original image (b) Canny (c) Sobel

FIGURE 4.21

Comparing Canny with Sobel.

162 CHAPTER 4 Low-level feature extraction (including edge detection)

greatest where the rate of change of the signal is greatest and zero when the rate

of change is constant. The rate of change is constant at the peak of the first-order

derivative. This is where there is a zero crossing in the second-order derivative,

where it changes sign. Accordingly, an alternative to first-order differentiation is

to apply second-order differentiation and then find zero crossings in the second-

order information.

4.2.2.2 Basic operators: the Laplacian
The Laplacian operator is a template which implements second-order differenc-

ing. The second-order differential can be approximated by the difference between

two adjacent first-order differences:

f vðxÞ D f 0ðxÞ2 f 0ðx1 1Þ (4.24)

which, by Eq. (4.6), gives

f vðx1 1Þ D2 f ðxÞ1 2f ðx1 1Þ2 f ðx1 2Þ (4.25)

This gives a horizontal second-order template as shown in Figure 4.23.

When the horizontal second-order operator is combined with a vertical

second-order difference we obtain the full Laplacian template, as shown in

Figure 4.24. Essentially, this computes the difference between a point and the

average of its four direct neighbors. This was the operator used earlier in anisotro-

pic diffusion, Section 3.5.3, where it is an approximate solution to the heat

equation.

Application of the Laplacian operator to the image of the square is given in

Figure 4.25. The original image is provided in numeric form in Figure 4.25(a).

The detected edges are the zero crossings in Figure 4.25(b) and can be seen to

–1 –12

FIGURE 4.23

Horizontal second-order template.

0
4

0 0

0–1
–1

–1
–1

FIGURE 4.24

Laplacian edge detection operator.

1634.2 Edge detection

lie between the edge of the square and its background. The result highlights the

boundary of the square in the original image, but there is also a slight problem:

there is a small hole in the shape in the lower right. This is by virtue of second-

order differentiation, which is inherently more susceptible to noise. Accordingly,

to handle noise we need to introduce smoothing.

An alternative structure to the template in Figure 4.24 is one where the central

weighting is 8 and the neighbors are all weighted as21. Naturally, this includes a
different form of image information, so the effects are slightly different.

(Essentially, this now computes the difference between a pixel and the average of

its neighboring points, including the corners.) In both structures, the central

weighting can be negative and that of the four or the eight neighbors can be posi-

tive, without loss of generality. Actually, it is important to ensure that the sum of

template coefficients is zero, so that the edges are not detected in areas of uniform

brightness. One advantage of the Laplacian operator is that it is isotropic (like

the Gaussian operator): it has the same properties in each direction. However, as

yet it contains no smoothing and will again respond to noise, more so than a first-

order operator since it is differentiation of a higher order. As such, the Laplacian

operator is rarely used in its basic form. Smoothing can use the averaging opera-

tor described earlier but a more optimal form is Gaussian smoothing. When this

is incorporated with the Laplacian, we obtain a Laplacian of Gaussian (LoG)

operator which is the basis of the Marr�Hildreth approach, to be considered next.

A clear disadvantage with the Laplacian operator is that edge direction is not

available. It does however impose low computational cost, which is its main

advantage. Though interest in the Laplacian operator abated with rising interest in

the Marr�Hildreth approach, a nonlinear Laplacian operator was developed

(Vliet and Young, 1989) and shown to have good performance, especially in low-

noise situations.

p =

1

2

3

4

1

2

1

2

2

0

1

2

0

2

3

3

38

40

43

39

0

4

0

39

44

44

41

2

1

1

37

41

40

42

2

1

2

36

42

39

40

3

2

2

3

2

1

2

1

1

1

0

1

3

0

1

0 2 1 3 1 0 4 2

(a) Image data (b) After Laplacian operator

L =

0

0

0

0

0

0

0

0

0

–31

70

34

47

72

–44

0

0

–47

37

12

8

37

–38

0

0

–36

31

1

–6

45

–40

0

0

–32

60

50

33

74

–31

0

0

0

–28

–39

–42

–34

–6

0

0

0

0

0

0

0

0

0

0

1

–42

–37

–45

5

0

–44

FIGURE 4.25

Edge detection via the Laplacian operator.

164 CHAPTER 4 Low-level feature extraction (including edge detection)

4.2.2.3 The Marr�Hildreth operator
The Marr�Hildreth approach (Marr and Hildreth, 1980) again uses Gaussian fil-

tering. In principle, we require an image which is the second differential r2 of a

Gaussian operator g(x,y) convolved with an image P. This convolution process

can be separated as

r2ðgðx; yÞ � PÞ5r2ðgðx; yÞÞ � P (4.26)

Accordingly, we need to compute a template for r2 (g(x,y)) and convolve this

with the image. By further differentiation of Eq. (4.17), we achieve a LoG

operator:

r2gðx; yÞ5 @2gðx; y;σÞ
@x2

Ux 1
@2gðx; y;σÞ

@y2
Uy

5
@rgðx; y;σÞ

@x
Ux 1

@rgðx; y;σÞ
@y

Uy

5
x2

σ2
2 1

0
@

1
Ae

2ðx21y2Þ
2σ2

σ2 1
y2

σ2
2 1

0
@

1
Ae

2ðx21y2Þ
2σ2

σ2

5
1

σ2

ðx2 1 y2Þ
σ2

2 2

0
@

1
Ae

2ðx21y2Þ
2σ2

(4.27)

This is the basis of the Marr�Hildreth operator. Equation (4.27) can be used

to calculate the coefficients of a template which, when convolved with an image,

combines Gaussian smoothing with second-order differentiation. The operator is

sometimes called a “Mexican hat” operator, since its surface plot is the shape of a

sombrero, as illustrated in Figure 4.26.

The calculation of the LoG can be approximated by the difference of Gaussian

where the difference is formed from the result of convolving two Gaussian filters

with differing variance (Marr, 1982; Lindeberg, 1994):

σr2gðx; y;σÞ5 @g

@σ
� gðx; y; kσÞ2 gðx; y;σÞ

kσ2σ
(4.28)

where g(x,y,σ) is the Gaussian function and k is a constant. Although similarly

named, the derivative of Gaussian, Eq. (4.17), is a first-order operator including

Gaussian smoothing, rg(x,y). It does actually seem counterintuitive that the dif-

ference of two smoothing operators should lead to second-order edge detection.

The approximation is illustrated in Figure 4.27 where in 1D two Gaussian distri-

butions of different variance are subtracted to form a 1D operator whose cross

section is equivalent to the shape of the LoG operator (a cross section of

Figure 4.26).

1654.2 Edge detection

The implementation of Eq. (4.27) to calculate template coefficients for the LoG
operator is given in Code 4.14. The function includes a normalization function

which ensures that the sum of the template coefficients is unity, so that edges are

not detected in area of uniform brightness. This is in contrast with the earlier

Laplacian operator (where the template coefficients summed to zero) since the

LoG operator includes smoothing within the differencing action, whereas

the Laplacian is pure differencing. The template generated by this function

can then be used within template convolution. The Gaussian operator again sup-

presses the influence of points away from the center of the template, basing

(a) Two Gaussian distributions (b) After differencing

0 50 100

e

x − 50

8

2
−

x − 50

10

2
−

− 0.8⋅e

x

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

0 50 100

e

x − 50
8

2
−

0.8⋅e

x − 50

10

2
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

FIGURE 4.27

Approximating the LoG by difference of Gaussian.

LoG (4, 31)

FIGURE 4.26

Shape of LoG operator.

166 CHAPTER 4 Low-level feature extraction (including edge detection)

differentiation on those points nearer the center; the standard deviation, σ, is cho-
sen to ensure this action. Again, it is isotropic consistent with Gaussian

smoothing.

Determining the zero-crossing points is a major difficulty with this approach.

There is a variety of techniques which can be used, including manual determina-

tion of zero crossing or a least squares fit of a plane to local image data, which is

followed by the determination of the point at which the plane crosses zero, if it

does. The former is too simplistic, whereas the latter is quite complex (see

Section 11.2, Appendix 2).

The approach here is much simpler: given a local 33 3 area of an image, this

is split into quadrants. These are shown in Figure 4.28, where each quadrant con-

tains the center pixel. The first quadrant contains the four points in the upper left

corner and the third quadrant contains the four points in the upper right. If the

average of the points in any quadrant differs in sign from the average in any other

LoG(σ,size):= cx ←
size–1

2
size–1

2
cy ←

for x∈0.. size–1
for y∈0.. size–1

nx ←x–cx

ny ←y–cy

templatey,x ← .e

–
.1

σ

2

nx2+ny2

σ

2
 – 2

nx
2
+ny

2

2.σ2

template ←normalize(template)

template

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

CODE 4.14

Implementation of the LoG operator.

1 • • • 3

• • •

• • •

2 4

FIGURE 4.28

Regions for zero-crossing detection.

1674.2 Edge detection

quadrant, there must be a zero crossing at the center point. In zerox, (Code 4.15),

the average intensity in each quadrant is then evaluated, giving four values int0,
int1, int2, and int3. If the maximum value of these points is positive, and the

minimum value is negative, there must be a zero crossing within the neighbor-

hood. If one exists, the output image at that point is marked as white, otherwise it

is set to black.

The action of the Marr�Hildreth operator is shown in Figure 4.29, applied to

the face image as shown in Figure 4.21(a). The output of the LoG operator is hard

to interpret visually and is not shown here (remember that it is the zero crossings

which mark the edge points and it is hard to see them). The detected zero crossings

(for a 33 3 neighborhood) are shown in Figure 4.29(b) and (c) for LoG operators

of size 113 11 with σ5 1.12 and 153 15 with σ5 2.3, respectively. These show

that the selection of window size and variance can be used to provide edges at dif-

fering scales. Some of the smaller regions as shown in Figure 4.29(b) join to form

larger regions as shown in Figure 4.29(c). Note that one virtue of the

Marr�Hildreth operator is its ability to provide closed edge borders which the

Canny operator cannot. Another virtue is that it avoids the recursion associated

with hysteresis thresholding that can require a massive stack size for large images.

The Fourier Transform of a LoG operator is shown in relief in Figure 4.30(a)

and as a contour plot in Figure 4.30(b). The transform is circular�symmetric, as

expected. Since the transform reveals that the LoG operator omits low and high

frequencies (those close to the origin and those far away from the origin), it is

zerox(pic):=
for x∈1.. cols(pic)–2

for y∈1.. rows(pic)–2

int0← Σ
y

y1= y–1

x

Σ
x1=x–1

picy1,x1

int1← picy1,x1Σ
x1=x–1

x

Σ
y1=y

y+1

int2← picy1,x1Σ
y1=y–1

y

Σ
x1=x

x+1

int3←
y+1

Σ
y1=y

picy1,x1Σ
x1=x

x+1

maxval←max(int)

minval←min(int)

newpicy,x ←255 if (maxval>0)⋅(minval<0)

newpic

newpic←zero(pic)

CODE 4.15

Zero-crossing detector.

168 CHAPTER 4 Low-level feature extraction (including edge detection)

equivalent to a band-pass filter. Choice of the value of σ controls the spread of

the operator in the spatial domain and the “width” of the band in the frequency

domain: setting σ to a high value gives low-pass filtering, as expected. This dif-

fers from first-order edge-detection templates which offer a high-pass (differenc-

ing) filter along one axis with a low-pass (smoothing) action along the other axis.

The Marr�Hildreth operator has stimulated much attention, perhaps in part,

because it has an appealing relationship to human vision and its ability for multi-

resolution analysis (the ability to detect edges at differing scales). In fact, it has

been suggested that the original image can be reconstructed from the zero cross-

ings at different scales. One early study (Haralick, 1984) concluded that the

Marr�Hildreth operator could give good performance. Unfortunately, the

(a) Face image (c) 15 × 15 LoG(b) 11 × 11 LoG

FIGURE 4.29

Marr�Hildreth edge detection.

0
5 10 15

0

5

10

15

Fourier_of_LoGFourier_of_LoG
(a) Relief plot (b) Contour plot

FIGURE 4.30

Fourier transform of LoG operator.

1694.2 Edge detection

implementation appeared to be different from the original LoG operator (and has

actually appeared in some texts in this form) as noted by one of the

Marr�Hildreth study’s originators (Grimson and Hildreth, 1985). This led to a

somewhat spirited reply (Haralick, 1985) not only clarifying concern but also rais-

ing issues about the nature and operation of edge-detection schemes which remain

relevant today. Given the requirement for convolution of large templates, atten-

tion quickly focused on frequency domain implementation (Huertas and Medioni,

1986), and speed improvement was later considered in some detail (Forshaw,

1988). Later, schemes were developed to refine the edges produced via the LoG

approach (Ulupinar and Medioni, 1990). Though speed and accuracy are major

concerns with the Marr�Hildreth approach, it is also possible for zero-crossing

detectors to mark as edge points ones which have no significant contrast, motivat-

ing study of their authentication (Clark, 1989). Gunn (1999) studied the relation-

ship between mask size of the LoG operator and its error rate. Essentially, an

acceptable error rate defines a truncation error which in turn gives an appropriate

mask size. Gunn (1999) also observed the paucity of studies on zero-crossing

detection and offered a detector slightly more sophisticated than the one here (as

it includes the case where a zero crossing occurs at a boundary whereas the one

here assumes that the zero crossing can only occur at the center). The similarity

is not coincidental: Mark developed the one here after conversations with Steve

Gunn, who he works with!

4.2.3 Other edge-detection operators
There have been many approaches to edge detection. This is not surprising since

it is often the first stage in a vision process. The most popular are the Sobel,

Canny, and Marr�Hildreth operators. Clearly, in any implementation, there is a

compromise between (computational) cost and efficiency. In some cases, it is dif-

ficult to justify the extra complexity associated with the Canny and the

Marr�Hildreth operators. This is in part due to the images: few images contain

the adverse noisy situations that complex edge operators are designed to handle.

Also, when finding shapes, it is often prudent to extract more than enough low-

level information and to let the more sophisticated shape detection process use, or

discard, the information as appropriate. For these reasons we will study only two

more edge-detection approaches and only briefly. They are the Spacek and the

Petrou operators: both are designed to be optimal and both have different proper-

ties and a different basis (the smoothing functional in particular) to the Canny

and Marr�Hildreth approaches. The Spacek and Petrou operators are included by

virtue of their optimality. Essentially, while Canny maximized the ratio of the

signal-to-noise ratio with the localization, Spacek (1986) maximized the ratio of

the product of the signal-to-noise ratio and the peak separation with the localiza-

tion. In Spacek’s work, since the edge was again modeled as a step function, the

ideal filter appeared to be of the same form as Canny’s. Spacek’s operator can

give better performance than Canny’s formulation (Jia and Nixon, 1995), as such

170 CHAPTER 4 Low-level feature extraction (including edge detection)

challenging the optimality of the Gaussian operator for noise smoothing (in step-

edge detection), though such advantage should be explored in application.

Petrou and Kittler (1991) questioned the validity of the step-edge model for

real images. Given that the composite performance of an image acquisition sys-

tem can be considered to be that of a low-pass filter, any step changes in the

image will be smoothed to become a ramp. As such, a more plausible model of

the edge is a ramp rather than a step. Since the process is based on ramp edges,

and because of limits imposed by its formulation, the Petrou operator uses tem-

plates that are much wider in order to preserve optimal properties. As such, the

operator can impose greater computational complexity but is a natural candidate

for applications with the conditions for which its properties were formulated.

Of the other approaches, Korn (1988) developed a unifying operator for sym-

bolic representation of gray level change. The Susan operator (Smith and Brady,

1997) derives from an approach aimed to find more than just edges since it can

also be used to derive corners (where feature boundaries change direction sharply,

as in curvature detection in Section 4.4.1) and structure-preserving image noise

reduction. Essentially, SUSAN derives from Smallest Univalue Segment

Assimilating Nucleus which concerns aggregating the difference between ele-

ments in a (circular) template centered on the nucleus. The USAN is essentially

the number of pixels within the circular mask which have similar brightness to

the nucleus. The edge strength is then derived by subtracting the USAN size from

a geometric threshold, which is say 3/4 of the maximum USAN size. The method

includes a way of calculating edge direction, which is essential if nonmaximum

suppression is to de applied. The advantages are in simplicity (and hence speed)

since it is based on simple operations and the possibility of extension to find other

feature types.

4.2.4 Comparison of edge-detection operators
Naturally, the selection of an edge operator for a particular application depends

on the application itself. As has been suggested, it is not usual to require the

sophistication of the advanced operators in many applications. This is reflected in

analysis of the performance of the edge operators on the eye image. In order to

provide a different basis for comparison, we shall consider the difficulty of low-

level feature extraction in ultrasound images. As has been seen earlier

(Section 3.5.5), ultrasound images are very noisy and require filtering prior to

analysis. Figure 4.31(a) is part of the ultrasound image which could have been fil-

tered using the truncated median operator (Section 3.5.2). The image contains a

feature called the pitus (it’s the “splodge” in the middle), and we shall see how

different edge operators can be used to detect its perimeter, though without noise

filtering. The median is a very popular filtering process for general (i.e., nonultra-

sound) applications. Accordingly, it is of interest that one study (Bovik et al.,

1987) has suggested that the known advantages of median filtering (the removal

1714.2 Edge detection

of noise with the preservation of edges, especially for salt and pepper noise) are

shown to good effect if it is used as a prefilter to first- and second-order

approaches, though naturally with the cost of the median filter. However, we will

not consider median filtering here: its choice depends more on suitability to a par-

ticular application.

The results for all edge operators have been generated using hysteresis thresh-

olding where the thresholds were selected manually for best performance. The

basic first-order operator (Figure 4.31(b)) responds rather nicely to the noise and

it is difficult to select a threshold which reveals a major part of the pitus border.

Some is present in the Prewitt (Figure 4.31(c)) and Sobel (Figure 4.31(d)) opera-

tors’ results, but there is still much noise in the processed image, though there is

less in the Sobel. The Laplacian operator (Figure 4.31(e)) gives very little infor-

mation indeed, as to be expected with such noisy imagery. However, the more

advanced operators can be used to good effect. The Marr�Hildreth approach

improves matters (Figure 4.31(f)), but suggests that it is difficult to choose a LoG

operator of appropriate size to detect a feature of these dimensions in such noisy

imagery—illustrating the compromise between the size of operator needed for

noise filtering and the size needed for the target feature. However, the Canny and

Spacek operators can be used to good effect, as shown in Figure 4.31(g) and (h),

respectively. These reveal much of the required information, together with data

away from the pitus itself. In an automated analysis system, for this application,

the extra complexity of the more sophisticated operators would clearly be

warranted.

(a) Original image (b) First order (c) Prewitt (d) Sobel

(e) Laplacian (f) Marr–Hildreth (g) Canny (h) Spacek

FIGURE 4.31

Comparison of edge-detection operators.

172 CHAPTER 4 Low-level feature extraction (including edge detection)

4.2.5 Further reading on edge detection
Few computer vision and image processing texts omit detail concerning edge-

detection operators, though few give explicit details concerning implementation.

Naturally, many of the earlier texts omit the more recent techniques. Further

information can be found in journal papers; Petrou’s excellent study of edge

detection (Petrou, 1994) highlights the study of the performance factors involved

in the optimality of the Canny, Spacek, and Petrou operators with extensive tuto-

rial support (though I suspect Petrou junior might one day be embarrassed by the

frequency his youthful mugshot is used—his teeth show up very well!). There

have been a number of surveys of edge detection highlighting performance attri-

butes in comparison. For example, see Torre and Poggio (1986) that gives a theo-

retical study of edge detection and considers some popular edge-detection

techniques in light of this analysis. One survey (Heath et al., 1997) surveys many

approaches comparing them in particular with the Canny operator (and states

where code for some of the techniques they compared can be found). This showed

that best results can be achieved by tuning an edge detector for a particular appli-

cation and highlighted good results by the Bergholm operator (Bergholm, 1987).

Marr (1982) considers the Marr�Hildreth approach to edge detection in the light

of human vision (and its influence on perception), with particular reference to

scale in edge detection. More recently Yitzhaky and Peli (2003) suggests “a gen-

eral tool to assist in practical implementations of parametric edge detectors where

an automatic process is required” and uses statistical tests to evaluate edge-

detector performance. Since edge detection is one of the most important vision

techniques, it continues to be a focus of research interest. Accordingly, it is always

worth looking at recent papers to find new techniques, or perhaps more likely per-

formance comparison or improvement, that might help you solve a problem.

4.3 Phase congruency
The comparison of edge detectors highlights some of their innate problems:

incomplete contours, the need for selective thresholding, and their response to

noise. Further, the selection of a threshold is often inadequate for all the regions

in an image since there are many changes in local illumination. We shall find that

some of these problems can be handled at a higher level, when shape extraction

can be arranged to accommodate partial data and to reject spurious information.

There is though natural interest in refining the low-level feature extraction techni-

ques further.

Phase congruency is a feature detector with two main advantages: it can

detect a broad range of features and it is invariant to local (and smooth) change
in illumination. As the name suggests, it is derived by frequency domain consid-

erations operating on the considerations of phase (aka time). It is illustrated

detecting some 1D features in Figure 4.32 where the features are the solid lines: a

1734.3 Phase congruency

(noisy) step function in Figure 4.32(a) and a peak (or impulse) in Figure 4.32(b).

By Fourier transform analysis, any function is made up from the controlled addi-

tion of sinewaves of differing frequencies. For the step function to occur (the

solid line in Figure 4.32(a)), the constituent frequencies (the dotted lines in

Figure 4.32(a)) must all change at the same time, so they add up to give the edge.

Similarly, for the peak to occur, the constituent frequencies must all peak at the

same time; in Figure 4.32(b) the solid line is the peak and the dotted lines are

some of its constituent frequencies. This means that in order to find the feature

we are interested in, we can determine points where events happen at the same

time: this is phase congruency. By way of generalization, a triangle wave is made

of peaks and troughs: phase congruency implies that the peaks and troughs of the

constituent signals should coincide.

In fact, the constituent sinewaves plotted in Figure 4.32(a) were derived by

taking the Fourier transform of a step and then determining the sinewaves accord-

ing to their magnitude and phase. The Fourier transform in Eq. (2.15) delivers the

complex Fourier components Fp. These can be used to show the constituent sig-

nals xc by

xcðtÞ5 jFpujej
2π
N
ut1φðFPuÞð Þ (4.29)

where jFpuj is again the magnitude of the uth Fourier component (Eq. (2.7)) and

φ(FPu)5 hFPu is the argument, the phase in Eq. (2.8). The (dotted) frequencies

displayed in Figure 4.32 are the first four odd components (the even components

for this function are zero, as shown in the Fourier transform of the step in

Figure 2.11). The addition of these components is indeed the inverse Fourier

transform which reconstructs the step feature.

(a) Step edge (b) Peak

FIGURE 4.32

Low-level feature extraction by phase congruency.

174 CHAPTER 4 Low-level feature extraction (including edge detection)

The advantages are that detection of congruency is invariant with local con-

trast: the sinewaves still add up so the changes are still in the same place, even if

the magnitude of the step edge is much smaller. In images, this implies that we

can change the contrast and still detect edges. This is illustrated in Figure 4.33.

Here, a standard image processing image, the “cameraman” image from the early

UCSD dataset, has been changed between the left and right sides so that the con-

trast changes in the two halves of the image (Figure 4.33(a)). Edges detected by

Canny are shown in Figure 4.33(b) and by phase congruency in Figure 4.33(c).

The basic structure of the edges detected by phase congruency is very similar to

that structure detected by Canny, and the phase congruency edges appear some-

what cleaner (there is a single line associated with the tripod control in phase con-

gruency); both detect the change in brightness between the two halves. There is a

major difference though: the building in the lower right side of the image is

barely detected in the Canny image whereas it can clearly be seen in phase con-

gruency image. Its absence is due to the parameter settings used in the Canny

operator. These can be changed, but if the contrast were to change again, then the

parameters would need to be reoptimized for the new arrangement. This is not the

case for phase congruency.

Naturally such a change in brightness might appear unlikely in practical appli-

cation, but this is not the case with moving objects which interact with illumina-

tion or in fixed applications where illumination changes. In studies aimed to

extract spinal information from digital videofluoroscopic X-ray images in order to

provide guidance for surgeons (Zheng et al., 2004), phase congruency was found

to be immune to the changes in contrast caused by slippage of the shield used to

protect the patient while acquiring the image information. One such image is

shown in Figure 4.34. The lack of shielding is apparent in the bloom at the side

of the images. This changes as the subject is moved, so it proved difficult to opti-

mize the parameters for Canny over the whole sequence (Figure 4.34(b)) but the

(a) Modified cameraman
image

(b) Edges by the Canny
operator

(c) Phase congruency

FIGURE 4.33

Edge detection by Canny and by phase congruency.

1754.3 Phase congruency

detail of a section of the phase congruency result (Figure 4.34(c)) shows that the

vertebrae information is readily available for later high-level feature extraction.

The original notions of phase congruency are the concepts of local energy

(Morrone and Owens, 1987), with links to the human visual system (Morrone and

Burr, 1988). One of the most sophisticated implementations was by Kovesi

(1999), with added advantage that his Matlab implementation is available on the

Web (http://www.csse.uwa.edu.au/Bpk/Research/research.html) as well as much

more information. Essentially, we seek to determine features by detection of

points at which Fourier components are maximally in phase. By extension of the

Fourier reconstruction functions in Eq. (4.29), Morrone and Owens (1987) defined

a measure of phase congruency, PC, as

PCðxÞ5maxφðxÞA0;2π

X
u

jFpujcosðφuðxÞ2φðxÞÞX
u

jFpuj

0
B@

1
CA (4.30)

where φu(x) represents the local phase of the component Fpu at position x.

Essentially, this computes the ratio of the sum of projections onto a vector (the

sum in the numerator) to the total vector length (the sum in the denominator).

The value of φðxÞ that maximizes this equation is the amplitude weighted mean

local phase angle of all the Fourier terms at the point being considered. In

Figure 4.35 the resulting vector is made up of four components, illustrating the

projection of the second onto the resulting vector. Clearly, the value of phase con-

gruency ranges from 0 to 1, the maximum occurring when all elements point

along the resulting vector. As such, the resulting phase congruency is a dimen-

sionless normalized measure which is thresholded for image analysis.

(a) Digital videofluoroscopic image of lower
spine showing vertebrae

(b) Edges by the
Canny operator

(c) Features by phase
congruency

FIGURE 4.34

Spinal contour by phase congruency (Zheng et al., 2004).

176 CHAPTER 4 Low-level feature extraction (including edge detection)

http://www.csse.uwa.edu.au/∼pk/Research/research.html
http://www.csse.uwa.edu.au/∼pk/Research/research.html

In this way, we have calculated the phase congruency for the step function in

Figure 4.36(a), which is shown in Figure 4.36(b). Here, the position of the step is

at time step 40; this is the position of the peak in phase congruency, as required.

Note that the noise can be seen to affect the result, though the phase congruency

is largest at the right place.

One interpretation of the measure is that since for small angles cos θ5 12 θ2

Eq. (4.30) expresses the ratio of the magnitudes weighted by the variance of the

difference to the summed magnitude of the components. There is certainly

Imaginary

Real

Fp4

F p 3

|Fp
2 |

|Fp2
| cos(φ2(x) –

–
φ

–
φ

(x))

F p
1

(x)

φ2(x)

FIGURE 4.35

Summation in phase congruency.

0 50 100

0 50 100

(a) (Noisy) step function (b) Phase congruency of
(noisy) step function

FIGURE 4.36

1D phase congruency.

1774.3 Phase congruency

difficulty with this measure, apart from difficulty in implementation: it is sensi-

tive to noise, as is any phase measure; it is not conditioned by the magnitude of

a response (small responses are not discounted); and it is not well localized (the

measure varies with the cosine of the difference in phase, not with the difference

itself—though it does avoid discontinuity problems with direct use of angles). In

fact, the phase congruency is directly proportional to the local energy (Venkatesh

and Owens, 1989), so an alternative approach is to search for maxima in the local

energy. The notion of local energy allows us to compensate for the sensitivity to

the detection of phase in noisy situations.

For these reasons, Kovesi (1999) developed a wavelet-based measure which

improved performance, while accommodating noise. In basic form, phase congru-

ency can be determined by convolving a set of wavelet filters with an image and

calculating the difference between the average filter response and the individual

filter responses. The response of a (1D) signal I to a set of wavelets at scale n is

derived from the convolution of the cosine and sine wavelets (discussed in

Section 2.7.3) denoted as Me
n and Mo

n ; respectively,

½enðxÞ; onðxÞ�5 ½IðxÞ �Me
n; IðxÞ �Mo

n � (4.31)

to deliver the even and odd components at the nth scale en(x) and on(x), respec-

tively. The amplitude of the transform result at this scale is the local energy,

AnðxÞ5
ffi
enðxÞ2 1 onðxÞ2

q
(4.32)

At each point x we will have an array of vectors that correspond to each scale

of the filter. Given that we are interested only in phase congruency that occurs

over a wide range of frequencies (rather than just at a couple of scales), the set of

wavelet filters needs to be designed so that adjacent components overlap. By

summing the even and odd components we obtain:

FðxÞ5
X
n

enðxÞ

HðxÞ5
X
n

onðxÞ
(4.33)

and a measure of the total energy A asX
n

AnðxÞ �
X
n

ffi
enðxÞ2 1 onðxÞ2

q
(4.34)

then a measure of phase congruency is

PCðxÞ5

ffi
FðxÞ2 1HðxÞ2

q
X
n

AnðxÞ1 ε
(4.35)

where the addition of a small factor ε in the denominator avoids division by zero

and any potential result when values of the numerator are very small. This gives

178 CHAPTER 4 Low-level feature extraction (including edge detection)

a measure of phase congruency, which is essentially a measure of the local

energy. Kovesi (1999) improved on this, improving on the response to noise,

developing a measure which reflects the confidence that the signal is significant

relative to the noise. Further, he considers in detail the frequency domain consid-

erations, and its extension to 2D (Kovesi, 1999). For 2D (image) analysis, given

that phase congruency can be determined by convolving a set of wavelet filters

with an image and calculating the difference between the average filter response

and the individual filter responses. The filters are constructed in the frequency

domain by using complementary spreading functions; the filters must be con-

structed in the Fourier domain because the log-Gabor function has a singularity at

zero frequency. In order to construct a filter with appropriate properties, a filter is

constructed in a manner similar to the Gabor wavelet, but here in the frequency

domain and using different functions. Following Kovesi’s implementation, the

first filter is a low-pass filter, here a Gaussian filter g with L different orientations

gðθ; θlÞ5
1ffiffiffiffiffiffi
2π

p
σs

e
2

ðθ2θl Þ2
2σ2s (4.36)

where θ is the orientation, σs controls the spread about that orientation, and θl is
the angle of local orientation focus. The other spreading function is a band-pass

filter, here a log-Gabor filter lg with M different scales.

lgðω;ωmÞ5
0 ω5 0

1ffiffiffiffiffiffi
2π

p
σβ

e

2
log ω=ωmð Þð Þ2
2ðlogðβÞÞ2

ω 6¼ 0

8>><
>>: (4.37)

where ω is the scale, β controls bandwidth at that scale, and ω is the center fre-

quency at that scale. The combination of these functions provides a 2D filter

l2Dg which can act at different scales and orientations.

l2Dgðω;ωm; θ; θlÞ5 gðθ; θlÞ3 lgðω;ωmÞ (4.38)

One measure of phase congruency based on the convolution of this filter with

the image P is derived by inverse Fourier transformation ℑ21 of the filter l2Dg

(to yield a spatial domain operator) which is convolved as

SðmÞx;y 5ℑ21ðl2Dgðω;ωm; θ; θlÞÞx;y � Px;y (4.39)

to deliver the convolution result S at the mth scale. The measure of phase congru-

ency over the M scales is then

PCx;y 5

XM
m51

SðmÞx;y
�����

�����
XM
m51

jSðmÞx;yj1 ε

(4.40)

1794.3 Phase congruency

where the addition of a small factor ε again avoids division by zero and any poten-

tial result when values of S are very small. This gives a measure of phase congru-

ency, but is certainly a bit of an ouch, especially as it still needs refinement.

Note that key words reoccur within phase congruency: frequency domain,

wavelets, and convolution. By its nature, we are operating in the frequency

domain and there is not enough room in this text, and it is inappropriate to the

scope here, to expand further. Despite this, the performance of phase congruency

certainly encourages its consideration, especially if local illumination is likely to

vary and if a range of features is to be considered. It is derived by an alternative

conceptual basis, and this gives different insight, let alone performance. Even bet-

ter, there is a Matlab implementation available, for application to images—allow-

ing you to replicate its excellent results. There has been further research, noting

especially its extension in ultrasound image analysis (Mulet-Parada and Noble,

2000) and its extension to spatiotemporal form (Myerscough and Nixon, 2004).

4.4 Localized feature extraction
There are two main areas covered here. The traditional approaches aim to derive

local features by measuring specific image properties. The main target has been

to estimate curvature: peaks of local curvature are corners and analyzing an image

by its corners is especially suited to image of man-made objects. The second area

includes more modern approaches that improve performance by employing region

or patch-based analysis. We shall start with the more established curvature-based

operators, before moving to the patch or region-based analysis.

4.4.1 Detecting image curvature (corner extraction)
4.4.1.1 Definition of curvature
Edges are perhaps the low-level image features that are most obvious to human

vision. They preserve significant features, so we can usually recognize what an

image contains from its edge-detected version. However, there are other low-

level features that can be used in computer vision. One important feature is curva-

ture. Intuitively, we can consider curvature as the rate of change in edge direc-

tion. This rate of change characterizes the points in a curve; points where the

edge direction changes rapidly are corners, whereas points where there is little

change in edge direction correspond to straight lines. Such extreme points are

very useful for shape description and matching, since they represent significant

information with reduced data.

Curvature is normally defined by considering a parametric form of a planar

curve. The parametric contour v(t)5 x(t)Ux1 y(t)Uy describes the points in a con-

tinuous curve as the end points of the position vector. Here, the values of t define

an arbitrary parameterization, the unit vectors are again Ux5 [1,0] and Uy5 [0,1].

Changes in the position vector are given by the tangent vector function of the

180 CHAPTER 4 Low-level feature extraction (including edge detection)

curve v(t). That is, _vðtÞ5 _xðtÞUx 1 _yðtÞUy: This vectorial expression has a simple

intuitive meaning. If we think of the trace of the curve as the motion of a point

and t is related to time, the tangent vector defines the instantaneous motion. At

any moment, the point moves with a speed given by j _vðtÞj5
ffi
_x2ðtÞ1 _y2ðtÞ

p
in the

direction ϕðtÞ5 tan21ð _yðtÞ= _xðtÞÞ: The curvature at a point v(t) describes the

changes in the direction ϕ(t) with respect to changes in arc length, i.e.,

κðtÞ5 dϕðtÞ
ds

(4.41)

where s is arc length, along the edge itself. Here ϕ is the angle of the tangent to

the curve. That is, ϕ5 θ6 90�, where θ is the gradient direction defined in

Eq. (4.13). That is, if we apply an edge detector operator to an image, then we

have for each pixel a gradient direction value that represents the normal direction

to each point in a curve. The tangent to a curve is given by an orthogonal vector.

Curvature is given with respect to arc length because a curve parameterized by

arc length maintains a constant speed of motion. Thus, curvature represents

changes in direction for constant displacements along the curve. By considering

the chain rule, we have

κðtÞ5 dϕðtÞ
dt

dt

ds
(4.42)

The differential ds/dt defines the change in arc length with respect to the

parameter t. If we again consider the curve as the motion of a point, this differen-

tial defines the instantaneous change in distance with respect to time, i.e., the

instantaneous speed. Thus,

ds=dt5 j _vðtÞj5
ffi
_x2ðtÞ1 _y2ðtÞ

q
(4.43)

and

dt=ds5 1
. ffi

_x2ðtÞ1 _y2ðtÞ
q

(4.44)

By considering that ϕðtÞ5 tan21ð _yðtÞ= _xðtÞÞ; then the curvature at a point v(t) in

Eq. (4.42) is given by

κðtÞ5 _xðtÞ €yðtÞ2 _yðtÞ €xðtÞ
½ _x2ðtÞ1 _y2ðtÞ�3=2

(4.45)

This relationship is called the curvature function and it is the standard measure

of curvature for planar curves (Apostol, 1966). An important feature of curvature

is that it relates the derivative of a tangential vector to a normal vector. This can

be explained by the simplified Serret�Frenet equations (Goetz, 1970) as follows.

We can express the tangential vector in polar form as

_vðtÞ5 j _vðtÞjðcosðϕðtÞÞ1 j sinðϕðtÞÞÞ (4.46)

1814.4 Localized feature extraction

If the curve is parameterized by arc length, then j _vðtÞj is constant. Thus, the

derivative of a tangential vector is simply given by

€vðtÞ5 j _vðtÞjð2sinðϕðtÞÞ1 j cosðϕðtÞÞÞðdϕðtÞ=dtÞ (4.47)

Since we are using a normal parameterization, dϕ(t)/dt5 dϕ(t)/ds. Thus, the
tangential vector can be written as follows:

€vðtÞ5κðtÞnðtÞ (4.48)

where n(t)5 jv(t)j(2sin(ϕ(t))1 j cos(ϕ(t))) defines the direction of €vðtÞ while the

curvature κ(t) defines its modulus. The derivative of the normal vector is given

by _nðtÞ5 j _vðtÞjð2cosðϕðtÞÞ2 i sinðϕðtÞÞÞðdϕðtÞ=dsÞ that can be written as

_nðtÞ52κðtÞ _vðtÞ (4.49)

Clearly n(t) is normal to _vðtÞ: Therefore, for each point in the curve, there is a

pair of orthogonal vectors _vðtÞ and n(t) whose moduli are proportionally related

by the curvature.

Generally, the curvature of a parametric curve is computed by evaluating

Eq. (4.45). For a straight line, for example, the second derivatives €xðtÞ and €yðtÞ
are zero, so the curvature function is nil. For a circle of radius r, we have that

_xðtÞ5 r cosðtÞ and _yðtÞ52r sinðtÞ: Thus, €yðtÞ52r cosðtÞ; €xðtÞ52r sinðtÞ; and

κ(t)5 1/r. However, for curves in digital images, the derivatives must be com-

puted from discrete data. This can be done in four main ways. The most obvious

approach is to calculate curvature by directly computing the difference between

angular direction of successive edge pixels in a curve. A second approach is to

derive a measure of curvature from changes in image intensity. Finally, a measure

of curvature can be obtained by correlation.

4.4.1.2 Computing differences in edge direction
Perhaps the easier way to compute curvature in digital images is to measure the

angular change along the curve’s path. This approach was considered in early

corner detection techniques (Bennet and MacDonald, 1975; Groan and Verbeek,

1978; Kitchen and Rosenfeld, 1982) and it merely computes the difference in

edge direction between connected pixels forming a discrete curve. That is, it

approximates the derivative in Eq. (4.41) as the difference between neighboring

pixels. As such, curvature is simply given by

kðtÞ5ϕt11 2ϕt21 (4.50)

where the sequence . . ., ϕt21, ϕt, ϕt11, ϕt12, . . . represents the gradient direction

of a sequence of pixels defining a curve segment. Gradient direction can be

obtained as the angle given by an edge detector operator. Alternatively, it can be

computed by considering the position of pixels in the sequence. That is, by defin-

ing ϕt5 (yt212 yt11)/(xt212 xt11) where (xt,yt) denotes pixel t in the sequence.

Since edge points are only defined at discrete points, this angle can only take

eight values, so the computed curvature is very ragged. This can be smoothed out

182 CHAPTER 4 Low-level feature extraction (including edge detection)

by considering the difference in mean angular direction of n pixels on the leading

and trailing curve segment, i.e.,

knðtÞ5
1

n

Xn
i51

ϕt1i 2
1

n

X21

i52n

ϕt1i (4.51)

The average also gives some immunity to noise and it can be replaced by a

weighted average if Gaussian smoothing is required. The number of pixels con-

sidered, the value of n, defines a compromise between accuracy and noise sensi-

tivity. Notice that filtering techniques may also be used to reduce the quantization

effect when angles are obtained by an edge-detection operator. As we have

already discussed, the level of filtering is related to the size of the template (as in

Section 3.4.3).

In order to compute angular differences, we need to determine connected

edges. This can easily be implemented with the code already developed for hys-

teresis thresholding in the Canny edge operator. To compute the difference of

points in a curve, the connect routine (Code 4.12) only needs to be arranged to

store the difference in edge direction between connected points. Code 4.16 shows

an implementation for curvature detection. First, edges and magnitudes are deter-

mined. Curvature is only detected at edge points. As such, we apply maximal sup-

pression. The function Cont returns a matrix containing the connected neighbor

%Curvature detection
function outputimage=CurvConnect(inputimage)

 %Compute curvature in each pixel
for x=1:columns-1
for y=1:rows-1
if Mag(y,x)~=0
n=Next(y,x,1); m=Next(y,x,2);
if(n~=-1 & m~=-1)
[px,py]=NextPixel(x,y,n);
[qx,qy]=NextPixel(x,y,m);

outputimage(y,x)=abs(Ang(py,px)-Ang(qy,qx));
end

end
end

end

 outputimage=zeros(rows,columns); %Result image
 [Mag,Ang]=Edges(inputimage);

Next=Cont(Mag,Ang); %Next connected pixels
Mag=MaxSupr(Mag,Ang); %Maximal Suppression

%Edge Detection Magnitude and Angle

 [rows,columns]=size(inputimage); %Image size

CODE 4.16

Curvature by differences.

1834.4 Localized feature extraction

pixels of each edge. Each edge pixel is connected to one or two neighbors. The

matrix Next stores only the direction of consecutive pixels in an edge. We use a

value of 21 to indicate that there is no connected neighbor. The function

NextPixel obtains the position of a neighboring pixel by taking the position of a

pixel and the direction of its neighbor. The curvature is computed as the differ-

ence in gradient direction of connected neighbor pixels.

The result of applying this form of curvature detection to an image is shown in

Figure 4.37. Here Figure 4.37(a) contains the silhouette of an object; Figure 4.37(b)

is the curvature obtained by computing the rate of change of edge direction. In this

figure, curvature is defined only at the edge points. Here, by its formulation the

measurement of curvature κ gives just a thin line of differences in edge direction

which can be seen to track the perimeter points of the shapes (at points where there

is measured curvature). The brightest points are those with greatest curvature. In

order to show the results, we have scaled the curvature values to use 256 intensity

values. The estimates of corner points could be obtained by a uniformly thresholded

version of Figure 4.37(b), well in theory anyway!

Unfortunately, as can be seen, this approach does not provide reliable results.

It is essentially a reformulation of a first-order edge-detection process and presup-

poses that the corner information lies within the threshold data (and uses no cor-

ner structure in detection). One of the major difficulties with this approach is that

measurements of angle can be severely affected by quantization error and accu-

racy is limited (Bennet and MacDonald, 1975), a factor which will return to pla-

gue us later when we study the methods for describing shapes.

4.4.1.3 Measuring curvature by changes in intensity (differentiation)
As an alternative way of measuring curvature, we can derive the curvature as a

function of changes in image intensity. This derivation can be based on the

(a) Image (b) Detected corners

FIGURE 4.37

Curvature detection by difference.

184 CHAPTER 4 Low-level feature extraction (including edge detection)

measure of angular changes in the discrete image. We can represent the direction

at each image point as the function ϕ0(x,y). Thus, according to the definition of

curvature, we should compute the change in these direction values normal to the

image edge (i.e., along the curves in an image). The curve at an edge can be

locally approximated by the points given by the parametric line defined by x(t)5
x1 t cos(ϕ0(x,y)) and y(t)5 y1 t sin(ϕ0(x,y)). Thus, the curvature is given by the

change in the function ϕ0(x,y) with respect to t, that is,

κϕ0 ðx; yÞ5 @ϕ0ðx; yÞ
@ t

5
@ϕ0ðx; yÞ

@x

@xðtÞ
@ t

1
@ϕ0ðx; yÞ

@y

@yðtÞ
@ t

(4.52)

where @x(t)/@t5 cos(ϕ0) and @y(t)/@t5 sin(ϕ0). By considering the definition of

the gradient angle, the normal tangent direction at a point in a line is given by

ϕ0(x,y)5 tan21(Mx/(2My)). From this geometry we can observe that

cosðϕ0Þ52My=
ffi
Mx2 1My2

p
and sinðϕ0Þ5Mx=

ffi
Mx2 1My2

p
(4.53)

By differentiation of ϕ0(x,y) and by considering these definitions, we obtain:

κϕ0 ðx; yÞ5 1

ðMx2 1My2Þ32
My2

@Mx

@x
2MxMy

@My

@x
1Mx2

@My

@y
2MxMy

@Mx

@y

� �
(4.54)

This defines a forward measure of curvature along the edge direction. We

can actually use an alternative direction to measure of curvature. We can differen-

tiate backward (in the direction of 2ϕ0(x,y)) giving κ2ϕ0(x,y). In this case we

consider that the curve is given by x(t)5 x1 t cos(2ϕ0(x,y)) and y(t)5 y1 t sin

(2ϕ0(x,y)). Thus,

κ2ϕ0 ðx; yÞ5 1

ðMx2 1My2Þ32
My2

@Mx

@x
2MxMy

@My

@x
2Mx2

@My

@y
1MxMy

@Mx

@y

� �
(4.55)

Two further measures can be obtained by considering the forward and a

backward differential along the normal. These differentials cannot be related to

the actual definition of curvature but can be explained intuitively. If we consider

that curves are more than one pixel wide, differentiation along the edge will mea-

sure the difference between the gradient angle between interior and exterior

borders of a wide curve. In theory, the tangent angle should be the same.

However, in discrete images there is a change due to the measures in a window.

If the curve is a straight line, then the interior and exterior borders are the same.

Thus, gradient direction normal to the edge does not change locally. As we bend

a straight line, we increase the difference between the curves defining the interior

and exterior borders. Thus, we expect the measure of gradient direction to change.

That is, if we differentiate along the normal direction, we maximize detection of

1854.4 Localized feature extraction

gross curvature. The value κ\ϕ0(x,y) is obtained when x(t)5 x1 t sin(ϕ0(x,y)) and
y(t)5 y1 t cos(ϕ0(x,y)). In this case,

κ\ϕ0 ðx; yÞ5 1

ðMx2 1My2Þ32
Mx2

@My

@x
2MxMy

@My

@x
2MxMy

@My

@y
1My2

@Mx

@y

� �
(4.56)

In a backward formulation along a normal direction to the edge, we obtain:

κ2\ϕ0 ðx; yÞ5 1

ðMx2 1My2Þ32
2Mx2

@My

@x
1MxMy

@Mx

@x
2MxMy

@My

@y
1My2

@Mx

@y

� �
(4.57)

This was originally used by Kass et al. (1988) as a means to detect line termi-

nations, as part of a feature extraction scheme called snakes (active contours)

which are covered in Chapter 6. Code 4.17 shows an implementation of the four

measures of curvature. The function Gradient is used to obtain the gradient of

the image and to obtain its derivatives. The output image is obtained by applying

the function according to the selection of parameter op.

%Gradient Corner Detector
%op=T tangent direction
%op=TI tangent inverse
%op=N normal direction
%op=NI normal inverse

function outputimage=GradCorner(inputimage,op)
 [rows,columns]=size(inputimage); %Image size
 outputimage=zeros(rows,columns); %Result image
 [Mx,My]=Gradient(inputimage); %Gradient images
 [M,A]=Edges(inputimage); %Edge Suppression
 M=MaxSupr(M,A);
 [Mxx,Mxy]=Gradient(Mx); %Derivatives of the gradient image

 %compute curvature
 for x=1:columns

 for y=1:rows
if(M(y,x)~=0)
 My2=My(y,x)^2; Mx2=Mx(y,x)^2; MxMy=Mx(y,x)*My(y,x);

if((Mx2+My2)~=0)
if(op=='TI')

-MxMy*Myx(y,x)-Mx2*Myy(y,x)
+MxMy*Mxy(y,x));

outputimage(y,x)=(1/(Mx2+My2)^1.5)*(My2*Mxx(y,x)

 elseif (op=='N')
outputimage(y,x)=(1/(Mx2+My2)^1.5)*(Mx2*Myx(y,x)

-MxMy*Mxx(y,x)-MxMy*Myy(y,x)
+My2*Mxy(y,x));

 elseif (op=='NI')

 [Myx,Myy]=Gradient(My);

CODE 4.17

Curvature by measuring changes in intensity.

186 CHAPTER 4 Low-level feature extraction (including edge detection)

Let us see how the four functions for estimating curvature from image inten-

sity perform for the image given in Figure 4.37(a). In general, points where the

curvature is large are highlighted by each function. Different measures of curva-

ture (Figure 4.38) highlight differing points on the feature boundary. All measures

outputimage(y,x)=(1/(Mx2+My2)^1.5)*(-Mx2*Myx(y,x)
+MxMy*Mxx(y,x)-MxMy*Myy(y,x)
+My2*Mxy(y,x));

else %tangential as default
outputimage(y,x)=(1/(Mx2+My2)^1.5)*(My2*Mxx(y,x)

-MxMy*Myx(y,x)+Mx2*Myy(y,x)
-MxMy*Mxy(y,x));

 end
end

 end
 end

end

CODE 4.17

(Continued)

(c) κ⊥ϕ

(a) κϕ (b) κ –ϕ

(d) κ−⊥ϕ

FIGURE 4.38

Comparing image curvature detection operators.

1874.4 Localized feature extraction

appear to offer better performance than that derived by reformulating hysteresis

thresholding (Figure 4.37(b)) though there is little discernible performance advan-

tage between the directions of differentiation. As the results in Figure 4.38 sug-

gest, detecting curvature directly from an image is not a totally reliable way of

determining curvature, and hence corner information. This is in part due to the

higher order of the differentiation process. (Also, scale has not been included

within the analysis.)

4.4.1.4 Moravec and Harris detectors
In the previous section, we measured curvature as the derivative of the function

ϕ(x,y) along a particular direction. Alternatively, a measure of curvature can be

obtained by considering changes along a particular direction in the image P itself.

This is the basic idea of Moravec’s corner detection operator. This operator com-

putes the average change in image intensity when a window is shifted in several

directions, i.e., for a pixel with coordinates (x,y), and a window size of 2w1 1

we have

Eu;vðx; yÞ5
Xw
i52w

Xw
j52w

½Px1i;y1j 2Px1i1u;y1j1v�2 (4.58)

This equation approximates the autocorrelation function in the direction (u,v).

A measure of curvature is given by the minimum value of Eu,v(x,y) obtained by

considering the shifts (u,v) in the four main directions, i.e., by (1,0), (0,21),

(0,1), and (21,0). The minimum is chosen because it agrees with the following

two observations. First, if the pixel is in an edge, then defining a straight line,

Eu,v(x,y), is small for a shift along the edge and large for a shift perpendicular

to the edge. In this case, we should choose the small value since the curvature

of the edge is small. Secondly, if the edge defines a corner, then all the shifts

produce a large value. Thus, if we also chose the minimum, this value indicates

high curvature. The main problem with this approach is that it considers only a

small set of possible shifts. This problem is solved in the Harris corner detector

(Harris and Stephens, 1988) by defining an analytic expression for the autocor-

relation. This expression can be obtained by considering the local approximation

of intensity changes.

We can consider that the points Px1i,y1j and Px1i1u,y1j1v define a vector (u,v)

in the image. Thus, in a similar fashion to the development given in Eq. (4.58),

the increment in the image function between the points can be approximated by

the directional derivative u @Px1i,y1j /@x1 v @Px1i,y1j /@y. Thus, the intensity at

Px1i1u,y1j1v can be approximated as follows:

Px1i1u;y1j1v 5Px1i;y1j 1
@Px1i;y1j

@x
u1

@Px1i;y1j

@y
v (4.59)

188 CHAPTER 4 Low-level feature extraction (including edge detection)

This expression corresponds to the three first terms of the Taylor expansion

around Px1i,y1j (an expansion to first order). If we consider the approximation in

Eq. (4.58), we have

Eu;vðx; yÞ5
Xw
i52w

Xw
j52w

@Px1i;y1j

@x
u1

@Px1i;y1j

@y
v

� 	2
(4.60)

By expansion of the squared term (and since u and v are independent of the

summations), we obtain

Eu;vðx; yÞ5Aðx; yÞu2 1 2Cðx; yÞuv1Bðx; yÞv2 (4.61)

where

Aðx; yÞ 5
Xw
i52w

Xw
j52w

@Px1i;y1j

@x

0
@

1
A
2

Bðx; yÞ5
Xw
i52w

Xw
j52w

@Px1i;y1j

@y

0
@

1
A
2

Cðx; yÞ5
Xw
i52w

Xw
j52w

@Px1i;y1j

@x

0
@

1
A @Px1i;y1j

@y

0
@

1
A

(4.62)

that is, the summation of the squared components of the gradient direction for all

the pixels in the window. In practice, this average can be weighted by a Gaussian

function to make the measure less sensitive to noise (i.e., by filtering the image

data). In order to measure the curvature at a point (x,y), it is necessary to find the

vector (u,v) that minimizes Eu,v(x,y) given in Eq. (4.61). In a basic approach, we

can recall that the minimum is obtained when the window is displaced in the direc-

tion of the edge. Thus, we can consider that u5 cos(ϕ(x,y)) and v5 sin(ϕ(x,y)).
These values are defined in Eq. (4.53). Accordingly, the minima values that define

curvature are given by

κu;vðx; yÞ5min Eu;vðx; yÞ5
Aðx; yÞM2

y 1 2Cðx; yÞMxMy 1Bðx; yÞM2
x

M2
x 1M2

y

(4.63)

In a more sophisticated approach, we can consider the form of the function

Eu,v(x,y). We can observe that this is a quadratic function, so it has two principal

axes. We can rotate the function such that its axes have the same direction as that

of the axes of the coordinate system. That is, we rotate the function Eu,v(x,y) to

obtain

Fu;vðx; yÞ5αðx; yÞ2u2 1βðx; yÞ2v2 (4.64)

The values of α and β are proportional to the autocorrelation function along

the principal axes. Accordingly, if the point (x,y) is in a region of constant inten-

sity, both values are small. If the point defines a straight border in the image,

then one value is large and the other is small. If the point defines an edge with

1894.4 Localized feature extraction

high curvature, both values are large. Based on these observations, a measure of

curvature is defined as

κkðx; yÞ5αβ2 kðα1 βÞ2 (4.65)

The first term in this equation makes the measure large when the values of α
and β increase. The second term is included to decrease the values in flat borders.

The parameter k must be selected to control the sensitivity of the detector. The

higher the value, the computed curvature will be more sensitive to changes in the

image (and therefore to noise).

In practice, in order to compute κk(x,y), it is not necessary to compute explic-

itly the values of α and β, but the curvature can be measured from the coefficient

of the quadratic expression in Eq. (4.61). This can be derived by considering the

matrix forms of Eqs (4.61) and (4.64). If we define the vector DT5 [u,v], then

Eqs (4.61) and (4.64) can be written as

Eu;vðx; yÞ5DTMD and Fu;vðx; yÞ5DTQD (4.66)

where T denotes transpose and where

M5
Aðx; yÞ Cðx; yÞ
Cðx; yÞ Bðx; yÞ
� 	

and Q5
α 0

0 β

� 	
(4.67)

In order to relate Eqs (4.61) and (4.64), we consider that Fu,v(x,y) is obtained

by rotating Eu,v(x,y) by a transformation R that rotates the axis defined by D, i.e.,

Fu;vðx; yÞ5 ðRDÞTMRD (4.68)

This can be arranged as

Fu;vðx; yÞ5DTRTMRD (4.69)

By comparison with Eq. (4.66), we have

Q5RTMR (4.70)

This defines a well-known equation of linear algebra and it means that Q is an

orthogonal decomposition of M. The diagonal elements of Q are called the eigen-

values. We can use Eq. (4.70) to obtain the value of αβ which defines the first

term in Eq. (4.65) by considering the determinant of the matrices, i.e., det(Q)5
det(RT)det(M)det(R). Since R is a rotation matrix det(RT)det(R)5 1, thus

αβ5Aðx; yÞBðx; yÞ2Cðx; yÞ2 (4.71)

which defines the first term in Eq. (4.65). The second term can be obtained by

taking the trace of the matrices on each side of this equation. Thus, we have

α1β5Aðx; yÞ1Bðx; yÞ (4.72)

We can also use Eq. (4.70) to obtain the value of α1 β which defines the first

term in Eq. (4.65). By taking the trace of the matrices in each side of this equa-

tion, we have

κkðx; yÞ5Aðx; yÞBðx; yÞ2Cðx; yÞ2 2 kðAðx; yÞ1Bðx; yÞÞ2 (4.73)

190 CHAPTER 4 Low-level feature extraction (including edge detection)

Code 4.18 shows an implementation for Eqs (4.64) and (4.73). The equation

to be used is selected by the op parameter. Curvature is only computed at edge

points, i.e., at pixels whose edge magnitude is different of zero after applying

maximal suppression. The first part of the code computes the coefficients of the

matrix M. Then, these values are used in the curvature computation.

%Harris Corner Detector
%op=H Harris
%op=M Minimum direction
function outputimage=Harris(inputimage,op)

 w=4; %Window size=2w+1
 k=0.1; %Second term constant

 [rows,columns]=size(inputimage); %Image size
 outputimage=zeros(rows,columns); %Result image

[difx,dify]=Gradient(inputimage); %Differential
 [M,A]=Edges(inputimage); %Edge Suppression
 M=MaxSupr(M,A);

%compute correlation
for x=w+1:columns-w %pixel (x,y)
for y=w+1:rows-w

if M(y,x)~=0
%compute window average
A=0;B=0;C=0;

for i=-w:w
for j=-w:w
A=A+difx(y+i,x+j)^2;
B=B+dify(y+i,x+j)^2;
C=C+difx(y+i,x+j)*dify(y+i,x+j);

end
end

if(op=='H')
outputimage(y,x)=A*B-C^2-k*((A+B)^2);;

else
dx=difx(y,x);
dy=dify(y,x);

if dx*dx+dy*dy~=0
 outputimage(y,x)=((A*dy*dy-
 2*C*dx*dy+B*dx*dx)/(dx*dx+dy*dy));
 end

end
 end

end
end

CODE 4.18

Harris corner detector.

1914.4 Localized feature extraction

Figure 4.39 shows the results of computing curvature using this implementa-

tion. The results are capable of showing the different curvature in the border. We

can observe that κk(x,y) produces more contrast between lines with low and high

curvature than κu,v(x,y). The reason is the inclusion of the second term in

Eq. (4.73). In general, not only the measure of the correlation is useful to compute

curvature but also this technique has much wider application in finding points for

matching pairs of images.

4.4.1.5 Further reading on curvature
Many of the arguments earlier advanced on extensions to edge detection in

Section 4.2 apply to corner detection as well, so the same advice applies. There is

much less attention paid by established textbooks to corner detection though

Davies (2005) devotes a chapter to the topic. van Otterloo’s (1991) fine book on

shape analysis contains a detailed analysis of measurement of (planar) curvature.

There are other important issues in corner detection. It has been suggested that

corner extraction can be augmented by local knowledge to improve performance

(Rosin, 1996). There are actually many other corner detection schemes, each

offering different attributes though with differing penalties. Important work has

focused on characterizing shapes using corners. In a scheme analogous to the pri-

mal sketch introduced earlier, there is a curvature primal sketch (Asada and

Brady, 1986), which includes a set of primitive parameterized curvature disconti-

nuities (such as termination and joining points). There are many other approaches:

one (natural) suggestion is to define a corner as the intersection between two

lines, this requires a process to find the lines; other techniques use methods that

describe shape variation to find corners. We commented that filtering techniques

can be included to improve the detection process; however, filtering can also be

used to obtain a multiple detail representation. This representation is very useful

to shape characterization. A curvature scale space has been developed

(Mokhtarian and Mackworth, 1986; Mokhtarian and Bober, 2003) to give a

(a) κu,v (x, y) (b) κk (x, y)

FIGURE 4.39

Curvature via the Harris operator.

192 CHAPTER 4 Low-level feature extraction (including edge detection)

compact way of representing shapes, and at different scales, from coarse (low

level) to fine (detail) and with the ability to handle appearance transformations.

4.4.2 Modern approaches: region/patch analysis
The modern approaches to local feature extraction aim to relieve some of the con-

straints on the earlier methods of localized feature extraction. This allows for the

inclusion of scale: an object can be recognized irrespective of its apparent size.

The object might also be characterized by a collection of points, and this allows

for recognition where there has been change in the viewing arrangement (in a pla-

nar image an object viewed from a different angle will appear different, but points

which represent it still appear in a similar arrangement). Using arrangements of

points also allows for recognition where some of the image points have been

obscured (because the image contains clutter or noise). In this way, we can

achieve a description which allows for object or scene recognition direct from the

image itself, by exploiting local neighborhood properties.

The newer techniques depend on the notion of scale space: features of interest

are those which persist over selected scales. The scale space is defined by images

which are successively smoothed by the Gaussian filter, as in Eq. (3.38), and then

subsampled to form an image pyramid at different scales, as illustrated in

Figure 4.40 for three levels of resolution. There are approaches which exploit

structure within the scale space to improve speed, as we shall find.

4.4.2.1 Scale invariant feature transform
The Scale invariant feature transform (SIFT) (Lowe, 1999, 2004) aims to resolve

many of the practical problems in low-level feature extraction and their use in

matching images. The earlier Harris operator is sensitive to changes in image

Level 1

Level 2

Level 3

FIGURE 4.40

Illustrating scale space.

1934.4 Localized feature extraction

scale and as such is unsuited to matching images of differing size. The SIFT

transform actually involves two stages: feature extraction and description. The

description stage concerns use of the low-level features in object matching, and

this will be considered later. Low-level feature extraction within the SIFT

approach selects salient features in a manner invariant to image scale (feature

size) and rotation and with partial invariance to change in illumination. Further,

the formulation reduces the probability of poor extraction due to occlusion clutter

and noise. Further, it shows how many of the techniques considered previously

can be combined and capitalized on, to good effect.

First, the difference of Gaussians operator is applied to an image to identify

features of potential interest. The formulation aims to ensure that feature selection

does not depend on feature size (scale) or orientation. The features are then ana-

lyzed to determine location and scale before the orientation is determined by local

gradient direction. Finally the features are transformed into a representation that

can handle variation in illumination and local shape distortion. Essentially, the

operator uses local information to refine the information delivered by standard

operators. The detail of the operations is best left to the source material (Lowe

1999, 2004) for it is beyond the level or purpose here. As such we shall concen-

trate on principle only.

The features detected for the Lena image are illustrated in Figure 4.41. Here,

the major features detected are shown by white lines where the length reflects

magnitude, and the direction reflects the feature’s orientation. These are the major

features which include the rim of the hat, face features, and the boa. The minor

features are the smaller white lines: the ones shown here are concentrated around

a background feature. In the full set of features detected at all scales in this

 (b) Output points with magnitude
and direction

 (a) Original image

FIGURE 4.41

Detecting features with the SIFT operator.

194 CHAPTER 4 Low-level feature extraction (including edge detection)

image, there are many more of the minor features, concentrated particularly in the

textured regions of the image (Figure 4.42). Later, we shall see how this can be

used within shape extraction, but our purpose here is the basic low-level features.

In the first stage, the difference of Gaussians for an image P is computed in

the manner of Eq. (4.28) as

Dðx; y;σÞ5 ðgðx; y; kσÞ2 gðx; y;σÞÞ � P
5 Lðx; y; kσÞ2 Lðx; y; kÞ (4.74)

The function L is actually a scale-space function which can be used to define

smoothed images at different scales. Rather than any difficulty in locating zero-

crossing points, the features are the maxima and minima of the function.

Candidate keypoints are then determined by comparing each point in the function

with its immediate neighbors. The process then proceeds to analysis between the

levels of scale, given appropriate sampling of the scale space. This then implies

comparing a point with its eight neighbors at that scale and with the nine neigh-

bors in each of the adjacent scales, to determine whether it is a minimum or max-

imum, as well as image resampling to ensure comparison between the different

scales.

In order to filter the candidate points to reject those which are the result of

low local contrast (low-edge strength) or which are poorly localized along an

edge, a function is derived by local curve fitting which indicates local edge

strength and stability as well as location. Uniform thresholding then removes the

keypoints with low contrast. Those that have poor localization, i.e., their position

is likely to be influenced by noise, can be filtered by considering the ratio of cur-

vature along an edge to that perpendicular to it, in a manner following the Harris

operator in Section 4.4.1.4, by thresholding the ratio of Eqs (4.71) and (4.72).

In order to characterize the filtered keypoint features at each scale, the gradi-

ent magnitude is calculated in exactly the manner of Eqs (4.12) and (4.13) as

MSIFTðx; yÞ5
ffi
ðLðx1 1; yÞ2 Lðx2 1; yÞÞ2 1 ðLðx; y1 1Þ2 Lðx; y2 1ÞÞ2

q
(4.75)

(a) Original image (b) Keypoints at full
resolution

(c) Keypoints at half
resolution

FIGURE 4.42

SIFT feature detection at different scales.

1954.4 Localized feature extraction

θSIFTðx; yÞ5 tan21 Lðx; y1 1Þ2 Lðx; y2 1Þ
ðLðx1 1; yÞ2 Lðx2 1; yÞÞ

� �
(4.76)

The peak of the histogram of the orientations around a keypoint is then

selected as the local direction of the feature. This can be used to derive a canoni-

cal orientation, so that the resulting descriptors are invariant with rotation. As

such, this contributes to the process which aims to reduce sensitivity to camera

viewpoint and to nonlinear change in image brightness (linear changes are

removed by the gradient operations) by analyzing regions in the locality of the

selected viewpoint. The main description (Lowe, 2004) considers the technique’s

basis in much greater detail and outlines factors important to its performance such

as the need for sampling and performance in noise.

As shown in Figure 4.42, the technique can certainly operate well, and scale is

illustrated by applying the operator to the original image and to one at half the

resolution. In all, 601 keypoints are determined in the original resolution image

and 320 keypoints at half the resolution. By inspection, the major features are

retained across scales (a lot of minor regions in the leaves disappear at lower res-

olution), as expected. Alternatively, the features can of course be filtered further

by magnitude, or even direction (if appropriate). If you want more than results to

convince you, implementations are available for Windows and Linux (http://

www.cs.ubc.ca/spider/lowe/research.html and some of the software sites noted in

Table 1.2)—a feast for any developer. These images were derived by using

siftWin32, version 4.

Note that description is inherent in the process—the standard SIFT keypoint

descriptor is created by sampling the magnitudes and orientations of the image

gradient in the region of the keypoint. An array of histograms, each with orienta-

tion bins, captures the rough spatial structure of the patch. This results in a vector

which was later compressed by using principal component analysis (PCA) (Ke

and Sukthankar, 2004) to determine the most salient features. Clearly this allows

for faster matching than the original SIFT formulation, but the improvement in

performance was later doubted (Mikolajczyk and Schmid, 2005).

4.4.2.2 Speeded up robust features
The central property exploited within SIFT is the use of difference of Gaussians

to determine local features. In a relationship similar to the one between first- and

second-order edge detection, the speeded up robust features (SURF) approach

(Bay et al., 2006, 2008) employs approximations to second-order edge detection

at different scales. The basis of the SURF operator is to use the integral image

approach of Section 2.7.3.2 to provide an efficient means to compute approxima-

tions of second-order differencing, as shown in Figure 4.43. These are the approx-

imations for a LoG operator with σ5 1.2 and represent the finest scale in

the SURF operator. Other approximations can be derived for larger scales, since

the operator—like SIFT—considers features which persist over scale space.

196 CHAPTER 4 Low-level feature extraction (including edge detection)

http://www.cs.ubc.ca/spider/lowe/research.html
http://www.cs.ubc.ca/spider/lowe/research.html

The scale space can be derived by upscaling the approximations (wavelets) using

larger templates which gives for faster execution than the use of smoothing and

resampling in an image to form a pyramidal structure of different scales, which is

more usual in scale-space approaches.

By the Taylor expansion of the image brightness (Eq. (4.59)), we can form a

(Hessian) matrix M (Eq. (4.67)) from which the maxima are used to derive the

features. This is

detðMÞ5 Lxx Lxy
Lxy Lyy

� 	
5 LxxLyy 2w � L2xy (4.77)

where the terms in M arise from the convolution of a second-order derivative of

Gaussian with the image information as

Lxx 5
@2ðgðx; y;σÞÞ

@x2
� Px;y Lxy 5

@2ðgðx; y;σÞÞ
@x@y

� Px;y Lyy 5
@2ðgðx; y;σÞÞ

@y2
� Px;y

(4.78)

and where w is carefully chosen to balance the components of the equation. To

localize interest points in the image and over scales, nonmaximum suppression is

applied in a 33 33 3 neighborhood. The maxima of the determinant of the

Hessian matrix are then interpolated in scale space and in image space and

described by orientations derived using the vertical and horizontal Haar wavelets

described earlier (Section 2.7.3.2). Note that there is an emphasis on the speed of

execution, as well as on performance attributes, and so the generation of the tem-

plates to achieve scale space, the factor w, the interpolation operation to derive

features, and their description are achieved using optimized processes. The devel-

opers have provided downloads for evaluation of SURF from http://www.vision

.ee.ethz.ch/Bsurf/. The performance of the operator is illustrated in Figure 4.44

showing the positions of the detected points for SIFT and for SURF. This shows

that SURF can deliver fewer features, and which persist (and hence can be faster),

whereas SIFT can provide more features (and be slower). As ever, choice depends

(a) Vertical second-order approximation (b) Diagonal second-order approximation

–1

–1

–2

1

1
1

1

FIGURE 4.43

Basis of SURF feature detection.

1974.4 Localized feature extraction

http://www.vision.ee.ethz.ch/∼surf/
http://www.vision.ee.ethz.ch/∼surf/
http://www.vision.ee.ethz.ch/∼surf/

on application—both techniques are available for evaluation and there are public

domain implementations.

4.4.2.3 Saliency
The saliency operator (Kadir and Brady, 2001) was also motivated by the need to

extract robust and relevant features. In the approach, regions are considered

salient if they are simultaneously unpredictable both in some feature and scale

space. Unpredictability (rarity) is determined in a statistical sense, generating a

space of saliency values over position and scale, as a basis for later understand-

ing. The technique aims to be a generic approach to scale and saliency compared

to conventional methods, because both are defined independent of a particular

basis morphology, which means that it is not based on a particular geometric fea-

ture like a blob, edge, or corner. The technique operates by determining the

entropy (a measure of rarity) within patches at scales of interest and the saliency

is a weighted summation of where the entropy peaks. The method has practical

capability in that it can be made invariant to rotation, translation, nonuniform

scaling, and uniform intensity variations and robust to small changes in view-

point. An example result of processing the image in Figure 4.45(a) is shown in

Figure 4.45(b) where the 200 most salient points are shown circled, and the radius

of the circle is indicative of the scale. Many of the points are around the walking

subject and others highlight significant features in the background, such as the

waste bins, the tree, or the time index. An example use of saliency was within an

approach to learn and recognize object class models (such as faces, cars, or ani-

mals) from unlabeled and unsegmented cluttered scenes, irrespective of their

overall size (Fergus et al., 2003). For further study and application, descriptions

and Matlab binaries are available from Kadir’s web site (http://www.robots.ox.ac

.uk/Btimork/).

4.4.2.4 Other techniques and performance issues
There has been a recent comprehensive performance review (Mikolajczyk and

Schmid, 2005) comparing based operators. The techniques which were compared

(a) SIFT (b) SURF

FIGURE 4.44

Comparing features detected by SIFT and SURF.

198 CHAPTER 4 Low-level feature extraction (including edge detection)

http://www.robots.ox.ac.uk/∼timork/
http://www.robots.ox.ac.uk/∼timork/
http://www.robots.ox.ac.uk/∼timork/

include SIFT, differential derivatives by differentiation, cross correlation for

matching, and a gradient location and orientation-based histogram (an extension

to SIFT, which performed well)—the saliency approach was not included. The

criterion used for evaluation concerned the number of correct matches, and

the number of false matches, between feature points selected by the techniques.

The matching process was between an original image and one of the same scene

when subject to one of six image transformations. The image transformations cov-

ered practical effects that can change image appearance and were rotation, scale

change, viewpoint change, image blur, JPEG compression, and illumination. For

some of these there were two scene types available, which allowed for separation

of understanding of scene type and transformation. The study observed that,

within its analysis, “the SIFT-based descriptors perform best,” but it is of course

a complex topic and selection of technique is often application dependent. Note

that there is further interest in performance evaluation and in invariance to higher

order changes in viewing geometry, such as invariance to affine and projective

transformation. There are other comparisons available, either with new operators

or in new applications and there (inevitably) are faster implementations too. One

survey covers the field in more detail (Tuytelaars and Mikolajczyk, 2007), con-

cerning principle and performance analysis.

4.5 Describing image motion
We have looked at the main low-level features that we can extract from a single

image. In the case of motion, we must consider more than one image. If we have

two images obtained at different times, the simplest way in which we can detect

(b) Top 200 saliency matches circled(a) Original image

FIGURE 4.45

Detecting features by saliency.

1994.5 Describing image motion

motion is by image differencing. That is, changes or motion can be located by sub-

tracting the intensity values; when there is no motion, the subtraction will give a

zero value, and when an object in the image moves, their pixel’s intensity changes,

and so the subtraction will give a value different of zero. There are links in this sec-

tion, which determines detection of movement, to later material in Chapter 9 which

concerns detecting the moving object and tracking its movement.

In order to denote a sequence of images, we include a time index in our previ-

ous notation, i.e., P(t)x,y. Thus, the image at the origin of our time is P(0)x,y and

the next image is P(1)x,y. As such the image differencing operation which deliv-

ered the difference image D is given by

DðtÞ5PðtÞ2Pðt2 1Þ (4.79)

Figure 4.46 shows an example of this operation. The image in Figure 4.46(a)

is the result of subtracting the image in Figure 4.46(b) from the one in

Figure 4.46(c). Naturally, this shows rather more than just the bits which are mov-

ing; we have not just highlighted the moving subject but we have also highlighted

bits above the subject’s head and around feet. This is due mainly to change in the

lighting (the shadows around the feet are to do with the subject’s interaction with

the lighting). However, perceived change can also be due to motion of the camera

and to the motion of other objects in the field of view. In addition to these inaccu-

racies, perhaps the most important limitation of differencing is the lack of infor-

mation about the movement itself. That is, we cannot see exactly how image

points have moved. In order to describe the way the points in an image actually

move, we should study how the pixels’ position changes in each image frame.

4.5.1 Area-based approach
When a scene is captured at different times, 3D elements are mapped into corre-

sponding pixels in the images. Thus, if image features are not occluded, they can

be related to each other and motion can be characterized as a collection of dis-

placements in the image plane. The displacement corresponds to the projection of

(a) Difference image D (b) First image (c) Second image

FIGURE 4.46

Detecting motion by differencing.

200 CHAPTER 4 Low-level feature extraction (including edge detection)

movement of the objects in the scene and it is referred to as the optical flow. If

you were to take an image, and its optical flow, you should be able to construct

the next frame in the image sequence. So optical flow is like a measurement of

velocity, the movement in pixels per unit of time, more simply pixels per frame.

Optical flow can be found by looking for corresponding features in images. We

can consider alternative features such as points, pixels, curves, or complex

descriptions of objects.

The problem of finding correspondences in images has motivated the develop-

ment of many techniques that can be distinguished by the features, by the con-

straints imposed, and by the optimization or searching strategy (Dhond and

Aggarwal, 1989). When features are pixels, the correspondence can be found by

observing the similarities between intensities in image regions (local neighbor-

hood). This approach is known as area-based matching and it is one of the most

common techniques used in computer vision (Barnard and Fichler, 1987). In gen-

eral, pixels in nonoccluded regions can be related to each other by means of a

general transformation of the form by

Pðt1 1Þx1δx;y1δy 5PðtÞx;y 1HðtÞx;y (4.80)

where the function H(t)x,y compensates for intensity differences between the

images, and (δx,δy) defines the displacement vector of the pixel at time t1 1.

That is, the intensity of the pixel in the frame at time t1 1 is equal to the inten-

sity of the pixel in the position (x,y) in the previous frame plus some small change

due to physical factors and temporal differences that induce the photometric

changes in images. These factors can be due, for example, to shadows, specular

reflections, differences in illumination, or changes in observation angles. In a gen-

eral case, it is extremely difficult to account for the photometric differences; thus

the model in Eq. (4.80) is generally simplified by assuming that

1. the brightness of a point in an image is constant and

2. the neighboring points move with similar velocity.

According to the first assumption, H(x) � 0. Thus,

Pðt1 1Þx1δx;y1δy 5PðtÞx;y (4.81)

Many techniques have used this relationship to express the matching process

as an optimization or variational problem (Jordan and Bovik, 1992). The objective

is to find the vector (δx,δy) that minimizes the error given by

ex;y 5 SðPðt1 1Þx1δx;y1δy;PðtÞx;yÞ (4.82)

where S() represents a function that measures the similarity between pixels. As

such, the optimum is given by the displacements that minimize the image differ-

ences. There are alternative measures of similarity that can be used to define the

matching cost (Jordan and Bovik, 1992). For example, we can measure the differ-

ence by taking the absolute of the arithmetic difference. Alternatively, we can

2014.5 Describing image motion

consider the correlation or the squared values of the difference or an equivalent

normalized form. In practice, it is difficult to try to establish a conclusive advan-

tage of a particular measure, since they will perform differently depending on the

kind of image, the kind of noise, and the nature of the motion we are observing.

As such, one is free to use any measure as long as it can be justified based on par-

ticular practical or theoretical observations. The correlation and the squared dif-

ference will be explained in more detail in the next chapter when we consider

how a template can be located in an image. We shall see that if we want to make

the estimation problem in Eq. (4.82) equivalent to maximum likelihood estima-

tion, then we should minimize the squared error, i.e.,

ex;y 5 ðPðt1 1Þx1δx;y1δy;PðtÞx;yÞ2 (4.83)

In practice, the implementation of the minimization is extremely prone to error

since the displacement is obtained by comparing intensities of single pixel; it is

very likely that the intensity changes or that a pixel can be confused with other

pixels. In order to improve the performance, the optimization includes the second

assumption presented above. If neighboring points move with similar velocity, we

can determine the displacement by considering not just a single pixel, but pixels

in a neighborhood. Thus,

ex;y 5
X

ðx0 ;y0ÞAW

ðPðt1 1Þx01δx;y01δy;PðtÞx0 ;y0 Þ2 (4.84)

That is the error in the pixel at position (x,y) is measured by comparing all the

pixels (x0,y0) in a window W. This makes the measure more stable by introducing

an implicit smoothing factor. The size of the window is a compromise between

noise and accuracy. Naturally, the automatic selection of the window parameter

has attracted some interest (Kanade and Okutomi, 1994). Another important prob-

lem is the amount of computation involved in the minimization when the dis-

placement between frames is large. This has motivated the development of

hierarchical implementations. As you can envisage, other extensions have consid-

ered more elaborate assumptions about the speed of neighboring pixels.

A straightforward implementation of the minimization of the square error is

presented in Code 4.19. This function has a pair of parameters that define the

maximum displacement and the window size. The optimum displacement for

each pixel is obtained by comparing the error for all the potential integer dis-

placements. In a more complex implementation, it is possible to obtain displace-

ments with subpixel accuracy (Lawton, 1983). This is normally achieved by a

postprocessing step based on subpixel interpolation or by matching surfaces

obtained by fitting the data at the integer positions. The effect of the selection of

different window parameters can be seen in the example shown in Figure 4.47.

Figure 4.47(a) and (b) shows an object moving up into a static background (at

least for the two frames we are considering). Figure 4.47(c)�(e) shows the dis-

placements obtained by considering windows of increasing size. Here, we can

202 CHAPTER 4 Low-level feature extraction (including edge detection)

observe that as the size of the window increases, the result is smoother, but we

lost detail about the boundary of the object. We can also observe that when the

window is small, there are noisy displacements near the object’s border. This can

be explained by considering that Eq. (4.80) suppose that pixels appear in both

%Optical flow by correlation
%d: max displacement., w:window size 2w+1
function FlowCorr(inputimage1,inputimage2,d,w)

%Load images
L1=double(imread(inputimage1, 'bmp'));
L2=double(imread(inputimage2,'bmp'));

%image size
[rows,columns]=size(L1); %L2 must have the same size

%result image
u=zeros(rows,columns);
v=zeros(rows,columns);

sum=0;
for i=-w:w% window

 %correlation for each pixel
for x1=w+d+1:columns-w-d
 for y1=w+d+1:rows-w-d

 min=99999; dx=0; dy=0;
 %displacement position
 for x2=x1-d:x1+d
 for y2=y1-d:y1+d

 for j=-w:w
sum=sum+(double(L1(y1+j,x1+i))-

double(L2(y2+j,x2+i)))^2;
 end
end
if (sum<min)
 min=sum;
 dx=x2-x1; dy=y2-y1;

 end
 end

 end
 u(y1,x1)=dx;
 v(y1,x1)=dy;

end
end

%display result
quiver(u,v,.1);

CODE 4.19

Implementation of area-based motion computation.

2034.5 Describing image motion

images, but this is not true near the border since pixels appear and disappear (i.e.,

occlusion) from and behind the moving object. Additionally, there are problems

in regions that lack intensity variations (texture). This is because the minimization

function in Eq. (4.83) is almost flat and there is no clear evidence of the motion.

In general, there is no effective way of handling these problems since they are

due to the lack of information in the image.

4.5.2 Differential approach
Another popular way to estimate motion focuses on the observation of the differ-

ential changes in the pixel values. There are actually many ways of calculating

the optical flow by this approach (Nagel, 1987; Barron et al., 1994). We shall dis-

cuss one of the more popular techniques (Horn and Schunk, 1981). We start by

considering the intensity equity in Eq. (4.81). According to this, the brightness at

the point in the new position should be the same as the brightness at the old posi-

tion. Like Eq. (4.5), we can expand P(t1 δt)x1δx,y1δy by using a Taylor series as

Pðt1 δtÞx1δx;y1δy 5PðtÞx;y 1 δx
@PðtÞx;y
@x

1 δy
@PðtÞx;y
@y

1 δt
@PðtÞx;y

@t
1 ξ (4.85)

(c) Window size 3 (d) Window size 5 (e) Window size 11

(a) First image (b) Second image

FIGURE 4.47

Example of area-based motion computation.

204 CHAPTER 4 Low-level feature extraction (including edge detection)

where ξ contains higher order terms. If we take the limit as δt-0, then we can

ignore ξ as it also tends to zero and the equation becomes

Pðt1 δtÞx1δx;y1δy 5PðtÞx;y 1 δx
@PðtÞx;y
@x

1 δy
@PðtÞx;y
@y

1 δt
@PðtÞx;y

@t
(4.86)

Now by substituting Eq. (4.81) for P(t1 δt)x1δx,y1δy, we get

PðtÞx;y 5PðtÞx;y 1 δx
@PðtÞx;y
@x

1 δy
@PðtÞx;y
@y

1 δt
@PðtÞx;y

@t
(4.87)

which with some rearrangement gives the motion constraint equation

δx
δt

@P

@x
1

δy
δt

@P

@y
52

@P

@t
(4.88)

We can recognize some terms in this equation. @P/@x and @P/@y are the first-

order differentials of the image intensity along the two image axes. @P/@t is the

rate of change of image intensity with time. The other two factors are the ones

concerned with optical flow, as they describe movement along the two image

axes. Let us call

u5
δx
δt

and v5
δy
δt

These are the optical flow components: u is the horizontal optical flow and v

is the vertical optical flow. We can write these into our equation to give

u
@P

@x
1 v

@P

@y
52

@P

@t
(4.89)

This equation suggests that the optical flow and the spatial rate of intensity

change together describe how an image changes with time. The equation can

actually be expressed more simply in vector form in terms of the intensity change

rP5 [rx ry]5 [@P/@x @P/@y] and the optical flow v5 [u v]T, as the dot product

rP � v52 P
�

(4.90)

We already have operators that can estimate the spatial intensity change,

rx5 @P/@x and ry5 @P/@y, by using one of the edge-detection operators

described earlier. We also have an operator which can estimate the rate of change

of image intensity, rt5 @P/@t, as given by Eq. (4.79). Unfortunately, we cannot

determine the optical flow components from Eq. (4.89) since we have one equa-

tion in two unknowns (there are many possible pairs of values for u and v that sat-

isfy the equation). This is actually called the aperture problem and makes

the problem ill-posed. Essentially, we seek estimates of u and v that minimize the

error in Eq. (4.92) over the entire image. By expressing Eq. (4.89) as

urx1 vry1rt5 0 (4.91)

2054.5 Describing image motion

we seek estimates of u and v that minimize the error ec for all the pixels in an image:

ec5

ZZ
ðurx1 vry1rtÞ2dx dy (4.92)

We can approach the solution (equations to determine u and v) by considering

the second assumption we made earlier, namely that neighboring points move with

similar velocity. This is actually called the smoothness constraint as it suggests

that the velocity field of the brightness varies in a smooth manner without abrupt

change (or discontinuity). If we add this in to the formulation, we turn a problem

that is ill-posed, without unique solution, to one that is well-posed. Properly, we

define the smoothness constraint as an integral over the area of interest, as in

Eq. (4.92). Since we want to maximize smoothness, we seek to minimize the rate

of change of the optical flow. Accordingly, we seek to minimize an integral of the

rate of change of flow along both axes. This is an error es and expressed as

es5

ZZ
@u

@x

� �2
1

@u

@y

� �2
1

@v

@x

� �2
1

@v

@y

� �2 !
dx dy (4.93)

The total error is the compromise between the importance of the assumption

of constant brightness and the assumption of smooth velocity. If this compromise

is controlled by a regularization parameter λ, then the total error e is

e5λ3ec1es

5

ZZ
λ3 u

@P

@x
1v

@P

@y
1
@P

@t

0
@

1
A
2

1
@u

@x

0
@

1
A
2

1
@u

@y

0
@

1
A
2

1
@v

@x

0
@

1
A
2

1
@v

@y

0
@

1
A
20

@
1
A

0
@

1
Adxdy

(4.94)

There is a number of ways to approach the solution (Horn, 1986), but the

most appealing is perhaps also the most direct. We are concerned with providing

estimates of optical flow at image points. So we are actually interested in comput-

ing the values for ux,y and vx,y. We can form the error at image points, like esx,y.

Since we are concerned with image points, we can form esx,y by using first-order

differences, just like Eq. (4.1). Equation (4.93) can be implemented in discrete

form as

esx;y5
X
x

X
y

1

4
ððux11;y2ux;yÞ21 ðux;y112ux;yÞ21 ðvx11;y2 vx;yÞ21 ðvx;y112 vx;yÞ2Þ

(4.95)

The discrete form of the smoothness constraint is that the average rate of

change of flow should be minimized. To obtain the discrete form of Eq. (4.94),

we add in the discrete form of ec (the discrete form of Eq. (4.92)) to give

ecx;y 5
X
x

X
y

ðux;yrxx;y 1 vx;yryx;y 1rtx;yÞ2 (4.96)

206 CHAPTER 4 Low-level feature extraction (including edge detection)

where rxx,y5 @Px,y/@x, ryx,y5 @Px,y/@y, and rtx,y5 @Px,y/@t are local estimates, at

the point with coordinates (x,y), of the rate of change of the picture with horizon-

tal direction, vertical direction, and time, respectively. Accordingly, we seek

values for ux,y and vx,y that minimize the total error e as given by

ex;y5
X
x

X
y

ðλ3ecx;y1esx;yÞ

5
X
x

X
y

λ3ðux;yrxx;y1vx;yryx;y1rtx;yÞ21
1

4
ððux11;y2ux;yÞ21ðux;y112ux;yÞ21ðvx11;y2vx;yÞ21ðvx;y112vx;yÞ2Þ

0
B@

1
CA

(4.97)

Since we seek to minimize this equation with respect to ux,y and vx,y, we differ-

entiate it separately, with respect to the two parameters of interest, and the resulting

equations when equated to zero should yield the equations we seek. As such

@ex;y
@ux;y

5 ðλ3 2ðux;yrxx;y 1 vx;yryx;y 1rtx;yÞrxx;y 1 2ðux;y 2 ux;yÞÞ5 0 (4.98)

and

@ex;y
@vx;y

5 ðλ3 2ðux;yrxx;y 1 vx;yryx;y 1rtx;yÞryx;y 1 2ðvx;y 2 vx;yÞÞ5 0 (4.99)

This gives a pair of equations in ux,y and vx,y:

ð11λðrxx;yÞ2Þux;y 1λrxx;yryx;yvx;y 5 ux;y 2λrxx;yrtx;y
λrxx;yryx;yux;y 1ð11λðryx;yÞ2Þvx;y 5 vx;y 2λrxx;yrtx;y (4.100)

This is a pair of equations in u and v with solution

ð11λððrxx;yÞ21 ðryx;yÞ2ÞÞux;y5 ð11λðryx;yÞ2Þux;y2λrxx;yryx;yvx;y2λrxx;yrtx;y
ð11λððrxx;yÞ21 ðryx;yÞ2Þvx;y52λrxx;yryx;yux;y1ð11λðrxx;yÞ2Þvx;y2λryx;yrtx;y

(4.101)

The solution to these equations is in iterative form where we shall denote the

estimate of u at iteration n as u, n. , so each iteration calculates new values for

the flow at each point according to

u, n11.
x;y 5 u, n.

x;y 2λ
rxx;yux;y 1ryx;yvx;y 1rtx;y

ð11λðrx2x;y 1ry2x;yÞÞ

0
@

1
Aðrxx;yÞ

v, n11.
x;y 5 v, n.

x;y 2λ
rxx;yux;y 1ryx;yvx;y 1rtx;y

ð11λðrx2x;y 1ry2x;yÞÞ

0
@

1
Aðryx;yÞ

(4.102)

Now, the pair of equations gives iterative means for calculating the images of

optical flow based on differentials. In order to estimate the first-order

2074.5 Describing image motion

differentials, rather than using our earlier equations, we can consider neighboring

points in quadrants in successive images. This gives approximate estimates of the

gradient based on the two frames, i.e.,

rxx;y 5
ðPð0Þx11;y 1Pð1Þx11;y 1Pð0Þx11;y11 1Pð1Þx11;y11Þ

2 ðPð0Þx;y 1Pð1Þx;y 1Pð0Þx;y11 1Pð1Þx;y11Þ
8

ryx;y 5
ðPð0Þx;y11 1Pð1Þx;y11 1Pð0Þx11;y11 1Pð1Þx11;y11Þ

2 ðPð0Þx;y 1Pð1Þx;y 1Pð0Þx11;y 1Pð1Þx11;yÞ
8

(4.103)

In fact, in a later reflection on the earlier presentation, Horn and Schunk

(1993) noted with rancor that some difficulty experienced with the original tech-

nique had actually been caused by use of simpler methods of edge detection

which are not appropriate here, as the simpler versions do not deliver a correctly

positioned result between two images. The time differential is given by the differ-

ence between the two pixels along the two faces of the cube as

rtx;y 5
ðPð1Þx;y 1Pð1Þx11;y 1Pð1Þx;y11 1Pð1Þx11;y11Þ

2 ðPð0Þx;y 1Pð0Þx11;y 1Pð0Þx;y11 1Pð0Þx11;y11Þ
8

(4.104)

Note that if the spacing between the images is other than one unit, this will

change the denominator in Eqs (4.103) and (4.104), but this is a constant scale

factor. We also need means to calculate the averages. These can be computed as

ux;y 5
ux21;y 1 ux;y21 1 ux11;y 1 ux;y11

2
1

ux21;y21 1 ux21;y11 1 ux11;y21 1 ux11;y11

4

vx;y 5
vx21;y 1 vx;y21 1 vx11;y 1 vx;y11

2
1

vx21;y21 1 vx21;y11 1 vx11;y21 1 vx11;y11

4

(4.105)

The implementation of the computation of optical flow by the iterative solu-

tion in Eq. (4.102) is presented in Code 4.20. This function has two parameters

that define the smoothing parameter and the number of iterations. In the imple-

mentation, we use the matrices u, v, tu, and tv to store the old and new estimates

in each iteration. The values are updated according to Eq. (4.102). Derivatives

and averages are computed by using simplified forms of Eqs (4.103)�(4.105). In

a more elaborate implementation, it is convenient to include averages as we dis-

cussed in the case of single image feature operators. This will improve the accu-

racy and will reduce noise. Additionally, since derivatives can only be computed

for small displacements, generally, gradient algorithms are implemented with a

hierarchical structure. This will enable the computation of displacements larger

than one pixel.

208 CHAPTER 4 Low-level feature extraction (including edge detection)

%Optical flow by gradient method
%s = smoothing parameter
%n = number of iterations
function OpticalFlow(inputimage1,inputimage2,s,n)

%Load images
L1=double(imread(inputimage1, 'bmp'));
L2=double(imread(inputimage2, 'bmp'));

%Image size
[rows,columns]=size(I1); %I2 must have the same size

%Result flow
u=zeros(rows,columns);
v=zeros(rows,columns);

%Temporal flow
tu=zeros(rows,columns);
tv=zeros(rows,columns);

Ey=(L1(y+1,x)-L1(y,x)+L2(y+1,x)-L2(y,x)+L1(y+1,x+1)
 -L1(y,x+1)+L2(y+1,x+1)-L2(y,x+1))/4;
Et=(L2(y,x)-L1(y,x)+L2(y+1,x)-L1(y+1,x)+L2(y,x+1)
 -L1(y,x+1)+L2(y+1,x+1)-L1(y+1,x+1))/4;
%average
AU=(u(y,x-1)+u(y,x+1)+u(y-1,x)+u(y+1,x))/4;
AV=(v(y,x-1)+v(y,x+1)+v(y-1,x)+v(y+1,x))/4;
%update estimates

%Flow computation
for k=1:n %iterations
 for x=2:columns-1
 for y=2:rows-1
 %derivatives

Ex=(L1(y,x+1)-L1(y,x)+L2(y,x+1)-L2(y,x)+L1(y+1,x+1)
 -L1(y+1,x)+L2(y+1,x+1)-L2(y+1,x))/4;

A=(Ex*AU+Ey*AV+Et);
B=(1+s*(Ex*Ex+Ey*Ey));
tu(y,x)= AU-(Ex*s*A/B);
tv(y,x)= AV-(Ey*s*A/B);
end%for (x,y)

end
%update
for x=2:columns-1

for y=2:rows-1
u(y,x)=tu(y,x); v(y,x)=tv(y,x);

end %for (x,y)
end

end %iterations

%display result
quiver(u,v,1);

CODE 4.20

Implementation of gradient-based motion.

2094.5 Describing image motion

Figure 4.48 shows some examples of optical flow computation. In these exam-

ples, we used the same images as in Figure 4.47. The first row in the

figure shows three results obtained by different number of iterations and fixed

smoothing parameter. In this case, the estimates converged quite quickly. Note

that at the start, the estimates of flow in are quite noisy, but they quickly improve;

as the algorithm progresses, the results are refined and a more smooth and accu-

rate motion is obtained. The second row in Figure 4.48 shows the results for a

fixed number of iterations and a variable smoothing parameter. The regularization

parameter controls the compromise between the detail and the smoothness. A

large value of λ will enforce the smoothness constraint whereas a small value

will make the brightness constraint dominate the result. In the results, we can

observe that the largest vectors point in the expected direction, upward, while

some of the smaller vectors are not exactly correct. This is because there are

occlusions and some regions have similar textures. Clearly, we could select the

brightest of these points by thresholding according to magnitude. That would

leave the largest vectors (the ones which point in exactly the right direction).

Optical flow has been used in automatic gait recognition (Little and Boyd,

1998; Huang et al., 1999) among other applications, partly because the displace-

ments can be large between successive images of a walking subject, which makes

(d) λ = 0.001

(a) 2 iterations (b) 4 iterations (c) 10 iterations

(e) λ = 0.1 (f) λ = 10.0

FIGURE 4.48

Example of differential-based motion computation.

210 CHAPTER 4 Low-level feature extraction (including edge detection)

the correlation approach suitable (note that fast versions of area-based correspon-

dence are possible; Zabir and Woodfill, 1994). Figure 4.49 shows the result for a

walking subject where brightness depicts magnitude (direction is not shown).

Figure 4.49(a) shows the result for the differential approach, where the flow is

clearly more uncertain than that produced by the correlation approach shown in

Figure 4.49(b). Another reason for using the correlation approach is that we are

not concerned with rotation as people (generally!) walk along flat surfaces. If

360� rotation is to be considered then you have to match regions for every rota-

tion value and this can make the correlation-based techniques computationally

very demanding indeed.

4.5.3 Further reading on optical flow
Determining optical flow does not get much of a mention in the established text-

books, even though it is a major low-level feature description. Rather naturally, it

is to be found in depth in one of its early proponent’s textbooks (Horn, 1986).

One approach to motion estimation has considered the frequency domain

(Adelson and Bergen, 1985) (yes, Fourier transforms get everywhere!). For a fur-

ther overview of dense optical flow, see Bulthoff et al. (1989) and for implemen-

tation, see Little et al. (1988). The major survey (Beauchemin and Barron, 1995)

of the approaches to optical flow is rather dated now, as is their performance

appraisal (Barron et al., 1994). Such an (accuracy) appraisal is particularly useful

in view of the number of ways there are to estimate it. The nine techniques stud-

ied included the differential approach we have discussed here, a Fourier technique

and a correlation-based method. Their conclusion was that a local differential

(a) Flow by differential approach (b) Flow by correlation

FIGURE 4.49

Optical flow of walking subject.

2114.5 Describing image motion

method (Lucas and Kanade, 1981) and a phase-based method (Fleet and Jepson,

1990) offered the most consistent performance on the datasets studied. However,

there are many variables not only in the data but also in implementation that

might lead to preference for a particular technique. Clearly, there are many impe-

diments to the successful calculation of optical flow such as change in illumina-

tion or occlusion (and by other moving objects). An updated study (Baker et al.,

2007) concentrated on developing the database and the evaluation methodology,

comparing five more recent algorithms (though one was derived from Windows

Media Player). The study refined and extended the evaluation methodology in

terms of performance metrics and widened dissemination. A later version of the

work (Baker et al., 2009) has a more extensive analysis than the earlier (confer-

ence) paper and there is a web site associated with the work to which developers

can submit their work and where its performance is evaluated. One conclusion is

that none of the methods was a clear winner on all of the datasets evaluated, though

the overall aim of the study was to stimulate further development of technique, as

well as performance analysis. Clearly, the web site http://vision.middlebury.edu/

flow/ is an important port of call for any developer or user of optical flow

algorithms.

4.6 Further reading
This chapter has covered the main ways to extract low-level feature information.

In some cases, this can prove sufficient for understanding the image. Often

though, the function of low-level feature extraction is to provide information for

later higher level analysis. This can be achieved in a variety of ways, with advan-

tages and disadvantages and quickly or at a lower speed (or requiring a faster pro-

cessor/more memory!). The range of techniques presented here has certainly

proved sufficient for the majority of applications. There are other, more minor

techniques, but the main approaches to boundary, corner, feature, and motion

extraction have proved sufficiently robust and with requisite performance that

they shall endure for some time. Given depth and range, the further reading for

each low-level operation is to be found at the end of each section.

We now move on to using this information at a higher level. This means col-

lecting the information so as to find shapes and objects, the next stage in under-

standing the image’s content.

4.7 References
Adelson, E.H., Bergen, J.R., 1985. Spatiotemporal energy models for the perception of

motion. J. Opt. Soc. Am. A2 (2), 284�299.

Apostol, T.M., 1966. Calculus, second ed. Xerox College Publishing, Waltham, MA, 1.

Asada, H., Brady, M., 1986. The curvature primal sketch. IEEE Trans. PAMI 8 (1), 2�14.

212 CHAPTER 4 Low-level feature extraction (including edge detection)

http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/flow/

Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R., 2007. A database

and evaluation methodology for optical flow. Proceedings of the Eleventh ICCV, 8pp.

Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R., 2009. A

database and evaluation methodology for optical flow. Microsoft Research Technical

Report MSR-TR-2009-179. , http://research.microsoft.com/apps/pubs/default.aspx?

id5117766\. .

Barnard, S.T., Fichler, M.A., 1987. Stereo vision. Encyclopedia of Artificial Intelligence.

Wiley, New York, NY, pp. 1083�2090.

Barron, J.L., Fleet, D.J., Beauchemin, S.S., 1994. Performance of optical flow techniques.

Int. J. Comput. Vis. 12 (1), 43�77.

Bay, H., Tuytelaars, T., Van Gool, L., 2006. SURF: Speeded Up Robust Features.

Proceedings of the ECCV 2006, pp. 404�417.

Bay, H., Eas, A., Tuytelaars, T., Van Gool, L., 2008. Speeded-Up Robust Features

(SURF). Comput. Vis. Image Und. 110 (3), 346�359.

Beauchemin, S.S., Barron, J.L., 1995. The computation of optical flow. Commun. ACM,

433�467.

Bennet, J.R., MacDonald, J.S., 1975. On the measurement of curvature in a quantised envi-

ronment. IEEE Trans. Comput. C-24 (8), 803�820.

Bergholm, F., 1987. Edge focussing. IEEE Trans. PAMI 9 (6), 726�741.

Bovik, A.C., Huang, T.S., Munson, D.C., 1987. The effect of median filtering on edge esti-

mation and detection. IEEE Trans. PAMI 9 (2), 181�194.

Bulthoff, H., Little, J., Poggio, T., 1989. A parallel algorithm for real-time computation of

optical flow. Nature 337 (9), 549�553.

Canny, J., 1986. A computational approach to edge detection. IEEE Trans. PAMI 8 (6),

679�698.

Clark, J.J., 1989. Authenticating edges produced by zero-crossing algorithms. IEEE Trans.

PAMI 11 (1), 43�57.

Davies, E.R., 2005. Machine Vision: Theory, Algorithms and Practicalities, Morgan

Kaufmann (Elsevier), third ed.

Deriche, R., 1987. Using Canny’s criteria to derive a recursively implemented optimal

edge detector. Int. J. Comput. Vis. 1, 167�187.

Dhond, U.R., Aggarwal, J.K., 1989. Structure from stereo—a review. IEEE Trans. SMC 19

(6), 1489�1510.

Fergus, R., Perona, P., Zisserman, A., 2003. Object class recognition by unsupervised

scale-invariant learning. Proc. CVPR II, 264�271.

Fleet, D.J., Jepson, A.D., 1990. Computation of component image velocity from local

phase information. Int. J. Comput. Vis. 5 (1), 77�104.

Forshaw, M.R.B., 1988. Speeding up the Marr�Hildreth edge operator. CVGIP 41,

172�185.

Goetz, A., 1970. Introduction to Differential Geometry. Addison-Wesley, Reading, MA.

Grimson, W.E.L., Hildreth, E.C., 1985. Comments on digital step edges from zero cross-

ings of second directional derivatives. IEEE Trans. PAMI 7 (1), 121�127.

Groan, F., Verbeek, P., 1978. Freeman-code probabilities of object boundary quantized

contours. CVGIP 7, 391�402.

Gunn, S.R., 1999. On the discrete representation of the Laplacian of Gaussian. Pattern

Recog. 32 (8), 1463�1472.

2134.7 References

http://www.research.microsoft.com/apps/pubs/default.aspx?id=117766
http://www.research.microsoft.com/apps/pubs/default.aspx?id=117766
http://www.research.microsoft.com/apps/pubs/default.aspx?id=117766
http://www.research.microsoft.com/apps/pubs/default.aspx?id=117766
http://www.research.microsoft.com/apps/pubs/default.aspx?id=117766

Haddon, J.F., 1988. Generalised threshold selection for edge detection. Pattern Recog. 21

(3), 195�203.

Haralick, R.M., 1984. Digital step edges from zero-crossings of second directional deriva-

tives. IEEE Trans. PAMI 6 (1), 58�68.

Haralick, R.M., 1985. Author’s reply. IEEE Trans. PAMI 7 (1), 127�129.

Harris, C., Stephens, M., 1988. A combined corner and edge detector. Proceedings of the

Fourth Alvey Vision Conference, pp. 147�151.

Heath, M.D., Sarkar, S., Sanocki, T., Bowyer, K.W., 1997. A robust visual method of

assessing the relative performance of edge detection algorithms. IEEE Trans. PAMI 19

(12), 1338�1359.

Horn, B.K.P., 1986. Robot Vision. MIT Press, Cambridge, MA.

Horn, B.K.P., Schunk, B.G., 1981. Determining optical flow. Artif. Intell. 17, 185�203.

Horn, B.K.P., Schunk, B.G., 1993. Determining optical flow: a retrospective. Artif. Intell.

59, 81�87.

Huang, P.S., Harris, C.J., Nixon, M.S., 1999. Human Gait Recognition in Canonical Space

using Temporal Templates. IEE Proc. Vis. Image Signal Process. 146 (2), 93�100.

Huertas, A., Medioni, G., 1986. Detection of intensity changes with subpixel accuracy

using Laplacian�Gaussian masks. IEEE Trans. PAMI 8 (1), 651�664.

Jia, X., Nixon, M.S., 1995. Extending the feature vector for automatic face recognition.

IEEE Trans. PAMI 17 (12), 1167�1176.

Jordan III, J.R., Bovik, A.C., 1992. Using chromatic information in dense stereo correspon-

dence. Pattern Recog. 25, 367�383.

Kadir, T., Brady, M., 2001. Scale, saliency and image description. Int. J. Comput. Vis. 45

(2), 83�105.

Kanade, T., Okutomi, M., 1994. A stereo matching algorithm with an adaptive window:

theory and experiment. IEEE Trans. PAMI 16, 920�932.

Kass, M., Witkin, A., Terzopoulos, D., 1988. Snakes: active contour models. Int. J.

Comput. Vis. 1 (4), 321�331.

Ke, Y., Sukthankar, R., 2004. PCA�SIFT: a more distinctive representation for local

image descriptors. Proceedings CVPR 2004, II, pp. 506�513.

Kitchen, L., Rosenfeld, A., 1982. Gray-level corner detection. Pattern Recog. Lett. 1 (2),

95�102.

Korn, A.F., 1988. Toward a symbolic representation of intensity changes in images. IEEE

Trans. PAMI 10 (5), 610�625.

Kovesi, P., 1999. Image features from phase congruency. Videre: J. Comput. Vis. Res. 1

(3), 1�27.

Lawton, D.T., 1983. Processing translational motion sequences. CVGIP 22, 116�144.

Lindeberg, T., 1994. Scale-space theory: a basic tool for analysing structures at different

scales. J. Appl. Statistic. 21 (2), 224�270.

Little, J.J., Boyd, J.E., 1998. Recognizing people by their gait: the shape of motion. Videre

1 (2), 2�32, , http://mitpress.mit.edu/e-journals/VIDE/001/v12.html\. .

Little, J.J., Bulthoff, H.H., Poggio, T., 1988. Parallel optical flow using local voting.

Proceedings of the ICCV, pp. 454�457.

Lowe, D.G., 1999. Object Recognition from Local Scale-Invariant Features. Proceedings of

the ICCV, pp. 1150�1157.

Lowe, D.G., 2004. Distinctive image features from scale-invariant key points. Int. J.

Comput. Vis. 60 (2), 91�110.

214 CHAPTER 4 Low-level feature extraction (including edge detection)

http://www.mitpress.mit.edu/e-journals/VIDE/001/v12.html

Lucas, B., Kanade, T., 1981. An iterative image registration technique with an application to

stereo vision. Proceedings of the DARPA Image Understanding Workshop, pp. 121�130.

Marr, D., 1982. Vision. W. H. Freeman and Co., New York, NY.

Marr, D.C., Hildreth, E., 1980. Theory of edge detection. Proc. R. Soc. Lond. B207,

187�217.

Mikolajczyk, K., Schmid, C., 2005. A performance evaluation of local descriptors. IEEE

Trans. PAMI 27 (10), 1615�1630.

Mokhtarian, F., Bober, M., 2003. Curvature Scale Space Representation: Theory,

Applications and MPEG-7 Standardization. Kluwer Academic Publishers.

Mokhtarian, F., Mackworth, A.K., 1986. Scale-space description and recognition of planar

curves and two-dimensional shapes. IEEE Trans. PAMI 8 (1), 34�43.

Morrone, M.C., Burr, D.C., 1988. Feature detection in human vision: a phase-dependent

energy model. Proc. R. Soc. Lond. B 235 (1280), 221�245.

Morrone, M.C., Owens, R.A., 1987. Feature detection from local energy. Pattern Recog.

Lett. 6, 303�313.

Mulet-Parada, M., Noble, J.A., 2000. 2D1T acoustic boundary detection in echocardiog-

raphy. Med. Image Anal. 4, 21�30.

Myerscough, P.J., Nixon, M.S., 2004. Temporal phase congruency. Proceedings of the

IEEE Southwest Symposium on Image Analysis and Interpretation SSIAI’04, pp.

76�79.

Nagel, H.H., 1987. On the estimation of optical flow: relations between different

approaches and some new results. Artif. Intell. 33, 299�324.

van Otterloo, P.J., 1991. A Contour-Oriented Approach to Shape Analysis. Prentice Hall

International (UK) Ltd., Hemel Hempstead.

Petrou, M., 1994. The differentiating filter approach to edge detection. Adv. Electron.

Electron. Phys. 88, 297�345.

Petrou, M., Kittler, J., 1991. Optimal edge detectors for ramp edges. IEEE Trans. PAMI 13

(5), 483�491.

Prewitt, J.M.S., Mendelsohn, M.L., 1966. The analysis of cell images. Ann. N. Y. Acad.

Sci. 128, 1035�1053.

Roberts, L.G., 1965. Machine perception of three-dimensional solids. Optical and Electro-

Optical Information Processing. MIT Press, pp. 159�197.

Rosin, P.L., 1996. Augmenting corner descriptors. Graph. Model. Image Process. 58 (3),

286�294.

Smith, S.M., Brady, J.M., 1997. SUSAN—a new approach to low level image processing.

Int. J. Comput. Vis. 23 (1), 45�78.

Sobel, I.E., 1970. Camera models and machine perception. PhD Thesis, Stanford

University.

Spacek, L.A., 1986. Edge detection and motion detection. Image Vis. Comput. 4 (1),

43�56.

Torre, V., Poggio, T.A., 1986. On edge detection. IEEE Trans. PAMI 8 (2), 147�163.

Tuytelaars, T., Mikolajczyk, K., 2007. Local invariant feature detectors: a survey. Found.

Trends Comput. Graph. Vis. 3 (3), 177�280.

Ulupinar, F., Medioni, G., 1990. Refining edges detected by a LoG operator. CVGIP 51,

275�298.

Venkatesh, S., Owens, R.A., 1989. An energy feature detection scheme. Proceedings of an

International Conference on Image Processing, Singapore, pp. 553�557.

2154.7 References

Venkatesh, S., Rosin, P.L., 1995. Dynamic threshold determination by local and global

edge evaluation. Graphical Model. Image Process. 57 (2), 146�160.

Vliet, L.J., Young, I.T., 1989. A nonlinear Laplacian operator as edge detector in noisy

images. CVGIP 45, 167�195.

Yitzhaky, Y., Peli, E., 2003. A method for objective edge detection evaluation and detector

parameter selection. IEEE Trans. PAMI 25 (8), 1027�1033.

Zabir, R., Woodfill, J., 1994. Nonparametric local transforms for computing visual

correspondence. Proceedings of the European Conference on Computer Vision,

pp. 151�158.

Zheng, Y., Nixon, M.S., Allen, R., 2004. Automatic segmentation of lumbar vertebrae in

digital videofluoroscopic imaging. IEEE Trans. Med. Imaging 23 (1), 45�52.

216 CHAPTER 4 Low-level feature extraction (including edge detection)

CHAPTER

5High-level feature extraction:
fixed shape matching

CHAPTER OUTLINE HEAD

5.1 Overview ... 218

5.2 Thresholding and subtraction.. 220

5.3 Template matching... 222

5.3.1 Definition ..222

5.3.2 Fourier transform implementation ..230

5.3.3 Discussion of template matching ...234

5.4 Feature extraction by low-level features .. 235

5.4.1 Appearance-based approaches...235

5.4.1.1 Object detection by templates..235

5.4.1.2 Object detection by combinations of parts237

5.4.2 Distribution-based descriptors ...238

5.4.2.1 Description by interest points... 238

5.4.2.2 Characterizing object appearance and shape241

5.5 Hough transform .. 243

5.5.1 Overview..243

5.5.2 Lines...243

5.5.3 HT for circles ...250

5.5.4 HT for ellipses..255

5.5.5 Parameter space decomposition...258

5.5.5.1 Parameter space reduction for lines...259

5.5.5.2 Parameter space reduction for circles261

5.5.5.3 Parameter space reduction for ellipses.....................................266

5.5.6 Generalized HT ..271

5.5.6.1 Formal definition of the GHT..272

5.5.6.2 Polar definition .. 273

5.5.6.3 The GHT technique ... 274

5.5.6.4 Invariant GHT.. 279

5.5.7 Other extensions to the HT ..287

5.6 Further reading .. 288

5.7 References .. 289

Feature Extraction & Image Processing for Computer Vision.

© 2012 Mark Nixon and Alberto Aguado. Published by Elsevier Ltd. All rights reserved.
217

5.1 Overview
High-level feature extraction concerns finding shapes and objects in computer

images. To be able to recognize human faces automatically, for example, one

approach is to extract the component features. This requires extraction of, say, the

eyes, the ears, and the nose, which are the major face features. To find them, we

can use their shape: the white part of the eyes is ellipsoidal; the mouth can appear

as two lines, as do the eyebrows. Alternatively, we can view them as objects and

use the low-level features to define collections of points which define the eyes,

nose, and mouth, or even the whole face. This feature extraction process can be

viewed as similar to the way we perceive the world: many books for babies

describe basic geometric shapes such as triangles, circles, and squares. More com-

plex pictures can be decomposed into a structure of simple shapes. In many appli-

cations, analysis can be guided by the way the shapes are arranged. For the

example of face image analysis, we expect to find the eyes above (and either side

of) the nose and we expect to find the mouth below the nose.

In feature extraction, we generally seek invariance properties so that the

extraction result does not vary according to chosen (or specified) conditions. This

implies finding objects, whatever their position, their orientation, or their size.

That is, techniques should find shapes reliably and robustly whatever the value of

any parameter that can control the appearance of a shape. As a basic invariant,

we seek immunity to changes in the illumination level: we seek to find a shape

whether it is light or dark. In principle, as long as there is contrast between a

shape and its background, the shape can be said to exist and can then be detected.

(Clearly, any computer vision technique will fail in extreme lighting conditions;

you cannot see anything when it is completely dark.) Following illumination, the

next most important parameter is position: we seek to find a shape wherever it

appears. This is usually called position, location, or translation invariance. Then,

we often seek to find a shape irrespective of its rotation (assuming that the object

or the camera has an unknown orientation): this is usually called rotation or ori-

entation invariance. Then, we might seek to determine the object at whatever size

it appears, which might be due to physical change, or to how close the object has

been placed to the camera. This requires size or scale invariance. These are the

main invariance properties we shall seek from our shape extraction techniques.

However, nature (as usual) tends to roll balls under our feet: there is always noise

in images. Also since we are concerned with shapes, note that there might be

more than one in the image. If one is on top of the other, it will occlude, or hide,

the other, so not all the shape of one object will be visible.

But before we can develop image analysis techniques, we need techniques to

extract the shapes and objects. Extraction is more complex than detection, since

extraction implies that we have a description of a shape, such as its position and

size, whereas detection of a shape merely implies knowledge of its existence

within an image. This chapter concerns shapes which are fixed in shape (such as

218 CHAPTER 5 High-level feature extraction: fixed shape matching

a segment of bone in a medical image); the following chapter concerns shapes

which can deform (like the shape of a walking person).

The techniques presented in this chapter are outlined in Table 5.1. We first

consider whether we can detect objects by thresholding. This is only likely to pro-

vide a solution when illumination and lighting can be controlled, so we then con-

sider two main approaches: one is to extract constituent parts and the other is to

extract constituent shapes. We can actually collect and describe low-level features

described earlier. In this, wavelets can provide object descriptions, as can scale-

invariant feature transform (SIFT) and distributions of low-level features. In this

way we represent objects as a collection of interest points, rather than using shape

analysis. Conversely, we can investigate the use of shape: template matching is

a model-based approach in which the shape is extracted by searching for the best

correlation between a known model and the pixels in an image. There are alterna-

tive ways to compute the correlation between the template and the image.

Correlation can be implemented by considering the image or frequency domains

and the template can be defined by considering intensity values or a binary shape.

The Hough transform defines an efficient implementation of template matching

for binary templates. This technique is capable of extracting simple shapes

such as lines and quadratic forms as well as arbitrary shapes. In any case, the

Table 5.1 Overview of Chapter 5

Main
Topic

Subtopics Main Points

Pixel
operations

How we detect features at a pixel
level. What are the limitations and
advantages of this approach. Need
for shape information.

Thresholding. Differencing.

Template
matching

Shape extraction by matching.
Advantages and disadvantages.
Need for efficient implementation.

Template matching. Direct and
Fourier implementations. Noise
and occlusion.

Low-level
features

Collecting low-level features for
object extraction. Frequency-based
and parts-based approaches.
Detecting distributions of
measures.

Wavelets and Haar wavelets.
SIFT and SURF descriptions and
Histogram of oriented gradients.

Hough
transform

Feature extraction by matching.
Hough transforms for conic
sections. Hough transform for
arbitrary shapes. Invariant
formulations. Advantages in speed
and efficacy.

Feature extraction by evidence
gathering. Hough transforms for
lines, circles, and ellipses.
Generalized and invariant Hough
transforms.

2195.1 Overview

complexity of the implementation can be reduced by considering invariant fea-

tures of the shapes.

5.2 Thresholding and subtraction
Thresholding is a simple shape extraction technique, as illustrated in Section

3.3.4, where the images could be viewed as the result of trying to separate the

eye from the background. If it can be assumed that the shape to be extracted is

defined by its brightness, then thresholding an image at that brightness level

should find the shape. Thresholding is clearly sensitive to change in illumination:

if the image illumination changes so will the perceived brightness of the target

shape. Unless the threshold level can be arranged to adapt to the change in bright-

ness level, any thresholding technique will fail. Its attraction is simplicity: thresh-

olding does not require much computational effort. If the illumination level

changes in a linear fashion, using histogram equalization will result in an image

that does not vary. Unfortunately, the result of histogram equalization is sensitive

to noise, shadows, and variant illumination: noise can affect the resulting image

quite dramatically and this will again render a thresholding technique useless. Let

us illustrate this by considering Figure 5.1 and let us consider trying to find either

the ball or the player, or both in Figure 5.1(a). Superficially, these are the bright-

est objects so one value of the threshold (Figure 5.1(b)) finds the player’s top,

shorts and socks, and the ball—but it also finds the text in the advertising and the

goalmouth. When we increase the threshold (Figure 5.1(c)), we lose parts of the

player but still find the goalmouth. Clearly we need to include more knowledge

or to process the image more.

Thresholding after intensity normalization (Section 3.3.2) is less sensitive to

noise, since the noise is stretched with the original image and cannot affect the

stretching process much. However, it is still sensitive to shadows and variant illu-

mination. Again, it can only find application where the illumination can be care-

fully controlled. This requirement is germane to any application that uses basic

(a) Image (b) Low threshold (c) High threshold

FIGURE 5.1

Extraction by thresholding.

220 CHAPTER 5 High-level feature extraction: fixed shape matching

thresholding. If the overall illumination level cannot be controlled, it is possible

to threshold edge magnitude data since this is insensitive to overall brightness

level, by virtue of the implicit differencing process. However, edge data is rarely

continuous and there can be gaps in the detected perimeter of a shape. Another

major difficulty, which applies to thresholding the brightness data as well, is that

there are often more shapes than one. If the shapes are on top of each other, one

occludes the other and the shapes need to be separated.

An alternative approach is to subtract an image from a known background

before thresholding. This assumes that the background is known precisely, other-

wise many more details than just the target feature will appear in the resulting

image; clearly the subtraction will be unfeasible if there is noise on either image

and especially on both. In this approach, there is no implicit shape description,

but if the thresholding process is sufficient, it is simple to estimate basic shape

parameters, such as position.

The subtraction approach is illustrated in Figure 5.2. Here, we seek to separate

or extract a walking subject from their background. When we subtract the back-

ground of Figure 5.2(b) from the image itself, we obtain most of the subject with

some extra background just behind the subject’s head (this is due to the effect of

the moving subject on lighting). Also, removing the background removes some

of the subject: the horizontal bars in the background have been removed from the

subject by the subtraction process. These aspects are highlighted in the thre-

sholded image (Figure 5.2(c)). It is not particularly a poor way of separating the

subject from the background (we have the subject but we have chopped through

his midriff), but it is not especially good either. So it does provide an estimate of

the object, but an estimate is only likely to be reliable when the lighting is highly

controlled. (A more detailed separation of moving objects from their static back-

ground, including estimation of the background itself, is found in Chapter 9.)

Even though thresholding and subtraction are attractive (because of simplicity

and hence their speed), the performance of both techniques is sensitive to partial

shape data, to noise, to variation in illumination, and to occlusion of the target

(a) Image of walking subject (b) Background (c) After background
subtraction and thresholding

FIGURE 5.2

Shape extraction by subtraction and thresholding.

2215.2 Thresholding and subtraction

shape by other objects. Accordingly, many approaches to image interpretation use

higher level information in shape extraction, namely how the pixels are con-

nected. This can resolve these factors.

5.3 Template matching
5.3.1 Definition
Template matching is conceptually a simple process. We need to match a template

to an image, where the template is a sub-image that contains the shape we are try-

ing to find. Accordingly, we center the template on an image point and count up

how many points in the template matched those in the image. The procedure is

repeated for the entire image and the point which led to the best match, the maxi-

mum count, is deemed to be the point where the shape (given by the template) lies

within the image.

Consider that we want to find the template of Figure 5.3(b) in the image of

Figure 5.3(a). The template is first positioned at the origin and then matched with

the image to give a count which reflects how well the template matched that part

of the image at that position. The count of matching pixels is increased by one

for each point where the brightness of the template matches the brightness of the

image. This is similar to the process of template convolution, as illustrated in

Figure 3.11. The difference here is that points in the image are matched with

those in the template, and the sum is of the number of matching points as opposed

to the weighted sum of image data. The best match is when the template is placed

at the position where the rectangle is matched to itself. Obviously, this process

(b) Template of target shape (a) Image containing shapes

FIGURE 5.3

Illustrating template matching.

222 CHAPTER 5 High-level feature extraction: fixed shape matching

can be generalized to find, for example, templates of different size or orientation.

In these cases, we have to try all the templates (at expected rotation and size) to

determine the best match.

Formally, template matching can be defined as a method of parameter estima-

tion. The parameters define the position (and pose) of the template. We can

define a template as a discrete function Tx,y. This function takes values in a win-

dow. That is, the coordinates of the points (x,y)AW. For example, for a 23 2

template, we have the set of points W5 {(0,0),(0,1),(1,0),(1,1)}.

Let us consider that each pixel in the image Ix,y is corrupted by additive

Gaussian noise. The noise has a mean value of zero and the (unknown) standard

deviation is σ. Thus, the probability that a point in the template placed at coordi-

nates (i,j) matches the corresponding pixel at position (x,y)AW is given by the

normal distribution

pi; jðx; yÞ5
1ffiffiffiffiffiffi
2π

p
σ
e2

1
2

Ix1i;y1j2Tx;y
σ

� �2
(5.1)

Since the noise affecting each pixel is independent, the probability that the

template is at position (i, j) is the combined probability of each pixel that the tem-

plate covers. That is,

Li; j 5 L
ðx; yÞAW

pi; jðx; yÞ (5.2)

By substitution of Eq. (5.1), we have

Li; j 5
1ffiffiffiffiffiffi
2π

p
σ

� �n

e
21

2

P
ðx;yÞAW

Ix1i; y1j2Tx;y
σ

� �2
(5.3)

where n is the number of pixels in the template. This function is called the likeli-

hood function. Generally, it is expressed in logarithmic form to simplify the anal-

ysis. Note that the logarithm scales the function, but it does not change the

position of the maximum. Thus, by taking the logarithm, the likelihood function

is redefined as

lnðLi; jÞ5 n ln
1ffiffiffiffiffiffi
2π

p
σ

� �
2
1

2

X
ðx; yÞAW

Ix1i; y1j2Tx;y

σ

� �2
(5.4)

In maximum likelihood estimation, we have to choose the parameter that maxi-

mizes the likelihood function, i.e., the positions that minimize the rate of change

of the objective function:

@ lnðLi; jÞ
@i

5 0 and
@ lnðLi; jÞ

@j
5 0 (5.5)

2235.3 Template matching

That is, X
ðx;yÞAW

ðIx1i;y1j 2Tx;yÞ
@Ix1i;y1j

@i
5 0

X
ðx;yÞAW

ðIx1i;y1j 2Tx;yÞ
@Ix1i;y1j

@j
5 0

(5.6)

We can observe that these equations are also the solution of the minimization

problem given by

min e5
X

ðx;yÞAW

ðIx1i;y1j 2Tx;yÞ2 (5.7)

That is, maximum likelihood estimation is equivalent to choosing the template

position that minimizes the squared error (the squared values of the differences

between the template points and the corresponding image points). The position

where the template best matches the image is the estimated position of the tem-

plate within the image. Thus, if you measure the match using the squared error

criterion, then you will be choosing the maximum likelihood solution. This

implies that the result achieved by template matching is optimal for images cor-

rupted by Gaussian noise. A more detailed examination of the method of least

squares is given in Appendix 2, Section 11.2. (Note that the central limit theorem

suggests that practically experienced noise can be assumed to be Gaussian distrib-

uted though many images appear to contradict this assumption.) Of course you

can use other error criteria such as the absolute difference rather than the squared

difference or, if you feel more adventurous, you might consider robust measures

such as M-estimators.

We can derive alternative forms of the squared error criterion by considering

that Eq. (5.7) can be written as

min e5
X

ðx;yÞAW

I2x1i;y1j 2 2Ix1i;y1jTx;y 1T2
x;y (5.8)

The last term does not depend on the template position (i,j). As such, it is con-

stant and cannot be minimized. Thus, the optimum in this equation can be

obtained by minimizing

min e5
X

ðx;yÞAW

I2x1i;y1j 2 2
X

ðx;yÞAW

Ix1i;y1jTx;y (5.9)

If the first term X
ðx;yÞAW

I2x1i;y1j (5.10)

is approximately constant, then the remaining term gives a measure of the

similarity between the image and the template. That is, we can maximize the

224 CHAPTER 5 High-level feature extraction: fixed shape matching

cross-correlation between the template and the image. Thus, the best position

can be computed by

max e5
X

ðx;yÞAW

Ix1i;y1jTx;y (5.11)

However, the squared term in Eq. (5.10) can vary with position, so the match

defined by Eq. (5.11) can be poor. Additionally, the range of the cross-correlation

is dependent on the size of the template and it is noninvariant to changes in image

lighting conditions. Thus, in an implementation, it is more convenient to use

either Eq. (5.7) or (5.9) (in spite of being computationally more demanding

than the cross-correlation in Eq. (5.11)). Alternatively, cross-correlation can be

normalized as follows. We can rewrite Eq. (5.8) as

min e5 12 2

X
ðx;yÞAW

Ix1i;y1jTx;yX
ðx;yÞAW

I2x1i;y1j

(5.12)

Here the first term is constant and thus the optimum value can be obtained by

max e5

X
ðx;yÞAW

Ix1i;y1jTx;yX
ðx;yÞAW

I2x1i;y1j

(5.13)

In general, it is convenient to normalize the gray level of each image window

under the template. That is,

max e5

X
ðx;yÞAW

ðIx1i;y1j 2 Ii:jÞðTx;y 2TÞ
X

ðx;yÞAW

ðIx1i;y1j2Ii:jÞ2
(5.14)

where Ii; j is the mean of the pixels Ix1i,y1j for points within the window (i.e.,

(x,y)AW) and T is the mean of the pixels of the template. An alternative form to

Eq. (5.14) is given by normalizing the cross-correlation. This does not change

the position of the optimum and gives an interpretation as the normalization of

the cross-correlation vector. That is, the cross-correlation is divided by its modu-

lus. Thus,

max e5

X
ðx;yÞAW

ðIx1i;y1j 2 Ii:jÞðTx;y 2TÞ
ffiX
ðx;yÞAW

ðIx1i;y1j2Ii:jÞ2ðTx;y2TÞ2
r (5.15)

However, this equation has a similar computational complexity to the original

formulation in Eq. (5.7).

2255.3 Template matching

A particular implementation of template matching is when the image and the

template are binary. In this case, the binary image can represent regions in the

image or it can contain the edges. These two cases are illustrated in the example

shown in Figure 5.4. The advantage of using binary images is that the amount of

computation can be reduced. That is, each term in Eq. (5.7) will take only two

values: it will be one when Ix1i,y1j5Tx,y and zero otherwise. Thus, Eq. (5.7) can

be implemented as

max e5
X

ðx;yÞAW

Ix1i;y1j"Tx;y (5.16)

where the symbol " denotes the exclusive NOR operator. This equation can be

easily implemented and requires significantly less resource than the original

matching function.

Template matching develops an accumulator space that stores the match of

the template to the image at different locations; this corresponds to an implemen-

tation of Eq. (5.7). It is called an accumulator, since the match is accumulated
during application. Essentially, the accumulator is a 2D array that holds the differ-

ence between the template and the image at different positions. The position in

the image gives the same position of match in the accumulator. Alternatively,

Eq. (5.11) suggests that the peaks in the accumulator resulting from template cor-

relation give the location of the template in an image: the coordinates of the point

of best match. Accordingly, template correlation and template matching can be

viewed as similar processes. The location of a template can be determined by

(b) Edge image(a) Binary image

(d) Edge template(c) Binary template

FIGURE 5.4

Example of binary and edge template matching.

226 CHAPTER 5 High-level feature extraction: fixed shape matching

either process. The binary implementation of template matching (Eq. (5.16)) is

usually concerned with thresholded edge data. This equation will be reconsidered

in the definition of the Hough transform, the topic of the following section.

The Matlab code to implement template matching is the function TMatching
given in Code 5.1. This function first clears an accumulator array, accum, then
searches the whole picture, using pointers i and j, and then searches the whole

template for matches, using pointers x and y. Note that the position of the tem-

plate is given by its center. The accumulator elements are incremented according

to Eq. (5.7). The accumulator array is delivered as the result. The match for each

position is stored in the array. After computing all the matches, the minimum ele-

ment in the array defines the position where most pixels in the template matched

those in the image. As such, the minimum is deemed to be the coordinates of the

point where the template’s shape is most likely to lie within the original image. It

is possible to implement a version of template matching without the accumulator

array, by storing the location of the minimum alone. This will give the same

result though it requires little storage. However, this implementation will provide

%Template Matching Implementation

function accum=TMatching(inputimage,template)

%Image size & template size
[rows,columns]=size(inputimage);
[rowsT,columnsT]=size(template);

 %Centre of the template
cx=floor(columnsT/2)+1; cy=floor(rowsT/2)+1;

%Accumulator
accum=zeros(rows,columns);
%Template Position
for i=cx:columns-cx
 for j=cy:rows-cy
 %Template elements
 for x=1-cx:cx-1
 for y=1-cy:cy-1

err=(double(inputimage(j+y,i+x))
-double(template(y+cy,x+cx)))^2;

accum(j,i)=accum(j,i)+err;

end
end

 end
end

CODE 5.1

Implementing template matching.

2275.3 Template matching

a result that cannot support later image interpretation that might require knowl-

edge of more than just the best match.

The results of applying the template matching procedure are illustrated in

Figure 5.5. This example shows the accumulator arrays for matching the images

shown in Figures 5.3(a), 5.4(a) and (b) with their respective templates. The dark

points in each image are at the coordinates of the origin of the position where the

template best matched the image (the minimum). Note that there is a border

where the template has not been matched to the image data. At these border

points, the template extended beyond the image data, so no matching has been

performed. This is the same border as experienced with template convolution,

Section 3.4.1. We can observe that a clearer minimum is obtained (Figure 5.5(c))

from the edge images of Figure 5.4. This is because for gray level and binary

images, there is some match when the template is not exactly in the best position.

In the case of edges, the count of matching pixels is less.

Most applications require further degrees of freedom such as rotation (orienta-

tion), scale (size), or perspective deformations. Rotation can be handled by rotat-

ing the template, or by using polar coordinates; scale invariance can be achieved

using templates of differing size. Having more parameters of interest implies that

the accumulator space becomes larger; its dimensions increase by one for each

extra parameter of interest. Position-invariant template matching, as considered

here, implies a 2D parameter space, whereas the extension to scale- and position-

invariant template matching requires a 3D parameter space.

The computational cost of template matching is large. If the template is

square and of size m3m and is matched to an image of size N3N, since the m2

pixels are matched at all image points (except for the border), the computational

cost is O(N2m2). This is the cost for position-invariant template matching. Any

further parameters of interest increase the computational cost in proportion to the

number of values of the extra parameters. This is clearly a large penalty and so a

direct digital implementation of template matching is slow. Accordingly, this

guarantees interest in techniques that can deliver the same result, but faster, such

as using a Fourier implementation based on fast transform calculus.

(a) For the gray level image (b) For the binary image (c) For the edge image

FIGURE 5.5

Accumulator arrays from template matching.

228 CHAPTER 5 High-level feature extraction: fixed shape matching

The main advantages of template matching are its insensitivity to noise and

occlusion. Noise can occur in any image, on any signal—just like on a telephone

line. In digital photographs, the noise might appear low, but in computer vision it

is made worse by edge detection by virtue of the differencing (differentiation)

processes. Likewise, shapes can easily be occluded or hidden: a person can walk

behind a lamp post or illumination can also cause occlusion. The averaging

inherent in template matching reduces the susceptibility to noise; the maximiza-

tion process reduces susceptibility to occlusion.

These advantages are illustrated in Figure 5.6 which illustrates detection in the

presence of increasing noise. Here, we will use template matching to locate the

region containing the vertical rectangle near the top of the image (so we are

matching a binary template of a black template on a white background to the

binary image). The lowest noise level is shown in Figure. 5.6(a) and the highest

is shown in Figure 5.6(c); the position of the origin of the detected rectangle is

shown as a black cross in a white square. The position of the origin of the region

containing the rectangle is detected correctly in Figure 5.6(a) and (b) but incor-

rectly in the noisiest image (Figure 5.6(c)). Clearly, template matching can handle

quite high noise corruption. (Admittedly this is somewhat artificial: the noise

would usually be filtered out by one of the techniques described in Chapter 3, but

we are illustrating basic properties here.) The ability to handle noise is shown by

correct determination of the position of the target shape, until the noise becomes

too much and there are more points due to noise than there are due to the shape

itself. When this occurs, the votes resulting from the noise exceed those occurring

from the shape, and so the maximum is not found where the shape exists.

Occlusion is shown by placing a gray bar across the image; in Figure 5.7(a),

the bar does not occlude (or hide) the target rectangle, whereas in Figure 5.7(c)

the rectangle is completely obscured. As with performance in the presence of

noise, detection of the shape fails when the votes occurring from the shape exceed

those from the rest of the image (the nonshape points), and the cross indicating

(a) Extraction (of the black
rectangle) in some noise

(b) Extraction in a lot of noise (c) Extraction in too much
noise (failed)

FIGURE 5.6

Template matching in noisy images.

2295.3 Template matching

the position of the origin of the region containing the rectangle is drawn in

completely the wrong place. This is what happens when the rectangle is

completely obscured in Figure 5.7(c).

So it can operate well, with practical advantage. We can include edge detec-

tion to concentrate on a shape’s borders. Its main problem is still speed: a direct

implementation is slow, especially when handling shapes that are rotated or

scaled (and there are other implementation difficulties too). Recalling that from

Section 3.4.2 template matching can be speeded up by using the Fourier trans-

form, let us see if that can be used here too.

5.3.2 Fourier transform implementation
We can implement template matching via the Fourier transform by using the dual-

ity between convolution and multiplication, which was discussed in Section 3.4.2.

This duality establishes that a multiplication in the space domain corresponds to a

convolution in the frequency domain and vice versa. This can be exploited for

faster computation by using the frequency domain, given the FFT algorithm. Thus,

in order to find a shape, we can compute the cross-correlation as a multiplication in

the frequency domain. However, the matching process in Eq. (5.11) is actually

correlation (Section 2.3), not convolution. Thus, we need to express the correla-

tion in terms of a convolution. This can be done as follows. First, we can rewrite

the correlation (denoted by �) in Eq. (5.11) as

I� T5
X

ðx;yÞAW

Ix0;y0Tx02i;y02j (5.17)

where x0 5 x1 i and y0 5 y1 j. Convolution (denoted by *) is defined as

I � T5
X

ðx;yÞAW

Ix0 ;y0Ti2x0 ;j2y0 (5.18)

(a) Extraction (of the black
rectangle) in no occlusion

(b) Extraction in some
occlusion

(c) Extraction in complete
occlusion (failed)

FIGURE 5.7

Template matching in occluded images.

230 CHAPTER 5 High-level feature extraction: fixed shape matching

Thus, in order to implement template matching in the frequency domain, we

need to express Eq. (5.17) in terms of Eq. (5.18). This can be achieved by consid-

ering that

I� T5 I � T0 5
X

ðx;yÞAW

Ix0;y0T
0
i2x0;j2y0 (5.19)

where

T0 5T2x;2y (5.20)

That is, correlation is equivalent to convolution when the template is changed

according to Eq. (5.20). This equation reverses the coordinate axes and it corre-

sponds to a horizontal and a vertical flip.

In the frequency domain, convolution corresponds to multiplication. As such,

Eq. (5.19) can be implemented by

I� T5 I � T0 5ℑ21ðℑðIÞ3ℑðT0ÞÞ (5.21)

where ℑ denotes Fourier transformation as in Chapter 2 (and calculated by the

FFT) and ℑ21 denotes the inverse FFT. Note that the multiplication operator actu-

ally operates point by point, so each point is the product of the pixels at the same

position in each image (in Mathcad the operation is .* and in Matlab it is called

vectorise). This is computationally faster than its direct implementation, given

the speed advantage of the FFT. There are two ways to implement this equation.

In the first approach, we can compute T0 by flipping the template and then com-

puting its Fourier transform ℑ(T0). In the second approach, we compute the trans-

form of ℑ(T) and then we compute its complex conjugate. That is,

ℑðT0Þ5 ½ℑðTÞ�� (5.22)

where []* denotes the complex conjugate of the transform data (yes, we agree

it’s an unfortunate symbol clash with convolution, but they are both standard

symbols). So conjugation of the transform of the template implies that the product

of the two transforms leads to correlation. (Since this product is point by point,

the two images/matrices need to be of the same size.) That is,

I� T5 I � T0 5ℑ21ðℑðIÞ3 ½ℑðTÞ��Þ (5.23)

For both implementations, Eqs (5.21) and (5.23) will evaluate the match and

more quickly for large templates than by direct implementation of template

matching (as per Section 3.4.2). Note that one assumption is that the transforms

are of the same size, even though the template’s shape is usually much smaller

than the image. There is actually a selection of approaches; a simple solution is to

include extra zero values (zero-padding) to make the image of the template the

same size as the image.

The code to implement template matching by Fourier, FTConv, is given in

Code 5.2. The implementation takes the image and the flipped template. The

2315.3 Template matching

template is zero-padded and then transforms are evaluated. The required convolu-

tion is obtained by multiplying the transforms and then applying the inverse. The

resulting image is the magnitude of the inverse transform. This could naturally be

invoked as a single function, rather than as procedure, but the implementation is

less clear. This process can be formulated using brightness or edge data, as appro-

priate. Should we seek scale invariance, to find the position of a template irre-

spective of its size, then we need to formulate a set of templates that range in size

between the maximum and minimum expected variation. Each of the templates of

differing size is then matched by frequency domain multiplication. The maximum

frequency domain value, for all sizes of template, indicates the position of the

template and, naturally, gives a value for its size. This can of course be a rather

lengthy procedure when the template ranges considerably in size.

Figure 5.8 illustrates the results of template matching in the Fourier domain

using the image and template as shown in Figure 5.3. Figure 5.8(a) shows the

flipped and padded template. The Fourier transforms of the image and the flipped

template are given in Figure 5.8(b) and (c), respectively. These transforms are

multiplied, point by point, to achieve the image in Figure 5.8(d). When this is

inverse Fourier transformed, the result (Figure 5.8(e)) shows where the template

best matched the image (the coordinates of the template’s top left-hand

corner). The result image contains several local maximum (in white). This can be

%Fourier Transform Convolution

function FTConv(inputimage,template)

%image size
[rows,columns]=size(inputimage);

%FT
Fimage=fft2(inputimage,rows,columns);
Ftemplate=fft2(template,rows,columns);

%Convolution
G=Fimage.*Ftemplate;

%Modulus
Z=log(abs(fftshift(G)));

%Inverse
R=real(ifft2(G));

CODE 5.2

Implementing convolution by the frequency domain.

232 CHAPTER 5 High-level feature extraction: fixed shape matching

explained by the fact that this implementation does not consider the term in

Eq. (5.10). Additionally, the shape can partially match several patterns in the

image. Figure 5.8(f) shows a zoom of the region where the peak is located. We

can see that this peak is well defined. In contrast to template matching, the imple-

mentation in the frequency domain does not have any border. This is due to the

fact that Fourier theory assumes picture replication to infinity. Note that in appli-

cation, the Fourier transforms do not need to be rearranged (fftshif) so that the

d.c. is at the center, since this has been done here for display purposes only.

There are several further difficulties in using the transform domain for tem-

plate matching in discrete images. If we seek rotation invariance, then an image

can be expressed in terms of its polar coordinates. Discretization gives further dif-

ficulty since the points in a rotated discrete shape can map imperfectly to the

original shape. This problem is better manifest when an image is scaled in size to

become larger. In such a case, the spacing between points will increase in the

enlarged image. The difficulty is how to allocate values for pixels in the enlarged

image which are not defined in the enlargement process. There are several inter-

polation approaches, but it can often appear prudent to reformulate the original

approach. Further difficulties can include the influence of the image borders:

Fourier theory assumes that an image replicates spatially to infinity. Such diffi-

culty can be reduced by using window operators, such as the Hamming or the

Hanning windows. These difficulties do not obtain for optical Fourier transforms

(a) Flipped and padded
template

(b) Fourier transform of
template

(c) Fourier transform of image

(d) Multiplied transforms (e) Result (f) Location of the template

FIGURE 5.8

Template matching by Fourier transformation.

2335.3 Template matching

and so using the Fourier transform for position-invariant template matching is

often confined to optical implementations.

5.3.3 Discussion of template matching
The advantages associated with template matching are mainly theoretical since it

can be very difficult to develop a template matching technique that operates satis-

factorily. The results presented here have been for position invariance only. This

can cause difficulty if invariance to rotation and scale is also required. This is

because the template is stored as a discrete set of points. When these are rotated,

gaps can appear due to the discrete nature of the coordinate system. If the tem-

plate is increased in size then again there will be missing points in the scaled-up

version. Again, there is a frequency domain version that can handle variation in

size, since scale-invariant template matching can be achieved using the Mellin

transform (Bracewell, 1986). This avoids using many templates to accommodate

the variation in size by evaluating the scale-invariant match in a single pass. The

Mellin transform essentially scales the spatial coordinates of the image using an

exponential function. A point is then moved to a position given by a logarithmic

function of its original coordinates. The transform of the scaled image is then

multiplied by the transform of the template. The maximum again indicates the

best match between the transform and the image. This can be considered to be

equivalent to a change of variable. The logarithmic mapping ensures that scaling

(multiplication) becomes addition. By the logarithmic mapping, the problem of

scale invariance becomes a problem of finding the position of a match.

The Mellin transform only provides scale-invariant matching. For scale and

position invariance, the Mellin transform is combined with the Fourier transform,

to give the Fourier�Mellin transform. The Fourier�Mellin transform has many

disadvantages in a digital implementation due to the problems in spatial resolution

though there are approaches to reduce these problems (Altman and Reitbock,

1984), as well as the difficulties with discrete images experienced in Fourier

transform approaches.

Again, the Mellin transform appears to be much better suited to an optical

implementation (Casasent and Psaltis, 1977), where continuous functions are

available, rather than to discrete image analysis. A further difficulty with the

Mellin transform is that its result is independent of the form factor of the tem-

plate. Accordingly, a rectangle and a square appear to be the same to this trans-

form. This implies a loss of information since the form factor can indicate that an

object has been imaged from an oblique angle. There is actually resurgent interest

in log-polar mappings for image analysis (e.g., Traver and Pla, 2003; Zokai and

Wolberg, 2005).

So there are innate difficulties with template matching whether it is implemen-

ted directly or by transform operations. For these reasons, and because many

shape extraction techniques require more than just edge or brightness data, direct

digital implementations of feature extraction are usually preferred. This is perhaps

234 CHAPTER 5 High-level feature extraction: fixed shape matching

also influenced by the speed advantage that one popular technique can confer

over template matching. This is the Hough transform, which is covered in

Section 5.5. Before that, we shall consider techniques which consider object

extraction by collections of low-level features. These can avoid the computational

requirements of template matching by treating shapes as collections of features.

5.4 Feature extraction by low-level features
There have been many approaches to feature extraction which combine a variety

of features. It is possible to characterize objects by measures that we have already

developed, by low-level features, local features (such edges and corners), and

by global features (such as color). Later we shall find these can be grouped to

give structure or shape (in this chapter and the next), and appearance (called tex-

ture, Chapter 8). The drivers for the earlier approaches which combine low-level

features are the need to be able to search databases for particular images. This is

known as image retrieval, and in content-based retrieval, which uses techniques

from image processing and computer vision, there are approaches which combine

a selection of features (Smeulders et al., 2000). Alternative search strategies

include using text or sketches and these are not of interest in the domain of this

book. More recently, the trend is to develop features which include and target

human descriptions and use techniques from machine intelligence (Datta et al.,

2008), which also implies understanding of semantics (how people describe

images) as compared with the results of automated image analysis.

There is also interest in recognizing objects, and hence images, by collecting

descriptors for local features (Mikolajczyk and Schmid, 2005). These can find

application not just in image retrieval but also in stereo computer vision, navigat-

ing robots by computer vision and when stitching together multiple images to

build a much larger panorama image. Much of this material relates to whole

applications and therefore can rely not just on collecting local features, shape,

texture but also on classification. In these respects in this chapter, we shall pro-

vide coverage of some of the basic ways to combine low-level feature descrip-

tions. Essentially, these approaches show how techniques that have already been

covered can be combined in such a way as to achieve a description by which an

object can be recognized. The approaches tend to rely on the use of machine

learning approaches to determine the relevant data (top filter it so as to under-

stand its structure), so the approaches are described in basis only here and the

classification approaches are described later in Chapter 8.

5.4.1 Appearance-based approaches
5.4.1.1 Object detection by templates
The Viola�Jones approach essentially uses the form of Haar wavelets defined in

Section 2.7.3.2 as a basis for object detection (Viola and Jones, 2001) which was

2355.4 Feature extraction by low-level features

later extended to be one of the most popular techniques for detecting human faces

in images (Viola and Jones, 2004). Using rectangles to detect image features is an

approximation, as there are features which can describe curved structure (derived

using Gabor wavelet for example). It is however a fast approximation, since the

features can be detected using the integral image approach. If we are to consider

the face image in Figure 5.9(a), then the eyes are darker than the cheeks which

are immediately below them, and the eyes are also darker than the bridge of the

nose. As such, if we match the template in Figure 5.9(b) (this is the inverted form

of the template in Figure 2.29(c)), then superimposing this template on the image

at the position where it best matches the face leads to the image of Figure 5.9(c).

The result is not too surprising, since it finds two dark parts between which there

is a light part, and only the eyes and the bridge of the nose fit this description.

(We could of course have a nostril template but (a) you might be eating your din-

ner and (b) when you look closely, quite a lot of the image fits the description

“two small dark blobs with a light bit in the middle”—we can successfully find

the eyes since they are a large structure fitting the template well.)

In this way we can define a series of templates (those in Figure 2.29) and

match them to the image. In this way we can find the underlying shape. We need

to sort the results to determine which are the most important and which collection

best describes the face. That is where the approach advances to machine learning,

which comes later in Chapter 8. For now, we rank the filters as to their impor-

tance and then find shapes by using a collection of these low-level features. The

original technique was phrased around detecting objects (Viola and Jones, 2001)

and later phrased around finding human faces in particular (Viola and Jones,

2004), and it has now become one of the stock approaches to detecting faces

automatically within image data.

There are limitations to this approach, naturally. The use of rectangular fea-

tures allows fast calculation but does not match well with structures which have a

smoother contour. There are very many features possible in templates of any rea-

sonable size, and so the set of features must be pruned so that the best are

selected, and that is where the machine learning processes are necessary. In turn

(a) Face image (b) Template for eyes and
nose bridge

(c) Best match or template (b)
to image (a)

FIGURE 5.9

Object extraction by Haar wavelet-based features.

236 CHAPTER 5 High-level feature extraction: fixed shape matching

this implies that the feature extraction process needs training (in features and in

data)—and that is similar indeed to human vision. There are demonstration ver-

sions of the technique and improvements include the use of rotated Haar features

(Lienhart et al., 2003) as well as inspiring many of the more recent approaches

which collect parts for recognition.

5.4.1.2 Object detection by combinations of parts
There have been many approaches which apply wavelets, and ones which are

more complex than Haar wavelets, to detect objects by combinations of parts.

These approaches allow for greater flexibility in the representation of the part

since the wavelet can capture frequency, orientation, and position (thus incurring

the cost of computational complexity). A major advantage is that scale can be

used, and objects can exist at, or persist over, a selection of scales. One such

approach used wavelets as a basis for detecting people and cars (Schneiderman

and Kanade, 2004) and even a door handle, thus emphasizing generality of

the approach. As with the Viola�Jones approach, this method requires deploy-

ment of machine learning techniques which then involves training. In this

method, the training occurs over different viewpoints to factor out the subject’s—

or object’s—pose. The method groups input data into sets, and each set is a part.

For a human face, the parts include the eyes, nose, and mouth, and some unnamed

but classified face regions, and these parts are (statistically) interdependent in

most natural objects. Then machine learning techniques are used to maximize the

likelihood of finding the parts correctly. Highly impressive results have been pro-

vided, though again the performance of the technique depends on training as well

as on other factors. The main point of the technique here is that wavelets can

allow for greater freedom when representing an object as a collection of parts.

In our own research we have used Gabor wavelets in ear biometrics, where

we can recognize a person’s identity by analysis of the appearance of the ear

(Hurley et al., 2008). It might be the ugliest biometric, but it also appears the

most immune to effects of aging: ears are fully formed at birth and change little

throughout life, unlike the human face which changes rapidly as children grow

teeth and then the general decline includes wrinkles and a few sags (unless a sur-

geon’s expertise is deployed). In a way ears are like fingerprints, but the features

are less clear. In our own research in biometrics, we have used Gabor wavelets to

capture the ear’s features (Arbab-Zavar and Nixon, 2011) in particular those relat-

ing to smooth curves. To achieve rotational invariance (in case a subject’s head

was tilted when the image was acquired), a radial scan was taken based on an

ear’s center point (Figure 5.10(a)) deriving the two transformed regions in

Figure 5.10(b) and (d) which are the same region for different images of the same

ear. Then, these regions are transformed using a Gabor wavelet approach for

which the real parts of the transform at two scales are shown in Figure 5.10(c)

and (e). Here, the detail is preserved at the short wavelength and the larger struc-

tures are detected at longer wavelengths. In both cases, the prominent smooth

2375.4 Feature extraction by low-level features

structures are captured by the technique, leading to successful recognition of the

subjects.

5.4.2 Distribution-based descriptors
5.4.2.1 Description by interest points
Lowe’s SIFT (Lowe, 2004), Section 4.4.2.1, actually combines a scale-invariant

region detector with a descriptor which is based on the gradient distribution in

the detected regions. The approach not only detects interest points but also pro-

vides a description for recognition purposes. The descriptor is represented by a

3D histogram of gradient locations and orientations and is created by first com-

puting the gradient magnitude and orientation at each image point within the

83 8 region around the keypoint location, as shown in Figure 5.11. These values

are weighted by a Gaussian windowing function, indicated by the overlaid circle

in Figure 5.11(a) wherein the standard deviation is chosen according to the num-

ber of samples in the region (its width). This avoids fluctuation in the description

with differing values of the keypoint’s location and emphasizes less the gradients

that are far from the center. These samples are then accumulated into orientation

histograms summarizing the contents of the four 43 4 subregions, as shown in

Figure 5.11(b), with the length of each arrow corresponding to the sum of the gra-

dient magnitudes near that direction within the region. This involves a binning

procedure as the histogram is quantized into a smaller number of levels (here

(a) Rotation invariant ear
description

(d) Transformed
region A, ear 2

(b) Transformed
region A, ear 1

(e) Real parts of Gabor wavelet
description of region A, ear 2

(c) Real parts of Gabor wavelet
description of region A, ear 1

λ = 9 λ = 27

λ = 9 λ = 27

FIGURE 5.10

Applying Gabor wavelets in ear biometrics (Arbab-Zavar and Nixon, 2011).

238 CHAPTER 5 High-level feature extraction: fixed shape matching

eight compass directions are shown). The descriptor is then a vector of the magni-

tudes of the elements at each compass direction and in this case has 43 85 32

elements. This figure shows a 23 2 descriptor array derived from an 83 8 set of

samples and other arrangements are possible, such as 43 4 descriptors derived

from a 163 16 sample array giving a 128 element descriptor. The final stage is to

normalize the magnitudes, so the description is illumination invariant. Given that

SIFT has detected the set of keypoints and we have descriptions attached to each

of those keypoints, we can then describe a shape by using the collection of parts

detected by the SIFT technique. There is a variety of parameters that can be cho-

sen within the approach, and the optimization process is ably described (Lowe,

2004) along with demonstration that the technique can be used to recognize

objects, even in the presence of clutter and occlusion.

The SURF descriptor (Bay et al., 2008), Section 4.4.2.2, describes the distri-

bution of the intensity content within the interest point neighborhood, similar to

SIFT (both approaches combine detection with description). In SURF, first a

square region is constructed which is centered on an interest point and oriented

along the detected orientation (detected via the Haar wavelets). Then, the descrip-

tion is derived from the Haar wavelet responses within the sub-windows and the

approach argues the approach “reduces the time for feature computation and

matching and has proven to simultaneously increase the robustness.”

The major performance evaluation (Mikolajczyk and Schmid, 2005) compared

the performance of descriptors computed for local interest regions and studied a

number of operators, concerning in particular the effects of geometric and affine

transformations, for matching and recognition of the same object or scene. The

operators included a form of Gabor wavelets and SIFT (and some operators we

have yet to encounter in this text), and also introduced the gradient location and

orientation histogram (GLOH) which is an extension of the SIFT descriptor, and

(a) Image gradients (b) Keypoint descriptor

FIGURE 5.11

SIFT keypoint descriptor (Lowe, 2004).

2395.4 Feature extraction by low-level features

which appeared to offer better performance. The survey predated SURF and so it

was not included. SIFT also performed well and there have been many applications

of the SIFT approach for recognizing objects in images, and the applications of

SURF are burgeoning. One approach aimed to determine those key frames and

shots of a video containing a particular object with ease and convenience of the

Google search engine (Sivic et al., 2003). In this approach, elliptical regions are

represented by a 128-dimensional vector using the SIFT descriptor which was cho-

sen by virtue of superior performance, especially when the object’s positions could

vary by small amounts. From this, descriptions are constructed using machine

learning techniques.

In common with other object recognition approaches, we have deployed SIFT

for ear biometrics (Bustard and Nixon, 2010; Arbab-Zavar and Nixon, 2011) to

capture the description of an individual’s ear by a constellation of ear parts, again

confirming that people appear unique by their ear. Here, the points detected are

those which are significant across scales and thus provide an alternative character-

ization (to the earlier Gabor wavelet analysis in Section 5.4.1.2) of the ear’s

appearance. Figure 5.12(a) shows the SIFT points detected within a human ear

and Figure 5.12(b) and (c) shows the same point (the crus of helix, no less) being

detected in two different ears, and Figure 5.12(d) shows the domains of the SIFT

points dominant in the ear biometrics procedure. Note that these points do not

include the outer perimeter of the ear, which was described by Gabor wavelets.

Recognition by the SIFT features was complemented by the Gabor features, as

we derive descriptions of different regions, leading to the successful identification

of the subjects by their ears. An extended discussion of how ears can be used as a

biometric and the range of techniques that can be used for recognition is available

(Hurley et al., 2008).

As such we have concerned a topical area of major current interest. Note that

one survey on interest point detectors (Tuytelaars and Mikolajczyk, 2007) noted

(a) Detected SIFT
points

(b) One feature (c) Same feature as (b)
in a different ear

(d) Regions of
influence

FIGURE 5.12

Applying SIFT in ear biometrics (Arbab-Zavar and Nixon, 2011).

240 CHAPTER 5 High-level feature extraction: fixed shape matching

“the repeatability of the local feature detectors is still very limited, with repeat-

ability scores below 50% being quite common” and this will naturally affect dis-

criminative capability. However, there are now many studies deploying interest

point techniques for image matching, which show considerable performance capa-

bility. It is likely that the performance will be improved by technique refinement

and analysis, and therefore performance comparison and abilities will continue to

develop.

5.4.2.2 Characterizing object appearance and shape
There has long been an interest in detecting pedestrians within scenes, more for

automated surveillance analysis than for biometric purposes. The techniques have

included use of Haar features and more recently the SIFT description. An

approach called the histogram of oriented gradients (HoG) (Dalal and Triggs,

2005) has been receiving much interest. This captures edge or gradient structure

that is very characteristic of local shape in a way which is relatively unaffected

by appearance changes. Essentially, it forms a template and deploys machine

learning approaches to expedite recognition, in an effective way. In this way it is

an extension to describing objects by a histogram of the edge gradients.

First, edges are detected by the improved first-order detector as shown in

Figure 4.4 and an edge image is created. Then, a vote is determined from a pix-

el’s edge magnitude and direction and stored in a histogram. The direction is

“binned” in that votes are cast into roughly quantized histogram ranges and these

votes are derived from cells, which group neighborhoods of pixels. One imple-

mentation is to use 83 8 image cells and to group these into 20� ranges (thus

nine ranges within 180� of unsigned edge direction). Local contrast normalization

is used to handle variation in gradient magnitude due to change in illumination

and contrast with the background, and this was determined to be an important

stage. This normalization is applied in blocks, eventually leading to the person’s

description which can then be learned by using machine learning approaches.

Naturally there is a gamut of choices to be made, such as the choice of edge

detection operator, inclusion of operator, cell size, the number of bins in the

histogram, and use of full 360� edge direction. Robustness is achieved in that

noise or other effects should not change the histograms much: the filtering is

done at the description stage rather than at the image stage (as with wavelet-based

approaches).

The process of building the HoG description is illustrated in Figure 5.13 where

(a) is the original image; (b) is the gradient magnitude constructed from the absolute

values of the improved first-order difference operator; (c) is the grid of 83 8, super-

imposed on the edge direction image; and (d) illustrates the 33 3 (rectangular)

grouping of the cells, superimposed on the histograms of gradient data. There is a

rather natural balance between the grid size and the size of the grouping arrange-

ments, though these can be investigated in application. Components of the

2415.4 Feature extraction by low-level features

walking person can be seen especially in the preponderance of vertical edge com-

ponents in the legs and thorax. The grouping and normalization of these data lead

to the descriptor which can be deployed so as to detect humans/pedestrians in

static images.

The approach is not restricted to detecting pedestrians since it can be trained

to detect different shapes and it has been applied elsewhere. Given there is much

interest in speed of computation, rather unexpectedly a Fast HoG was to appear

soon after the original HoG (Zhu et al., 2006) and which claims 30 fps capability.

An alternative approach and one which confers greater generality—especially

with humans—is to include the possibility of deformation, as will be covered in

Section 6.2.

Essentially, these approaches can achieve fast extraction by decomposing a

shape into its constituent parts. Clearly one detraction of the techniques is that if

you are to change implementation—or to detect other objects—then this requires

construction of the necessary models and parts, and that can be quite demanding.

If fact, it can be less demanding to include shape, and as template matching can

give a guaranteed result, another class of approaches is to reformulate template

matching so as to improve speed, i.e., the Hough transform explained in the fol-

lowing section.

(a) Original image (c) Grid of 8×8 cells (d) Grouping histogram
information into blocks

(b) Gradient magnitude
of (a)

FIGURE 5.13

Illustrating the HoG description.

242 CHAPTER 5 High-level feature extraction: fixed shape matching

5.5 Hough transform
5.5.1 Overview
The Hough transform (HT) (Hough, 1962) is a technique that locates shapes in

images. In particular, it has been used to extract lines, circles, and ellipses (or

conic sections). In the case of lines, its mathematical definition is equivalent to

the Radon transform (Deans, 1981). The HT was introduced by Hough (1962)

and then used to find bubble tracks rather than shapes in images. However,

Rosenfeld noted its potential advantages as an image processing algorithm

(Rosenfeld, 1969). The HT was thus implemented to find lines in images (Duda

and Hart, 1972) and it has been extended greatly, since it has many advantages

and many potential routes for improvement. Its prime advantage is that it can

deliver the same result as that for template matching, but faster (Stockman and

Agrawala, 1977; Sklansky, 1978; Princen et al., 1992b). This is achieved by a

reformulation of the template matching process, based on an evidence-gathering

approach where the evidence is the votes cast in an accumulator array. The HT

implementation defines a mapping from the image points into an accumulator

space (Hough space). The mapping is achieved in a computationally efficient

manner, based on the function that describes the target shape. This mapping

requires much less computational resources than template matching. However, it

still requires significant storage and high computational requirements. These pro-

blems are addressed later, since they give focus for the continuing development

of the HT. However, the fact that the HT is equivalent to template matching has

given sufficient impetus for the technique to be among the most popular of all

existing shape extraction techniques.

5.5.2 Lines
We will first consider finding lines in an image. In a Cartesian parameterization,

collinear points in an image with coordinates (x,y) are related by their slope m

and an intercept c according to

y5mx1 c (5.24)

This equation can be written in homogeneous form as

Ay1Bx1 15 0 (5.25)

where A521/c and B5m/c. Thus, a line is defined by giving a pair of values

(A,B). However, we can observe a symmetry in the definition in Eq. (5.25). This

equation is symmetric since a pair of coordinates (x,y) also defines a line in the

space with parameters (A,B). That is, Eq. (5.25) can be seen as the equation of a

line for fixed coordinates (x,y) or as the equation of a line for fixed parameters

(A,B). Thus, pairs can be used to define points and lines simultaneously (Aguado

et al., 2000a). The HT gathers evidence of the point (A,B) by considering that all

2435.5 Hough transform

the points (x,y) define the same line in the space (A,B). That is, if the set of collin-

ear points {(xi,yi)} defines the line (A,B), then

Ayi 1Bxi 1 15 0 (5.26)

This equation can be seen as a system of equations and it can simply be

rewritten in terms of the Cartesian parameterization as

c52xim1 yi (5.27)

Thus, to determine the line, we must find the values of the parameters (m,c)

(or (A,B) in homogeneous form) that satisfy Eq. (5.27) (or Eq. (5.26), respec-

tively). However, we must note that the system is generally overdetermined. That

is, we have more equations than unknowns. Thus, we must find the solution that

comes close to satisfying all the equations simultaneously. This kind of problem

can be solved, for example, using linear least-squares techniques. The HT uses an

evidence-gathering approach to provide the solution.

The relationship between a point (xi,yi) in an image and the line given in

Eq. (5.27) is illustrated in Figure 5.14. The points (xi,yi) and (xj,yj) in Figure 5.14(a)

define the lines Ui and Uj in Figure 5.14(b), respectively. All the collinear elements

in an image will define dual lines with the same concurrent point (A,B). This is

independent of the line parameterization used. The HT solves it in an efficient way

by simply counting the potential solutions in an accumulator array that stores the

evidence or votes. The count is made by tracing all the dual lines for each point

(xi,yi). Each point in the trace increments an element in the array, thus the problem

of line extraction is transformed in the problem of locating a maximum in the accu-

mulator space. This strategy is robust and has demonstrated to be able to handle

noise and occlusion.

The axes in the dual space represent the parameters of the line. In the case of

the Cartesian parameterization, m can actually take an infinite range of values,

(a) Image containing a line (b) Lines in the dual space

(A,B)

UjUi

(xj,yj)

(xi,yi)

Bx

Ay

FIGURE 5.14

Illustrating the HT for lines.

244 CHAPTER 5 High-level feature extraction: fixed shape matching

since lines can vary from horizontal to vertical. Since votes are gathered in a dis-

crete array, this will produce bias errors. It is possible to consider a range of votes

in the accumulator space that cover all possible values. This corresponds to tech-

niques of antialiasing and can improve the gathering strategy (Brown, 1983;

Kiryati and Bruckstein, 1991).

The implementation of the HT for lines, HTLine, is given in Code 5.3. It is

important to observe that Eq. (5.27) is not suitable for implementation since the

parameters can take an infinite range of values. In order to handle the infinite

range for c, we use two arrays in the implementation in Code 5.3. When the slope

m is between 245� and 45�, then c does not take a large value. For other values

of m, the intercept c can take a very large value. Thus, we consider an accumula-

tor for each case. In the second case, we use an array that stores the intercept

with the x axis. This only solves the problem partially since we cannot guarantee

that the value of c will be small when the slope m is between245� and 45�.

%Hough Transform for Lines
function HTLine(inputimage)

%image size
[rows,columns]=size(inputimage);
%accumulator
acc1=zeros(rows,91);
acc2=zeros(columns,91);

%image
for x=1:columns

for y=1:rows
if(inputimage(y,x)==0)

b=round(y-tan((m*pi)/180)*x);
if(b<rows & b>0)

acc1(b,m+45+1)=acc1(b,m+45+1)+1;
end

end
for m=45:135

for m=–45:45

b=round(x-y/tan((m*pi)/180));
if(b<columns & b>0)

acc2(b,m-45+1)=acc2(b,m-45+1)+1;
end

end
end

end
end

CODE 5.3

Implementing the HT for lines.

2455.5 Hough transform

Figure 5.15 shows three examples of locating lines using the HT implemented

in Code 5.3. In Figure 5.15(a), there is a single line which generates the peak seen

in Figure 5.15(d). The magnitude of the peak is proportional to the number of pixels

in the line from which it was generated. The edges of the wrench in Figure 5.15(b)

and (c) define two main lines. The image in Figure 5.15(c) contains much more

noise. This image was obtained by using a lower threshold value in the edge detec-

tor operator which gave rise to more noise. The accumulator results of the HT for

the images in Figure 5.15(b) and (c) are shown in Figure 5.15(e) and (f), respec-

tively. We can observe the two accumulator arrays are broadly similar in shape,

and that the peak in each is at the same place. The coordinates of the peaks are at

combinations of parameters of the lines that best fit the image. The extra number of

edge points in the noisy image of the wrench gives rise to more votes in the accu-

mulator space, as can be seen by the increased number of votes in Figure 5.15(f)

compared with Figure 5.15(e). Since the peak is in the same place, this shows that

the HT can indeed tolerate noise. The results of extraction, when superimposed on

(a) Line (b) Wrench (c) Wrench with noise

(d) Accumulator for (a) (e) Accumulator for (b) (f) Accumulator for (c)

(g) Line from (d) (h) Lines from (e) (i) Lines from (f)

FIGURE 5.15

Applying the HT for lines.

246 CHAPTER 5 High-level feature extraction: fixed shape matching

the edge image, are shown in Figure 5.15(g)�(i). Only the two lines corresponding

to significant peaks have been drawn for the image of the wrench. Here, we can see

that the parameters describing the lines have been extracted well. Note that the end

points of the lines are not delivered by the HT, only the parameters that describe

them. You have to go back to the image to obtain line length.

We can see that the HT delivers a correct response, correct estimates of the

parameters used to specify the line, so long as the number of collinear points along

that line exceeds the number of collinear points on any other line in the image. As

such, the HT has the same properties in respect of noise and occlusion, as with tem-

plate matching. However, the nonlinearity of the parameters and the discretization

produce noisy accumulators. A major problem in implementing the basic HT for

lines is the definition of an appropriate accumulator space. In application,

Bresenham’s line drawing algorithm (Bresenham, 1965) can be used to draw the

lines of votes in the accumulator space. This ensures that lines of connected votes

are drawn as opposed to use of Eq. (5.27) that can lead to gaps in the drawn line.

Also, backmapping (Gerig and Klein, 1986) can be used to determine exactly

which edge points contributed to a particular peak. Backmapping is an inverse

mapping from the accumulator space to the edge data and can allow for shape anal-

ysis of the image by removal of the edge points which contributed to particular

peaks, and then by reaccumulation using the HT. Note that the computational cost

of the HT depends on the number of edge points (ne) and the length of the lines

formed in the parameter space (l), giving a computational cost of O(nel). This is

considerably less than that for template matching, given earlier as O(N2m2).

One way to avoid the problems of the Cartesian parameterization in the HT is

to base the mapping function on an alternative parameterization. One of the most

proven techniques is called the foot-of-normal parameterization. This parame-

terizes a line by considering a point (x,y) as a function of an angle normal to the

line, passing through the origin of the image. This gives a form of the HT for

lines known as the polar HT for lines (Duda and Hart, 1972). The point where

this line intersects the line in the image is given by

ρ5 x cosðθÞ1 y sinðθÞ (5.28)

where θ is the angle of the line normal to the line in an image and ρ is the length

between the origin and the point where the lines intersect, as illustrated in Figure 5.16.

By recalling that two lines are perpendicular if the product of their slopes is21
and by considering the geometry of the arrangement in Figure 5.16, we obtain

c5
ρ

sinðθÞ ; m52
1

tanðθÞ (5.29)

By substitution in Eq. (5.24), we obtain the polar form, Eq. (5.28). This pro-

vides a different mapping function: votes are now cast in a sinusoidal manner, in

a 2D accumulator array in terms of θ and ρ, the parameters of interest. The

advantage of this alternative mapping is that the values of the parameters θ and ρ
are now bounded to lie within a specific range. The range for θ is within 180�;
the possible values of ρ are given by the image size, since the maximum length

2475.5 Hough transform

of the line is
ffiffiffi
2

p
3N; where N is the (square) image size. The range of possible

values is now fixed, so the technique is practicable.

As the voting function has now changed, we shall draw different loci in the

accumulator space. In the conventional HT for lines, a straight line is mapped to a

straight line as shown in Figure 5.14. In the polar HT for lines, points map to

curves in the accumulator space. This is illustrated in Figure 5.17 which shows the

polar HT accumulator spaces for (a) one, (b) two, and (c) three points, respectively.

ρ

x

y

θ

c

FIGURE 5.16

Polar consideration of a line.

(a) For one point (b) For two points (c) For three points

FIGURE 5.17

Images and the accumulator space of the polar HT.

248 CHAPTER 5 High-level feature extraction: fixed shape matching

For a single point in the upper row of Figure 5.17(a), we obtain a single curve

shown in the lower row of Figure 5.17(a). For two points we obtain two curves,

which intersect at a position which describes the parameters of the line joining

them (Figure 5.17(b)). An additional curve obtains for the third point and there is

now a peak in the accumulator array containing three votes (Figure 5.17(c)).

The implementation of the polar HT for lines is the function HTPLine in

Code 5.4. The accumulator array is a set of 180 bins for value of θ in the range

0�180�, and for values of ρ in the range 0 to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 1M2

p
; where N3M is the pic-

ture size. Then, for image (edge) points greater than a chosen threshold, the angle

relating to the bin size is evaluated (as radians in the range 0�π) and then the

value of ρ is evaluated from Eq. (5.28), and the appropriate accumulator cell is

incremented so long as the parameters are within range. The accumulator arrays

obtained by applying this implementation to the images in Figure 5.15 are shown

in Figure 5.18. Figure 5.18(a) shows that a single line defines a well-delineated

peak. Figure 5.18(b) and (c) shows a clearer peak compared to the implementa-

tion of the Cartesian parameterization. This is because discretization effects are

reduced in the polar parameterization. This feature makes the polar implementa-

tion far more practicable than the earlier, Cartesian, version.

%Polar Hough Transform for Lines

function HTPLine(inputimage)

%image size
[rows,columns]=size(inputimage);

%accumulator
rmax=round(sqrt(rows^2+columns^2));
acc=zeros(rmax,180);

%image
for x=1:columns
 for y=1:rows
 if(inputimage(y,x)==0)
 for m=1:180

r=round(x*cos((m*pi)/180)
 +y*sin((m*pi)/180));
if(r<rmax & r>0)
 acc(r,m)= acc(r,m)+1; end

end
end

 end
end

CODE 5.4

Implementation of the polar HT for lines.

2495.5 Hough transform

5.5.3 HT for circles
The HT can be extended by replacing the equation of the curve in the detection

process. The equation of the curve can be given in explicit or parametric form.

In explicit form, the HT can be defined by considering the equation for a circle

given by

ðx2 x0Þ2 1 ðy2 y0Þ2 5 r2 (5.30)

This equation defines a locus of points (x,y) centered on an origin (x0,y0) and

with radius r. This equation can again be visualized in two dual ways: as a locus

of points (x,y) in an image and as a locus of points (x0,y0) centered on (x,y) with

radius r.

Figure 5.19 illustrates this dual definition. Each edge point in Figure 5.19(a)

defines a set of circles in the accumulator space. These circles are defined by all

possible values of the radius and they are centered on the coordinates of the edge

point. Figure 5.19(b) shows three circles defined by three edge points. These cir-

cles are defined for a given radius value. Actually, each edge point defines circles

for the other values of the radius. This implies that the accumulator space is 3D

(for the three parameters of interest) and that edge points map to a cone of votes

in the accumulator space. Figure 5.19(c) illustrates this accumulator. After gather-

ing evidence of all the edge points, the maximum in the accumulator space again

corresponds to the parameters of the circle in the original image. The procedure

of evidence gathering is the same as that for the HT for lines, but votes are gener-

ated in cones, according to Eq. (5.30).

Equation (5.30) can be defined in parametric form as

x5 x0 1 r cosðθÞ; y5 y0 1 r sinðθÞ (5.31)

(a) Accumulator for
Figure 5.15(a)

(b) Accumulator for
Figure 5.15(b)

(c) Accumulator for
Figure 5.15(c)

FIGURE 5.18

Applying the polar HT for lines.

250 CHAPTER 5 High-level feature extraction: fixed shape matching

The advantage of this representation is that it allows us to solve for the para-

meters. Thus, the HT mapping is defined by

x0 5 x2 r cosðθÞ; y0 5 y2 r sinðθÞ (5.32)

These equations define the points in the accumulator space (Figure 5.19(b))

dependent on the radius r. Note that θ is not a free parameter but defines the trace

of the curve. The trace of the curve (or surface) is commonly referred to as the

point spread function.

The implementation of the HT for circles, HTCircle, is shown in Code 5.5.

This is similar to the HT for lines, except that the voting function corresponds to

that in Eq. (5.32) and the accumulator space is for circle data. The accumulator in

the implementation is actually 2D, in terms of the center parameters for a fixed

(a) Image containing a circle (b) Accumulator space

x

y
1

2

3

x0

y0

1

2

3

x0

y0

r

Circles of
votes

Original
circle

(c) 3D accumulator space

FIGURE 5.19

Illustrating the HT for circles.

2515.5 Hough transform

value of the radius given as an argument to the function. This function should be

called for all potential radii. A circle of votes is generated by varying t (i.e., θ, but
Matlab does not allow Greek symbols!) from 0� to 360�. The discretization of t

controls the granularity of voting, too small an increment gives very fine coverage

of the parameter space, too large a value results in very sparse coverage. The accu-

mulator space, acc (initially zero), is incremented only for points whose coordi-

nates lie within the specified range (in this case the center cannot lie outside the

original image).

The application of the HT for circles is illustrated in Figure 5.20. Figure 5.20(a)

shows an image with a synthetic circle. In this figure, the edges are complete and

well defined. The result of the HT process is shown in Figure 5.20(d). The peak of

the accumulator space is at the center of the circle. Note that votes exist away from

%Hough Transform for Circles

function HTCircle(inputimage,r)

%image size
[rows,columns]=size(inputimage);

%accumulator
acc=zeros(rows,columns);

%image
for x=1:columns
 for y=1:rows
 if(inputimage(y,x)==0)

for ang=0:360
t=(ang*pi)/180;
x0=round(x-r*cos(t));
y0=round(y-r*sin(t));
if(x0<columns & x0>0 & y0<rows & y0>0)

acc(y0,x0)=acc(y0,x0)+1;
end

end
end

 end
end

CODE 5.5

Implementation of the HT for circles.

252 CHAPTER 5 High-level feature extraction: fixed shape matching

the circle’s center and rise toward the locus of the actual circle, though these

background votes are much less than the actual peak. Figure 5.20(b) shows an

example of data containing occlusion and noise. The image in Figure 5.20(c)

corresponds to the same scene, but the noise level has been increased by chang-

ing the threshold value in the edge detection process. The accumulators for these

two images are shown in Figure 5.20(e) and (f) and the circles related to the

parameter space peaks are superimposed (in black) on the edge images in

Figure 5.20(g)�(i). We can see that the HT has the ability to tolerate occlusion

and noise. In Figure 5.20(c), there are many edge points which imply that the

(a) Circle (b) Soccer ball edges (c) Noisy soccer ball edges

(d) Accumulator for (a) (e) Accumulator for (b) (f) Accumulator for (c)

(g) Circle from (d) (h) Circle from (e) (i) Circle from (f)

FIGURE 5.20

Applying the HT for circles.

2535.5 Hough transform

amount of processing time increases. The HT will detect the circle (provide the

right result) as long as more points are in a circular locus described by the para-

meters of the target circle than there are on any other circle. This is exactly the

same performance as for the HT for lines, as expected, and is consistent with

the result of template matching.

In application code, Bresenham’s algorithm for discrete circles (Bresenham,

1977) can be used to draw the circle of votes, rather than use the polar implemen-

tation of Eq. (5.32). This ensures that the complete locus of points is drawn and

avoids need to choose a value for increase in the angle used to trace the circle.

Bresenham’s algorithm can be used to generate the points in one octant, since the

remaining points can be obtained by reflection. Again, backmapping can be used

to determine which points contributed to the extracted circle.

An additional example of the circle HT extraction is shown in Figure 5.21.

Figure 5.21(a) is again a real image (albeit, one with low resolution) which was

processed by Sobel edge detection and thresholded to give the points in

Figure 5.21(b). The circle detected by application of HTCircle with radius 5 pixels

is shown in Figure 5.21(c) superimposed on the edge data. The extracted circle

can be seen to match the edge data well. This highlights the two major advan-

tages of the HT (and of template matching): its ability to handle noise and

occlusion. Note that the HT merely finds the circle with the maximum number

of points; it is possible to include other constraints to control the circle selection

process, such as gradient direction for objects with known illumination profile.

In the case of the human eye, the (circular) iris is usually darker than its white

surroundings.

Figure 5.21 also shows some of the difficulties with the HT, namely that it is

essentially an implementation of template matching, and does not use some of the

(a) Image of eye (b) Sobel edges (c) Edges with HT detected
circle

FIGURE 5.21

Using the HT for circles.

254 CHAPTER 5 High-level feature extraction: fixed shape matching

richer stock of information available in an image. For example, we might know

constraints on size; the largest size and iris would be in an image like

Figure 5.21. Also, we know some of the topology: the eye region contains two

ellipsoidal structures with a circle in the middle. We might also know brightness

information: the pupil is darker than the surrounding iris. These factors can be

formulated as constraints on whether edge points can vote within the accumula-

tor array. A simple modification is to make the votes proportional to edge magni-

tude, in this manner, points with high contrast will generate more votes and hence

have more significance in the voting process. In this way, the feature extracted by

the HT can be arranged to suit a particular application.

5.5.4 HT for ellipses
Circles are very important in shape detection since many objects have a circular

shape. However, because of the camera’s viewpoint, circles do not always look

like circles in images. Images are formed by mapping a shape in 3D space into a

plane (the image plane). This mapping performs a perspective transformation. In

this process, a circle is deformed to look like an ellipse. We can define the map-

ping between the circle and an ellipse by a similarity transformation. That is,

x

y

� �
5

cosðρÞ sinðρÞ
2sinðρÞ cosðρÞ

� �
Sx
Sy

� �
x0

y0

� �
1

tx
ty

� �
(5.33)

where (x0,y0) define the coordinates of the circle in Eq. (5.31), ρ represents the ori-

entation, (Sx,Sy) a scale factor and (tx,ty) a translation. If we define

a0 5 tx ax 5 Sx cosðρÞ bx 5 Sy sinðρÞ
b0 5 ty ay 52 Sx sinðρÞ by 5 Sy cosðρÞ (5.34)

then the circle is deformed into

x5 a0 1 ax cosðθÞ1 bx sinðθÞ
y5 b0 1 ay cosðθÞ1 by sinðθÞ (5.35)

This equation corresponds to the polar representation of an ellipse. This polar

form contains six parameters (a0,b0,ax,bx,ay,by) that characterize the shape of the

ellipse. θ is not a free parameter and it only addresses a particular point in the

locus of the ellipse (just as it was used to trace the circle in Eq. (5.32)). However,

one parameter is redundant since it can be computed by considering the orthogo-

nality (independence) of the axes of the ellipse (the product axbx1 ayby5 0 which

is one of the known properties of an ellipse). Thus, an ellipse is defined by its

center (a0,b0) and three of the axis parameters (ax,bx,ay,by). This gives five

2555.5 Hough transform

parameters which is intuitively correct since an ellipse is defined by its center

(2 parameters), it size along both axes (2 more parameters) and its rotation

(1 parameter). In total this states that 5 parameters describe an ellipse, so our

three axis parameters must jointly describe size and rotation. In fact, the axis

parameters can be related to the orientation and the length along the axes by

tanðρÞ5 ay

ax
a5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x 1 a2y

q
b5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2x 1 b2y

q
(5.36)

where (a,b) are the axes of the ellipse, as illustrated in Figure 5.22.

In a similar way to Eq. (5.31), Eq. (5.35) can be used to generate the

mapping function in the HT. In this case, the location of the center of the ellipse

is given by

a0 5 x2 ax cosðθÞ1 bx sinðθÞ
b0 5 y2 ay cosðθÞ1 by sinðθÞ (5.37)

The location is dependent on three parameters, thus the mapping defines the

trace of a hypersurface in a 5D space. This space can be very large. For example,

if there are 100 possible values for each of the five parameters, the 5D accumula-

tor space contains 1010 values. This is 10 GB of storage, which is of course tiny

nowadays (at least, when someone else pays!). Accordingly, there has been much

interest in ellipse detection techniques which use much less space and operate

much faster than direct implementation of Eq. (5.37).

Code 5.6 shows the implementation of the HT mapping for ellipses. The func-

tion HTEllipse computes the center parameters for an ellipse without rotation and

y

x

b
a

ay

axbx

by

FIGURE 5.22

Definition of ellipse axes.

256 CHAPTER 5 High-level feature extraction: fixed shape matching

with fixed axis length given as arguments. Thus, the implementation uses a 2D

accumulator. In practice, in order to locate an ellipse, it is necessary to try all

potential values of axis length. This is computationally impossible unless we limit

the computation to a few values.

Figure 5.23 shows three examples of the application of the ellipse extraction

process described in Code 5.6. The first example (Figure 5.23(a)) illustrates the

case of a perfect ellipse in a synthetic image. The array in Figure 5.23(d) shows a

prominent peak whose position corresponds to the center of the ellipse. The

examples in Figure 5.23(b) and (c) illustrate the use of the HT to locate a circular

form when the image has an oblique view. Each example was obtained by using a

%Hough Transform for Ellipses

function HTEllipse(inputimage,a,b)

%image size
[rows,columns]=size(inputimage);

%accumulator
acc=zeros(rows,columns);

%image
for x=1:columns
 for y=1:rows

 if(inputimage(y,x)==0)
 for ang=0:360
 t=(ang*pi)/180;
 x0=round(x-a*cos(t));
 y0=round(y-b*sin(t));
 if(x0<columns & x0>0 & y0<rows & y0>0)

acc(y0,x0)=acc(y0,x0)+1;
 end
 end
 end
 end
end

CODE 5.6

Implementation of the HT for ellipses.

2575.5 Hough transform

different threshold in the edge detection process. Figure 5.23(c) contains more

noise data that in turn gives rise to more noise in the accumulator. We can

observe that there is more than one ellipse to be located in these two figures. This

gives rise to the other high values in the accumulator space. As with the earlier

examples for line and circle extraction, there is again scope for interpreting the

accumulator space, to discover which structures produced particular parameter

combinations.

5.5.5 Parameter space decomposition
The HT gives the same (optimal) result as template matching and even though it

is faster, it still requires significant computational resources. In the previous sec-

tions, we saw that as we increase the complexity of the curve under detection, the

computational requirements increase in an exponential way. Thus, the HT becomes

less practical. For this reason, most of the research in the HT has focused on the

development of techniques aimed to reduce its computational complexity

(Illingworth and Kittler, 1988; Leavers, 1993). One important way to reduce the

computation has been the use of geometric properties of shapes to decompose the

parameter space. Several techniques have used different geometric properties.

(a) Ellipse (b) Rugby ball edges (c) Noisy rugby ball edges

(d) Accumulator for (a) (e) Accumulator for (b) (f) Accumulator for (c)

FIGURE 5.23

Applying the HT for ellipses.

258 CHAPTER 5 High-level feature extraction: fixed shape matching

These geometric properties are generally defined by the relationship between points

and derivatives.

5.5.5.1 Parameter space reduction for lines
For a line, the accumulator space can be reduced from 2D to 1D by considering

that we can compute the slope from the information of the image. The slope can

be computed either by using the gradient direction at a point or by considering a

pair of points. That is,

m5ϕ or m5
y2 2 y1

x2 2 x1
(5.38)

where ϕ is the gradient direction at the point. In the case of two points, by con-

sidering Eq. (5.24), we have

c5
x2y1 2 x1y2

x2 2 x1
(5.39)

Thus, according to Eq. (5.29), one of the parameters of the polar representa-

tion for lines, θ, is now given by

θ52tan21 1

ϕ

� �
or θ5 tan21 x1 2 x2

y2 2 y1

� �
(5.40)

These equations do not depend on the other parameter ρ and they provide

alternative mappings to gather evidence. That is, they decompose the parametric

space, such that the two parameters θ and ρ are now independent. The use of

edge direction information constitutes the base of the line extraction method pre-

sented by O’Gorman and Clowes (1976). The use of pairs of points can be related

to the definition of the randomized HT (Xu et al., 1990). Obviously, the number

of feature points considered corresponds to all the combinations of points that

form pairs. By using statistical techniques, it is possible to reduce the space of

points in order to consider a representative sample of the elements. That is, a sub-

set which provides enough information to obtain the parameters with predefined

and small estimation errors.

Code 5.7 shows the implementation of the parameter space decomposition for

the HT for lines. The slope of the line is computed by considering a pair of

points. Pairs of points are restricted to a neighborhood of 5 by 5 pixels. The

implementation of Eq. (5.40) gives values between290� and 90�. Since our accu-

mulators only can store positive values, then we add 90� to all values. In order to

compute ρ, we use Eq. (5.28) given the value of θ computed by Eq. (5.40).

2595.5 Hough transform

Figure 5.24 shows the accumulators for the two parameters θ and ρ as obtained

by the implementation of Code 5.7 for the images in Figure 5.15(a) and (b).

The accumulators are now 1D as shown in Figure 5.24(a) and show a clear peak.

The peak in the first accumulator is close to 135�. Thus, by subtracting the 90�

introduced to make all values positive, we find that the slope of the line θ5245�.

%Parameter Decomposition for the Hough Transform for Lines

function HTDLine(inputimage)

%image size
[rows,columns]=size(inputimage);

%accumulator
rmax=round(sqrt(rows^2+columns^2));
accro=zeros(rmax,1);
acct=zeros(180,1);

%image
for x=1:columns
 for y=1:rows

 if(inputimage(y,x)==0)
 for Nx=x-2:x+2
 for Ny=y-2:y+2

if(x~=Nx | y~=Ny)
if(Nx>0 & Ny>0 & Nx<columns & Ny<rows)

if(inputimage(Ny,Nx)==0)
if(Ny-y~=0)

t=atan((x-Nx)/(Ny-y)); %Equation (5.40)
else t=pi/2;

end
r=round(x*cos(t)+y*sin(t)); %Equation (5.28)

t=round((t+pi/2)*180/pi);
acct(t)=acct(t)+1;

if(r<rmax & r>0)
 accro(r)=accro(r)+1;
end

end
end

end
end

end
end

end
end

CODE 5.7

Implementation of the parameter space reduction for the HT for lines.

260 CHAPTER 5 High-level feature extraction: fixed shape matching

The peaks in the accumulators in Figure 5.24(b) define two lines with similar

slopes. The peak in the first accumulator represents the value of θ, while the two

peaks in the second accumulator represent the location of the two lines. In gen-

eral, when implementing parameter space decomposition, it is necessary to follow

a two-step process. First, it is necessary to gather data in one accumulator and

search for the maximum. Secondly, the location of the maximum value is used as

parameter value to gather data of the remaining accumulator.

5.5.5.2 Parameter space reduction for circles
In the case of lines, the relationship between local information computed from an

image and the inclusion of a group of points (pairs) is in an alternative analytical

description which can readily be established. For more complex primitives, it is

possible to include several geometric relationships. These relationships are not

defined for an arbitrary set of points but include angular constraints that define

relative positions between them. In general, we can consider different geometric

properties of the circle to decompose the parameter space. This has motivated the

development of many methods of parameter space decomposition (Aguado et al.,

1996). An important geometric relationship is given by the geometry of the sec-

ond directional derivatives. This relationship can be obtained by considering that

Eq. (5.31) defines a position vector function. That is,

υðθÞ5 xðθÞ 1

0

� �
1 yðθÞ 0

1

� �
(5.41)

where

xðθÞ5 x0 1 r cosðθÞ; yðθÞ5 y0 1 r sinðθÞ (5.42)

In this definition, we have included the parameter of the curve as an argument

in order to highlight the fact that the function defines a vector for each value of θ.

(a) Accumulators for Figure 5.9(a) (b) Accumulators for Figure 5.9(b)

600

500

400

300

200

100

0
50 100 1500

600

500

400

300

200

100

0
50 150 250100 2000

2000

1500

1000

500

0
50 100 1500 50 150 250 300100 2000

150

100

50

0

FIGURE 5.24

Parameter space reduction for the HT for lines.

2615.5 Hough transform

The end points of all the vectors trace a circle. The derivatives of Eq. (5.41) with

respect to θ define the first and second directional derivatives. That is,

υ0ðθÞ5 x0ðθÞ 1

0

� �
1 y0ðθÞ 0

1

� �

υvðθÞ5 xvðθÞ 1

0

� �
1 yvðθÞ 0

1

� �
(5.43)

where

x0ðθÞ52r sinðθÞ; y0ðθÞ5 r cosðθÞ
xvðθÞ52r cosðθÞ; yvðθÞ52r sinðθÞ (5.44)

Figure 5.25 illustrates the definition of the first and second directional deriva-

tives. The first derivative defines a tangential vector, while the second one is sim-

ilar to the vector function, but it has reverse direction. In fact, the edge direction

measured for circles can be arranged so as to point toward the center was actually

the basis of one of the early approaches to reducing the computational load of the

HT for circles (Kimme et al., 1975).

According to Eqs (5.42) and (5.44), we observe that the tangent of the angle

of the first directional derivative denoted as φ0(θ) is given by

φ0ðθÞ5 y0ðθÞ
x0ðθÞ 52

1

tanðθÞ (5.45)

Angles will be denoted by using the symbol ^. That is,

φ̂0ðθÞ5 tan21ðφ0ðθÞÞ (5.46)

Similarly, for the tangent of the second directional derivative, we have

φvðθÞ5 yvðθÞ
xvðθÞ 5 tanðθÞ and φ̂vðθÞ5 tan21ðφvðθÞÞ (5.47)

(x0, y0)

υ′(θ)

υ(θ)υ″(θ)

FIGURE 5.25

Definition of the first and second directional derivatives for a circle.

262 CHAPTER 5 High-level feature extraction: fixed shape matching

By observing the definition of φv(θ), we have

φvðθÞ5 yvðθÞ
xvðθÞ 5

yðθÞ2 y0

xðθÞ2 x0
(5.48)

This equation defines a straight line passing through the points (x(θ),y(θ)) and
(x0,y0) and it is perhaps the most important relation in parameter space decompo-

sition. The definition of the line is more evident by rearranging terms. That is,

yðθÞ5φvðθÞðxðθÞ2 x0Þ1 y0 (5.49)

This equation is independent of the radius parameter. Thus, it can be used to

gather evidence of the location of the shape in a 2D accumulator. The HT map-

ping is defined by the dual form given by

y0 5φvðθÞðx0 2 xðθÞÞ1 yðθÞ (5.50)

That is, given an image point (x(θ),y(θ)) and the value of φv(θ), we can gener-

ate a line of votes in the 2D accumulator (x0,y0). Once the center of the circle is

known, then a 1D accumulator can be used to locate the radius. The key aspect of

the parameter space decomposition is the method used to obtain the value of

φv(θ) from image data. We will consider two alternative ways. First, we will

show that φv(θ) can be obtained by edge direction information. Secondly, how it

can be obtained from the information of a pair of points.

In order to obtain φv(θ), we can use the definition in Eqs (5.45) and (5.47).

According to these equations, the tangents φv(θ) and φ0(θ) are perpendicular. Thus,

φvðθÞ52
1

φ0ðθÞ (5.51)

Thus, the HT mapping in Eq. (5.50) can be written in terms of gradient direc-

tion φ0(θ) as

y0 5 yðθÞ1 xðθÞ2 x0

φ0ðθÞ (5.52)

This equation has a simple geometric interpretation illustrated in Figure 5.26(a).

We can see that the line of votes passes through the points (x(θ),y(θ)) and (x0,y0).

The slope of the line is perpendicular to the direction of gradient direction.

An alternative decomposition can be obtained by considering the geometry

shown in Figure 5.26(b). In the figure we can see that if we take a pair of points

(x1,y1) and (x2,y2), where xi5 x(θi), then the line that passes through the points

has the same slope as the line at a point (x(θ),y(θ)). Accordingly,

φ0ðθÞ5 y2 2 y1

x2 2 x1
(5.53)

where

θ5 1
2
ðθ1 1 θ2Þ (5.54)

2635.5 Hough transform

Based on Eq. (5.53), we have

φvðθÞ52
x2 2 x1

y2 2 y1
(5.55)

The problem with using a pair of points is that by Eq. (5.54), we cannot know

the location of the point (x(θ),y(θ)). Fortunately, the voting line also passes

through the midpoint of the line between the two selected points. Let us define

this point as

xm 5 1
2
ðx1 1 x2Þ; ym 5 1

2
ðy1 1 y2Þ (5.56)

Thus, by substitution of Eq. (5.53) in Eq. (5.52) and by replacing the point

(x(θ),y(θ)) by (xm,ym), the HT mapping can be expressed as

y0 5 ym 1
ðxm 2 x0Þðx2 2 x1Þ

ðy2 2 y1Þ
(5.57)

This equation does not use gradient direction information, but it is based on pairs

of points. This is analogous to the parameter space decomposition of the line pre-

sented in Eq. (5.40). In that case, the slope can be computed by using gradient direc-

tion or, alternatively, by taking a pair of points. In the case of the circle, the tangent

(and therefore the angle of the second directional derivative) can be computed by the

gradient direction (i.e., Eq. (5.51)) or by a pair of points (i.e., Eq. (5.55)). However,

it is important to note that there are some other combinations of parameter space

decomposition (Aguado, 1996).

Code 5.8 shows the implementation of the parameter space decomposition for

the HT for circles. The implementation only detects the position of the circle and

it gathers evidence by using the mapping in Eq. (5.57). Pairs of points are

(a) Relationship between angles (b) Two point angle definition

(x0, y0)

(x(θ), y(θ))

φ″(θ)

v

φ″(θ)

v

φ′(θ)

v

φ′(θ)

v

(x(θ), y(θ))
(x(θ1), y(θ1))

(x(θ2), y(θ2))

(xm, ym)

FIGURE 5.26

Geometry of the angle of the first and second directional derivatives.

264 CHAPTER 5 High-level feature extraction: fixed shape matching

%Parameter Decomposition for the Hough Transform for Circles

function HTDCircle(inputimage)

%image size
[rows,columns]=size(inputimage);

%accumulator
acc=zeros(rows,columns);

%gather evidence
for x1=1:columns
 for y1=1:rows

if(inputimage(y1,x1)==0)
for x2=x1-12:x1+12

for y2=y1-12:y1+12
if(abs(x2-x1)>10 | abs(y2-y1)>10)

if(x2>0 & y2>0 & x2<columns & y2<rows)
if(inputimage(y2,x2)==0)

xm=(x1+x2)/2; ym=(y1+y2)/2;
if(y2-y1~=0) m=((x2-x1)/(y2-y1));

else m=99999999;
end

if(m>-1 & m<1)
for x0=1:columns

y0=round(ym+m*(xm-x0));
if(y0>0 & y0<rows)

acc(y0,x0)=acc(y0,x0)+1;
end

end
else

for y0=1:rows
x0= round(xm+(ym-y0)/m);
if(x0>0 & x0<columns)

acc(y0,x0)=acc(y0,x0)+1;
end

end
end

end
end

end
end

end
end

end
end

CODE 5.8

Parameter space reduction for the HT for circles.

2655.5 Hough transform

restricted to a neighborhood between 103 10 pixels and 123 12 pixels. We avoid

using pixels that are close to each other since they do not produce accurate votes.

We also avoid using pixels that are far away from each other, since by distance it

is probable that they do not belong to the same circle and would only increase the

noise in the accumulator. In order to trace the line, we use two equations that are

selected according to the slope.

Figure 5.27 shows the accumulators obtained by the implementation of Code 5.8

for the images in Figure 5.20(a) and (b). Both accumulators show a clear peak that

represents the location of the circle. Small peaks in the background of the accumula-

tor in Figure 5.27(b) correspond to circles with only a few points. In general, there is

a compromise between the width of the peak and the noise in the accumulator. The

peak can be made narrower by considering pairs of points that are more widely

spaced. However, this can also increases the level of background noise. Background

noise can be reduced by taking points that are closer together, but this makes the

peak wider.

5.5.5.3 Parameter space reduction for ellipses
Part of the simplicity in the parameter decomposition for circles comes from the

fact that circles are (naturally) isotropic. Ellipses have more free parameters and

are geometrically more complex. Thus, geometrical properties involve more com-

plex relationships between points, tangents, and angles. However, they maintain

the geometric relationship defined by the angle of the second derivative.

According to Eqs (5.41) and (5.43), the vector position and directional derivatives

of an ellipse in Eq. (5.35) have the components

x0ðθÞ52ax sinðθÞ1 bx cosðθÞ; y0ðθÞ52ay sinðθÞ1 by cosðθÞ
xvðθÞ52ax cosðθÞ2 bx sinðθÞ; yvðθÞ52ay cosðθÞ2 by sinðθÞ (5.58)

(a) Accumulator for Figure 5.20(a) (b) Accumulator for Figure 5.20(b)

FIGURE 5.27

Parameter space reduction for the HT for circles.

266 CHAPTER 5 High-level feature extraction: fixed shape matching

The tangent angles of the first and second directional derivatives are given by

φ0ðθÞ 5 y0ðθÞ
x0ðθÞ 5

2ay cosðθÞ1 by sinðθÞ
2ax cosðθÞ1 bx sinðθÞ

φvðθÞ5 yvðθÞ
xvðθÞ 5

2ay cosðθÞ2 by sinðθÞ
2ax cosðθÞ2 bx sinðθÞ

(5.59)

By considering Eq. (5.58), we have that Eq. (5.48) is also valid for an ellipse.

That is,

yðθÞ2 y0

xðθÞ2 x0
5φvðθÞ (5.60)

The geometry of the definition in this equation is illustrated in Figure 5.28(a).

As in the case of circles, this equation defines a line that passes through the points

(x(θ),y(θ)) and (x0,y0). However, in the case of the ellipse, the angles φ̂0ðθÞ and
φ̂vðθÞ are not orthogonal. This makes the computation of φ̂vðθÞ more complex. In

order to obtain φv(θ), we can extend the geometry presented in Figure 5.26(b).

That is, we take a pair of points to define a line whose slope defines the value of

φ0(θ) at another point. This is illustrated in Figure 5.28(b). The line in Eq. (5.60)

passes through the middle point (xm,ym). However, it is not orthogonal to the tan-

gent line. In order to obtain an expression of the HT mapping, we will first show

that the relationship in Eq. (5.54) is also valid for ellipses. Then we will use this

equation to obtain φv(θ).
The relationships in Figure 5.28(b) do not depend on the orientation or posi-

tion of the ellipse. Thus, the three points can be defined by

x1 5 ax cosðθ1Þ; x2 5 ax cosðθ2Þ; xðθÞ5 ax cosðθÞ
y1 5 bx sinðθ1Þ; y2 5 bx sinðθ2Þ; yðθÞ5 bx sinðθÞ (5.61)

(a) Relationship between angles (b) Two point angle definition

(x0, y0)
(x0, y0)

(x(θ), y(θ))

(x(θ1), y(θ1))

(x(θ2), y(θ2))

(xm, ym)

(xT, yT)

φ″(θ)

v

φ″(θ)

v

φ′(θ)

v

φ′(θ)

v

FIGURE 5.28

Geometry of the angle of the first and second directional derivatives.

2675.5 Hough transform

The point (x(θ),y(θ)) is given by the intersection of the line in Eq. (5.60) with

the ellipse. That is,

yðθÞ2 y0

xðθÞ2 x0
5

ax

by

ym

xm
(5.62)

By substitution of the values of (xm,ym) defined as the average of the coordi-

nates of the points (x1,y1) and (x2,y2) in Eq. (5.56), we have

tanðθÞ5 ax

by

by sinðθ1Þ1 by sinðθ2Þ
ax cosðθ1Þ1 ax cosðθ2Þ

(5.63)

Thus,

tanðθÞ5 tanð1
2
ðθ1 1 θ2ÞÞ (5.64)

From this equation it is evident that the relationship in Eq. (5.54) is also valid

for ellipses. Based on this result, the tangent angle of the second directional deriv-

ative can be defined as

φvðθÞ5 by

ax
tanðθÞ (5.65)

By substitution in Eq. (5.62), we have

φvðθÞ5 ym

xm
(5.66)

This equation is valid when the ellipse is not translated. If the ellipse is trans-

lated, then the tangent of the angle can be written in terms of the points (xm,ym)

and (xT,yT) as

φvðθÞ5 yT 2 ym

xT 2 xm
(5.67)

By considering that the point (xT,yT) is the intersection point of the tangent

lines at (x1,y1) and (x2,y2), we obtain

φvðθÞ5 AC1 2BD

2A1BC
(5.68)

where

A5 y1 2 y2; B5 x1 2 x2
C5φ1 1φ2; D5φ1Uφ2

(5.69)

and φ1, φ2 are the slopes of the tangent line to the points. Finally, by considering

Eq. (5.60), the HT mapping for the center parameter is defined as

y0 5 ym 1
AC1 2BD

2A1BC
ðx0 2 xmÞ (5.70)

This equation can be used to gather evidence that is independent of rotation or

scale. Once the location is known, a 3D parameter space is necessary to obtain

268 CHAPTER 5 High-level feature extraction: fixed shape matching

the remaining parameters. However, these parameters can also be computed inde-

pendently using two 2D parameter spaces (Aguado et al., 1996). Of course you

can avoid using the gradient direction in Eq. (5.68) by including more points. In

fact, the tangent φv(θ) can be computed by taking four points (Aguado, 1996).

However, the inclusion of more points generally leads to more background noise

in the accumulator.

Code 5.9 shows the implementation of the ellipse location mapping in

Eq. (5.57). As in the case of the circle, pairs of points need to be restricted to a

%Parameter Decomposition for Ellipses
function HTDEllipse(inputimage)

%image size
[rows,columns]=size(inputimage);

%edges
[M,Ang]=Edges(inputimage);
M=MaxSupr(M,Ang);

%accumulator
acc=zeros(rows,columns);

%gather evidence
for x1=1:columns
for y1=1:1:rows

if(M(y1,x1)~=0)
for i=0:60

x2=x1-i; y2=y1-i;
incx=1; incy=0;
for k=0: 8*i-1
if(x2>0 & y2>0 & x2<columns & y2<rows)
if M(y2,x2)~=0

m1=Ang(y1,x1); m2=Ang(y2,x2);

if(abs(m1-m2)>.2)

xm=(x1+x2)/2; ym=(y1+y2)/2;
m1=tan(m1); m2=tan(m2);

A=y1-y2; B=x1-x2;

N=(2*A+B*C);
if N~=0

C=m1+m2; D=m1*m2;

CODE 5.9

Implementation of the parameter space reduction for the HT for ellipses.

2695.5 Hough transform

m=(A*C+2*B*D)/N;
else

end;
m=99999999;

else

if(m>-1 & m<1)
for x0=1:columns

y0=round(ym+m*(xm-x0));
if(y0>0 & y0<rows)

acc(y0,x0)=acc(y0,x0)+1;
end

end

for y0=1:rows
x0= round(xm+(ym-y0)/m);
if(x0>0 & x0<columns)

acc(y0,x0)=acc(y0,x0)+1;
end

end
end % if abs

end % if M
end

x2=x2+incx; y2=y2+incy;

if x2>x1+i
x2=x1+i;
incx=0; incy=1;
y2=y2+incy;

end

if y2>y1+i
y2=y1+i;
incx=-1; incy=0;
x2=x2+incx;

end

if x2<x1-i
x2=x1-i;
incx=0; incy=-1;
y2=y2+incy;

end
end % for k

end % for i
end % if (x1,y1)

end % y1
end %x1

CODE 5.9

(Continued)

270 CHAPTER 5 High-level feature extraction: fixed shape matching

neighborhood. In the implementation, we consider pairs at a fixed distance given

by the variable i. Since we are including gradient direction information, the

resulting peak is generally quite wide. Again, the selection of the distance

between points is a compromise between the level of background noise and the

width of the peak.

Figure 5.29 shows the accumulators obtained by the implementation of Code

5.9 for the images in Figure 5.23(a) and (b). The peak represents the location of

the ellipses. In general, there is noise and the accumulator is wide. This is for two

main reasons. First, when the gradient direction is not accurate, then the line of

votes does not pass exactly over the center of the ellipse. This forces the peak to

become wider with less height. Secondly, in order to avoid numerical instabilities,

we need to select points that are well separated. However, this increases the prob-

ability that the points do not belong to the same ellipse, thus generating back-

ground noise in the accumulator.

5.5.6 Generalized HT
Many shapes are far more complex than lines, circles, or ellipses. It is often possi-

ble to partition a complex shape into several geometric primitives, but this can

lead to a highly complex data structure. In general it is more convenient to extract

the whole shape. This has motivated the development of techniques that can find

arbitrary shapes using the evidence-gathering procedure of the HT. These techni-

ques again give results equivalent to those delivered by matched template filter-

ing, but with the computational advantage of the evidence-gathering approach.

An early approach offered only limited capability only for arbitrary shapes

(Merlin and Farber, 1975). The full mapping is called the generalized HT (GHT)

(Ballard, 1981) and can be used to locate arbitrary shapes with unknown position,

(a) Accumulators for Figure 5.23(a) (b) Accumulators for Figure 5.23(b)

FIGURE 5.29

Parameter space reduction for the HT for ellipses.

2715.5 Hough transform

size, and orientation. The GHT can be formally defined by considering the dual-

ity of a curve. One possible implementation can be based on the discrete repre-

sentation given by tabular functions. These two aspects are explained in the

following two sections.

5.5.6.1 Formal definition of the GHT
The formal analysis of the HT provides the route for generalizing it to arbitrary

shapes. We can start by generalizing the definitions in Eq. (5.41). In this way a

model shape can be defined by a curve:

υðθÞ5 xðθÞ 1

0

� �
1 yðθÞ 0

1

� �
(5.71)

For a circle, for example, we have x(θ)5 r cos(θ) and y(θ)5 r sin(θ). Any shape

can be represented by following a more complex definition of x(θ) and y(θ).
In general, we are interested in matching the model shape against a shape in

an image. However, the shape in the image has a different location, orientation,

and scale. Originally the GHT defines a scale parameter in the x and y directions,

but due to computational complexity and practical relevance, the use of a single

scale has become much more popular. Analogous to Eq. (5.33), we can define the

image shape by considering translation, rotation, and change of scale. Thus, the

shape in the image can be defined as

ωðθ; b;λ; ρÞ5 b1λRðρÞυðθÞ (5.72)

where b5 (x0,y0) is the translation vector, λ is a scale factor, and R(ρ) is a rota-

tion matrix (as in Eq. (5.31)). Here we have included explicitly the parameters of

the transformation as arguments, but to simplify the notation they will be omitted

later. The shape of ω(θ,b,λ,ρ) depends on four parameters. Two parameters define

the location b, plus the rotation and scale. It is important to note that θ does not

define a free parameter, but it only traces the curve.

In order to define a mapping for the HT, we can follow the approach used to

obtain Eq. (5.35). Thus, the location of the shape is given by

b5ωðθÞ2λRðρÞυðθÞ (5.73)

Given a shape ω(θ) and a set of parameters b, λ, and ρ, this equation defines

the location of the shape. However, we do not know the shape ω(θ) (since it

depends on the parameters that we are looking for), but we only have a point in

the curve. If we call ωi5 (ωxi,ωyi) the point in the image, then

b5ωi 2λRðρÞυðθÞ (5.74)

defines a system with four unknowns and with as many equations as points in the

image. In order to find the solution, we can gather evidence by using a 4D accu-

mulator space. For each potential value of b, λ, and ρ, we trace a point spread

function by considering all the values of θ, i.e., all the points in the curve υ(θ).

272 CHAPTER 5 High-level feature extraction: fixed shape matching

In the GHT, the gathering process is performed by adding an extra constraint

to the system that allows us to match points in the image with points in the model

shape. This constraint is based on gradient direction information and can be

explained as follows. We said that ideally, we would like to use Eq. (5.73) to

gather evidence. For that we need to know the shape ω(θ) and the model υ(θ), but
we only know the discrete points ωi and we have supposed that these are the

same as the shape, i.e., ω(θ)5ωi. Based on this assumption, we then consider all

the potential points in the model shape, υ(θ). However, this is not necessary since

we only need the point in the model,υ(θ), that corresponds to the point in the

shape, ω(θ). We cannot know the point in the shape, υ(θ), but we can compute

some properties from the model and image. Then, we can check whether these

properties are similar at the point in the model and at a point in the image. If they

are indeed similar, the points might correspond: if they do we can gather evi-

dence of the parameters of the shape. The GHT considers as feature the gradient

direction at the point. We can generalize Eqs (5.45) and (5.46) to define the gradi-

ent direction at a point in the arbitrary model. Thus,

φ0ðθÞ5 y0ðθÞ
x0ðθÞ and φ̂0ðθÞ5 tan21ðφ0ðθÞÞ (5.75)

Thus Eq. (5.73) is true only if the gradient direction at a point in the image

matches the rotated gradient direction at a point in the (rotated) model, i.e.,

φ0
i 5 φ̂0ðθÞ2 ρ (5.76)

where φ̂0ðθÞ is the angle at the point ωi. Note that according to this equation, gra-

dient direction is independent of scale (in theory at least) and it changes in the

same ratio as rotation. We can constrain Eq. (5.74) to consider only the points

υ(θ) for which

φ0
i 2 φ̂0ðθÞ1 ρ5 0 (5.77)

That is, a point spread function for a given edge point ωi is obtained by select-

ing a subset of points in υ(θ) such that the edge direction at the image point

rotated by ρ equals the gradient direction at the model point. For each point ωi

and selected point in υ(θ), the point spread function is defined by the HT mapping

in Eq. (5.74).

5.5.6.2 Polar definition
Equation (5.74) defines the mapping of the HT in Cartesian form. That is, it

defines the votes in the parameter space as a pair of coordinates (x,y). There is an

alternative definition in polar form. The polar implementation is more common

than the Cartesian form (Hecker and Bolle, 1994; Sonka et al., 1994). The advan-

tage of the polar form is that it is easy to implement since changes in rotation and

scale correspond to addition in the angle�magnitude representation. However,

ensuring that the polar vector has the correct direction incurs more complexity.

2735.5 Hough transform

Equation (5.74) can be written in a form that combines rotation and scale as

b5ωðθÞ2 γðλ; ρÞ (5.78)

where γT(λ,ρ)5 [γx(λ,ρ) γy(λρ)] and where the combined rotation and scale is

γxðλ; ρÞ5λðxðθÞcosðρÞ2 yðθÞsinðρÞÞ
γyðλ; ρÞ5λðxðθÞsinðρÞ1 yðθÞcosðρÞÞ (5.79)

This combination of rotation and scale defines a vector, γ(λ,ρ), whose tangent

angle and magnitude are given by

tanðαÞ5 γyðλ; ρÞ
γxðλ; ρÞ

; r5
ffi
γ2xðλ; ρÞ1 γ2yðλ; ρÞ

q
(5.80)

The main idea here is that if we know the values for α and r, then we can

gather evidence by considering Eq. (5.78) in polar form. That is,

b5ωðθÞ2 r e jα (5.81)

Thus, we should focus on computing values for α and r. After some algebraic

manipulation, we have

α5φðθÞ1 ρ; r5λ ΓðθÞ (5.82)

where

φðθÞ5 tan21 yðθÞ
xðθÞ

� �
; ΓðθÞ5

ffi
x2ðθÞ1 y2ðθÞ

p
(5.83)

In this definition, we must include the constraint defined in Eq. (5.77). That

is, we gather evidence only when the gradient direction is the same. Note that the

square root in the definition of the magnitude in Eq. (5.83) can have positive and

negative values. The sign must be selected in a way that the vector has the correct

direction.

5.5.6.3 The GHT technique
Equations (5.74) and (5.81) define an HT mapping function for arbitrary shapes.

The geometry of these equations is shown in Figure 5.30. Given an image point ωi,

we have to find a displacement vector γ(λ,ρ). When the vector is placed at ωi, then

its end is at the point b. In the GHT jargon, this point called the reference point.

The vector γ(λ,ρ) can be easily obtained as λR(ρ)υ(θ) or alternative as reα.

However, in order to evaluate these equations, we need to know the point υ(θ).
This is the crucial step in the evidence-gathering process. Note the remarkable sim-

ilarity between Figures 5.26(a), 5.28(a) and 5.30(a). This is not a coincidence, but

Eq. (5.60) is a particular case of Eq. (5.73).

The process of determining υ(θ) centers on solving Eq. (5.76). According to

this equation, since we know φ̂0
i; we need to find the point υ(θ) whose gradient

direction is φ̂0
i 1 ρ5 0: Then we must use υ(θ) to obtain the displacement vector

274 CHAPTER 5 High-level feature extraction: fixed shape matching

γ(λ,ρ). The GHT precomputes the solution of this problem and stores it an array

called the R-table. The R-table stores for each value of φ̂0
i the vector γ(λ,ρ) for

ρ5 0 and λ5 1. In polar form, the vectors are stored as a magnitude direction

pair and in Cartesian form as a coordinate pair.

The possible range for φ̂0
i is between2π/2 and π/2 radians. This range is split

into N equispaced slots or bins. These slots become rows of data in the R-table.

The edge direction at each border point determines the appropriate row in the

R-table. The length, r, and direction, α, from the reference point is entered into a

new column element, at that row, for each border point in the shape. In this man-

ner, the N rows of the R-table have elements related to the border information, ele-

ments for which there is no information containing null vectors. The length of

each row is given by the number of edge points that have the edge direction corre-

sponding to that row; the total number of elements in the R-table equals the num-

ber of edge points above a chosen threshold. The structure of the R-table for

N edge direction bins and m template border points is illustrated in Figure 5.30(b).

The process of building the R-table is illustrated in Code 5.10. In this code,

we implement the Cartesian definition given in Eq. (5.74). According to this

equation, the displacement vector is given by

γð1; 0Þ5ωðθÞ2 b (5.84)

The matrix T stores the coordinates of γ(1,0). This matrix is expanded to

accommodate all the computed entries.

Code 5.11 shows the implementation of the gathering process of the GHT. In

this case we use the Cartesian definition in Eq. (5.74). The coordinates of points

given by evaluation of all R-table points for the particular row indexed by the

gradient magnitude are used to increment cells in the accumulator array. The

maximum number of votes occurs at the location of the original reference point.

After all edge points have been inspected, the location of the shape is given by

the maximum of an accumulator array.

(a) Displacement vector (b) R-table

α
γ(λ, ρ)

Target shape

φi

ωi

Edge vector

b

r

Reference point

0

... ...

... ...

Δφ

γ = (r, α)
(r0, α0), (r1, α1), (r2, α2)

φ′i

v

2Δ φ

FIGURE 5.30

Geometry of the GHT.

2755.5 Hough transform

%R-Table

function T=RTable(entries,inputimage)

%image size
[rows,columns]=size(inputimage);

%edges
[M,Ang]=Edges(inputimage);
M=MaxSupr(M,Ang);

%compute reference point
xr=0; yr=0; p=0;
for x=1:columns
 for y=1:rows
 if(M(y,x)~=0)

 xr=xr+x;
 yr=yr+y;
 p=p+1;
 end
 end
end
xr=round(xr/p);
yr=round(yr/p);

%accumulator
D=pi/entries;

s=0; % number of entries in the table
t=[];
F=zeros(entries,1); % number of entries in the row

% for each edge point
for x=1:columns

for y=1:rows
if(M(y,x)~=0)

 phi=Ang(y,x);
i=round((phi+(pi/2))/D);

 if(i==0) i=1; end;

 V=F(i)+1;

 if(V>s)
 s=s+1;

T(:,:,s)=zeros(entries,2);
 end;

 T(i,1,V)=x-xr;
 T(i,2,V)=y-yr;
 F(i)=F(i)+1;

 end %if
 end % y
end% x

CODE 5.10

Implementation of the construction of the R-table.

276 CHAPTER 5 High-level feature extraction: fixed shape matching

%Generalised Hough Transform

function GHT(inputimage,RTable)

%image size
[rows,columns]=size(inputimage);

%table size
[rowsT,h,columnsT]=size(RTable);
D=pi/rowsT;

%edges
[M,Ang]=Edges(inputimage);
M=MaxSupr(M,Ang);

%accumulator
acc=zeros(rows,columns);

%for each edge point
for x=1:columns
 for y=1:rows
 if(M(y,x)~=0)

 phi=Ang(y,x);
i=round((phi+(pi/2))/D);

 if(i==0) i=1; end;
 for j=1:columnsT
 if(RTable(i,1,j)==0 & RTable(i,2,j)==0)
 j=columnsT; %no more entries

else

a0=x-RTable(i,1,j); b0=y-RTable(i,2,j);
if(a0>0 & a0<columns & b0>0 & b0<rows)

acc(b0,a0)=acc(b0,a0)+1;
end

end
end

end %if
 end % y
end% x

CODE 5.11

Implementing the GHT.

2775.5 Hough transform

Note that if we want to try other values for rotation and scale, then it is neces-

sary to compute a table γ(λ,ρ) for all potential values. However, this can be

avoided by considering that γ(λ,ρ) can be computed from γ(1,0). That is, if we
want to accumulate evidence for γ(λ,ρ), then we use the entry indexed by φ̂0

i 1 ρ
and we rotate and scale the vector γ(1,0). That is,

γxðλ; ρÞ 5λðγxð1; 0ÞcosðρÞ2 γyð1; 0ÞsinðρÞÞ
γyðλ; ρÞ 5λðγxð1; 0ÞsinðρÞ1 γyð1; 0ÞcosðρÞÞ (5.85)

In the case of the polar form, the angle and magnitude need to be defined accord-

ing to Eq. (5.82).

The application of the GHT to detect an arbitrary shape with unknown translation

is illustrated in Figure 5.31. We constructed an R-table from the template shown in

Figure 5.3. The table contains 30 rows. The accumulator in Figure 5.31(c) was

obtained by applying the GHT to the image in Figure 5.31(b). Since the table was

obtained from a shape with the same scale and rotation than the primitive in the

image, then the GHT produces an accumulator with a clear peak at the center of

mass of the shape.

Although the example in Figure 5.31 shows that the GHT is an effective

method for shape extraction, there are several inherent difficulties in its formula-

tion (Grimson and Huttenglocher, 1990; Aguado et al., 2000b). The most evident

problem is that the table does not provide an accurate representation when objects

are scaled and translated. This is because the table implicitly assumes that the

curve is represented in discrete form. Thus, the GHT maps a discrete form into a

discrete parameter space. Additionally, the transformation of scale and rotation

can induce other discretization errors. This is because when discrete images are

mapped to be larger, or when they are rotated, loci which are unbroken sets of

points rarely map to unbroken sets in the new image. Another important problem

is the excessive computations required by the 4D parameter space. This makes

the technique impractical. Also, the GHT is clearly dependent on the accuracy of

(a) Model (b) Image (c) Accumulator space

FIGURE 5.31

Example of the GHT.

278 CHAPTER 5 High-level feature extraction: fixed shape matching

directional information. By these factors, the results provided by the GHT can

become less reliable. A solution is to use an analytic form instead of a

table (Aguado et al., 1998). This avoids discretization errors and makes the tech-

nique more reliable. This also allows the extension to affine or other transforma-

tions. However, this technique requires solving for the point υ(θ) in an analytic

way increasing the computational load. A solution is to reduce the number of

points by considering characteristics points defined as points of high curvature.

However, this still requires the use of a 4D accumulator. An alternative to reduce

this computational load is to include the concept of invariance in the GHT

mapping.

5.5.6.4 Invariant GHT
The problem with the GHT (and other extensions of the HT) is that they are very

general. That is, the HT gathers evidence for a single point in the image.

However, a point on its own provides little information. Thus, it is necessary to

consider a large parameter space to cover all the potential shapes defined by a

given image point. The GHT improves evidence gathering by considering a point

and its gradient direction. However, since gradient direction changes with rota-

tion, the evidence gathering is improved in terms of noise handling, but little is

done about computational complexity.

In order to reduce computational complexity of the GHT, we can consider

replacing the gradient direction by another feature. That is, by a feature that is

not affected by rotation. Let us explain this idea in more detail. The main aim of

the constraint in Eq. (5.77) is to include gradient direction to reduce the number

of votes in the accumulator by identifying a point υ(θ). Once this point is known,

then we obtain the displacement vector γ(λ,ρ). However, for each value of rota-

tion, we have a different point in υ(θ). Now let us replace that constraint in

Eq. (5.76) by a constraint of the form

QðωiÞ5QðυðθÞÞ (5.86)

The function Q is said to be invariant and it computes a feature at the point.

This feature can be, for example, the color of the point, or any other property that

does not change in the model and image. By considering Eq. (5.86), Eq. (5.77) is

redefined as

QðωiÞ2QðυðθÞÞ5 0 (5.87)

That is, instead of searching for a point with the same gradient direction, we

will search for the point with the same invariant feature. The advantage is that

this feature will not change with rotation or scale, so we only require a 2D space

to locate the shape. The definition of Q depends on the application and the type

of transformation. The most general invariant properties can be obtained by con-

sidering geometric definitions. In the case of rotation and scale changes (i.e., sim-

ilarity transformations), the fundamental invariant property is given by the

concept of angle.

2795.5 Hough transform

An angle is defined by three points and its value remains unchanged when it

is rotated and scaled. Thus, if we associate to each edge point ωi a set of other

two points {ωj,ωT}, we can compute a geometric feature that is invariant to simi-

larity transformations. That is,

QðωiÞ5 ωxjωyi 2ωxiωyj

ωxiωxj 1ωyiωyj

(5.88)

where ωxn and ωyn are the x and the y coordinates of point n. Equation (5.88)

defines the tangent of the angle at the point ωT. In general, we can define the

points {ωj,ωT} in different ways. An alternative geometric arrangement is shown

in Figure 5.32(a). Given the points ωi and a fixed angle ϑ, we determine the point

ωj such that the angle between the tangent line at ωi and the line that joins the

points is ϑ. The third point is defined by the intersection of the tangent lines at ωi

and ωj. The tangent of the angle β is defined by Eq. (5.88). This can be expressed

in terms of the points and its gradient directions as

QðωiÞ5
φ0
i 2φ0

j

11φ0
iφ

0
j

(5.89)

We can replace the gradient angle in the R-table, by the angle β. The form of

the new invariant table is shown in Figure 5.32(c). Since the angle β does not

change with rotation or change of scale, we do not need to change the index for

each potential rotation and scale. However, the displacement vectors change

according to rotation and scale (i.e., Eq. (5.85)). Thus, if we want an invariant

formulation, we must also change the definition of the position vector.

In order to locate the point b, we can generalize the ideas presented in

Figures 5.26(a) and 5.28(a). Figure 5.32(b) shows this generalization. As in the

case of the circle and ellipse, we can locate the shape by considering a line of

votes that passes through the point b. This line is determined by the value of φvi:
We will do two things. First, we will find an invariant definition of this value.

Secondly, we will include it on the GHT table.

(a) Displacement vector (b) Angle definition (c) Invariant R-table

ωi

(x0, y0)
0ωi

β
β k

k

ωj

α

ωT

Δφ

... ...

...
...

φ′(θi)

v

φ′(θ)

v

φ′(θj)

v

φ″(θ)

v

k0,k1,k2,...

2Δφ

FIGURE 5.32

Geometry of the invariant GHT.

280 CHAPTER 5 High-level feature extraction: fixed shape matching

We can develop Eq. (5.73) as

x0
y0

� �
5

ωxi

ωyi

� �
1λ cosðρÞ sinðρÞ

2sinðρÞ cosðρÞ
� �

xðθÞ
yðθÞ

� �
(5.90)

Thus, Eq. (5.60) generalizes to

φvi 5
ωyi 2 y0

ωxi 2 x0
5

½2sinðρÞcosðρÞ�yðθÞ
½cosðρÞsinðρÞ�xðθÞ (5.91)

By some algebraic manipulation, we have

φvi 5 tanðξ2 ρÞ (5.92)

where

ξ5
yðθÞ
xðθÞ (5.93)

In order to define φvi we can consider the tangent angle at the point ωi. By

considering the derivative of Eq. (5.72), we have

φ0
i 5

½2sinðρÞcosðρÞ�y0ðθÞ
½cosðρÞsinðρÞ�x0ðθÞ (5.94)

Thus,

φ0
i 5 tanðφ2 ρÞ (5.95)

where

φ5
y0ðθÞ
x0ðθÞ (5.96)

By considering Eqs (5.92) and (5.95), we define

φ̂vi 5 k1 φ̂0
i (5.97)

The important point in this definition is that the value of k is invariant to rota-

tion. Thus, if we use this value in combination with the tangent at a point, we can

have an invariant characterization. In order to see that k is invariant, we solve it

for Eq. (5.97). That is,

k5 φ̂0
i 2 φ̂vi (5.98)

Thus,

k5 ξ2 ρ2ðφ2 ρÞ (5.99)

That is,

k5 ξ2φ (5.100)

That is independent of rotation. The definition of k has a simple geometric

interpretation illustrated in Figure 5.26(b).

2815.5 Hough transform

In order to obtain an invariant GHT, it is necessary to know for each point ωi,

the corresponding point υ(θ) and then compute the value of φvi : Then evidence

can be gathered by the line in Eq. (5.91). That is,

y0 5φvi ðx0 2ωxiÞ1ωyi (5.101)

In order to compute φvi we can obtain k and then use Eq. (5.100). In the stan-

dard tabular form, the value of k can be precomputed and stored as function of

the angle β.
Code 5.12 illustrates the implementation to obtain the invariant R-table. This

code is based on Code 5.10. The value of α is set to π/4 and each element of the

%Invariant R-Table

function T=RTableInv(entries,inputimage)

%image size
[rows,columns]=size(inputimage);

%edges
[M,Ang]=Edges(inputimage);
M=MaxSupr(M,Ang);

alfa=pi/4;
D=pi/entries;
s=0; %number of entries in the table
t=0;
F=zeros(entries,1); %number of entries in the row

 %compute reference point
xr=0; yr=0; p=0;
for x=1:columns
 for y=1:rows

 if(M(y,x)~=0)
xr=xr+x;
yr=yr+y;
p=p+1;

end
 end
end
xr=round(xr/p);
yr=round(yr/p);

%for each edge point
for x=1:columns
 for y=1:rows

if(M(y,x)~=0)
%search for the second point

CODE 5.12

Constructing of the invariant R-table.

282 CHAPTER 5 High-level feature extraction: fixed shape matching

x1=-1; y1=-1;
phi=Ang(y,x);
m=tan(phi-alfa);

 if(m>-1 & m<1)
for i=3:columns

c=x+i;
j=round(m*(c-x)+y);
if(j>0 & j<rows & c>0 & c<columns & M(j,c)~=0)

x1=c ; y1=j;
i= columns;

end

if(j>0 & j<rows & c>0 & c<columns & M(j,c)~=0)

c=x-i;
j=round(m*(c-x)+y);

i=columns;
end

end

x1=c ; y1=j;

else
for j=3:rows
c=y+j;
i=round(x+(c-y)/m);
if(c>0 & c<rows & i>0 & i< columns & M(c,i)~=0)

x1=i ; y1=c;
i=rows;

end
c=y-j;
i=round(x+(c-y)/m);
if(c>0 & c<rows & i>0 & i< columns & M(c,i)~=0)

x1=i ; y1=c;
i= rows;

end
end

end

if(x1~=-1)
%compute beta
phi=tan(Ang(y,x));
phj= tan(Ang(y1,x1));
if((1+phi*phj)~=0)

beta=atan((phi-phj)/(1+phi*phj));
else

beta=1.57;
end

%compute k
if((x-xr)~=0)

ph=atan((y-yr)/(x-xr));
else

ph=1.57;
end
k=ph-Ang(y,x);

CODE 5.12

(Continued)

2835.5 Hough transform

table stores a single value computed according to Eq. (5.98). The more cumber-

some part of the code is to search for the point ωj. We search in two directions

from ωi and we stop once an edge point has been located. This search is per-

formed by tracing a line. The trace is dependent on the slope. When the slope is

between21 and11, we then determine a value of y for each value of x, otherwise

we determine a value of x for each value of y.

Code 5.13 illustrates the evidence-gathering process according to Eq. (5.101).

This code is based on the implementation presented in Code 5.11. We use the

value of β defined in Eq. (5.89) to index the table passed as parameter to the

function GHTInv. The data k recovered from the table is used to compute the slope

of the angle defined in Eq. (5.97). This is the slope of the line of votes traced in

the accumulators.

Figure 5.33 shows the accumulator obtained by the implementation of Code 5.13.

Figure 5.33(a) shows the template used in this example. This template was used to

construct the R-table in Code 5.12. The R-table was used to accumulate evidence

when searching for the piece of the puzzle in the image in Figure 5.33(b).

Figure 5.33(c) shows the result of the evidence-gathering process. We can observe a

peak in the location of the object. However, this accumulator contains significant

noise. The noise is produced since rotation and scale change the value of the com-

puted gradient. Thus, the line of votes is only approximated. Another problem is that

pairs of points ωi and ωj might not be found in an image, thus the technique is more

sensitive to occlusion and noise than the GHT.

%insert in the table
i=round((beta+(pi/2))/D);
if(i==0) i=1; end;

V=F(i)+1;

if(V>s)
s=s+1;
T(:,s)=zeros(entries,1);

end;

T(i,V)=k;
F(i)=F(i)+1;

end

end %if
end % y

end % x

CODE 5.12

(Continued)

284 CHAPTER 5 High-level feature extraction: fixed shape matching

%Invariant Generalised Hough Transform

function GHTInv(inputimage,RTable)

%image size
[rows,columns]=size(inputimage);

%table size
[rowsT,h,columnsT]=size(RTable);
D=pi/rowsT;

%edges
[M,Ang]=Edges(inputimage);
M=MaxSupr(M,Ang);

alfa=pi/4;

%accumulator
acc=zeros(rows,columns);

% for each edge point
for x=1:columns
 for y=1:rows

if(M(y,x)~=0)
% search for the second point
x1=-1; y1=-1;
phi=Ang(y,x);
m=tan(phi-alfa);

if(m>-1 & m<1)
for i=3:columns
c=x+i;
j=round(m*(c-x)+y);
if(j>0 & j<rows & c>0 & c<columns & M(j,c)~=0)

x1=c ;y1=j;
i= columns;

end
c=x-i;
j=round(m*(c-x)+y);
if(j>0 & j<rows & c>0 & c<columns & M(j,c)~=0)

x1=c ;y1=j;
i=columns;

end
end

else
for j=3:rows
c=y+j;
i=round(x+(c-y)/m);
if(c>0 & c<rows & i>0 & i<columns & M(c,i)~=0)

x1=i ;y1=c;
i=rows;

end

CODE 5.13

Implementation of the invariant GHT.

2855.5 Hough transform

c=y–j;
i=round(x+(c-y)/m);
if(c>0 & c<rows & i>0 & i<columns & M(c,i)~=0)

x1=i ;y1=c;
i=rows;

end
end

end

if(x1~=-1)
%compute beta

phi=tan(Ang(y,x));
phj=tan(Ang(y1,x1));
if((1+phi*phj)~=0)

beta=atan((phi-phj)/(1+phi*phj));
else

beta=1.57;
end

i=round((beta+(pi/2))/D);
if(i==0) i=1; end;

%search for k
for j=1:columnsT

if(RTable(i,j)==0)
j=columnsT; % no more entries

else
k=RTable(i,j);
%lines of votes
m=tan(k+Ang(y,x));

if(m>-1 & m<1)
for x0=1:columns

y0=round(y+m*(x0-x));
if(y0>0 & y0<rows)

acc(y0,x0)=acc(y0,x0)+1;
end

end
end

end
end

end
end

end %if
end % y

end % x

end
else

for y0=1:rows
x0= round(x+(y0-y)/m);
if(x0>0 & x0<columns)

acc(y0,x0)=acc(y0,x0)+1;

CODE 5.13

(Continued)

286 CHAPTER 5 High-level feature extraction: fixed shape matching

5.5.7 Other extensions to the HT
The motivation for extending the HT is clear: keep the performance, but

improve the speed. There are other approaches to reduce the computational load

of the HT. These approaches aim to improve speed and reduce memory focusing

on smaller regions of the accumulator space. These approaches have included: the

fast HT (Li and Lavin, 1986) which uses successively splits the accumulator space

into quadrants and continues to study the quadrant with most evidence; the adap-

tive HT (Illingworth and Kittler, 1987) which uses a fixed accumulator size to

iteratively focus onto potential maxima in the accumulator space; the randomized

HT (Xu et al., 1990) and the probabilistic HT (Kälviäinen et al., 1995) which use

a random search of the accumulator space; and other pyramidal techniques. One

main problem with techniques which do not search the full accumulator space,

but a reduced version to save speed, is that the wrong shape can be extracted

(Princen et al., 1992a), a problem known as phantom shape location. These

approaches can also be used (with some variation) to improve speed of perfor-

mance in template matching. There have been many approaches aimed to improve

the performance of the HT and GHT.

There has been a comparative study on the GHT (including efficiency) (Kassim

et al., 1999) and alternative approaches to the GHT include two fuzzy HTs (Philip,

1991) which (Sonka et al., 1994) includes uncertainty of the perimeter points

within a GHT structure and (Han et al., 1994) which approximately fits a shape but

which requires application-specific specification of a fuzzy membership function.

There have been two major reviews of the state of research in the HT (Illingworth

and Kittler, 1988; Leavers, 1993) (but they are rather dated now) and a textbook

(Leavers, 1992) which cover many of these topics. The analytic approaches to

improving the HTs’ performance use mathematical analysis to reduce size, and

more importantly dimensionality, of the accumulator space. This concurrently

improves speed. A review of HT-based techniques for circle extraction (Yuen

et al., 1990) covered some of the most popular techniques available at the time.

(a) Edge template (b) Image (c) Accumulator

FIGURE 5.33

Applying the invariant GHT.

2875.5 Hough transform

5.6 Further reading
It is worth noting that much recent research has focused on shape extraction by com-

bination of low-level features, Section 5.4, rather than on HT-based approaches. The

advantages of the low-level feature approach are simplicity, in that the features

exposed are generally less complex than the variants of the HT. There is also a puta-

tive advantage in speed, in that simpler approaches are invariably faster than those

which are more complex. Any advantage in respect of performance in noise and

occlusion is yet to be established. The HT approaches do not (or not yet) include

machine learning approaches, which is perhaps where the potency is achieved by the

techniques which use low-level features. The use of machine learning also implies a

need for training, but there is a need to generate some form of template for the HT or

template approaches. An overarching premise of this text is that there is no panacea

and as such there is a selection of techniques as there are for feature extraction, and

some of the major approaches have been covered in this chapter.

In terms of performance evaluation, it is worth noting the PASCAL Visual

Object Classes (VOC) challenge (Everingham et al., 2010) which is a new bench-

mark in visual object category recognition and detection. The PASCAL consor-

tium http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/index.html aims to

provide standardized databases for object recognition; to provide a common set of

tools for accessing and managing the database annotations; and to conduct chal-

lenges which evaluate performance on object class recognition. This provides

evaluation data and mechanisms and thus describing many recent advances in rec-

ognizing objects from a number of visual object classes in realistic scenes.

The majority of further reading in finding shapes concerns papers, many of

which have already been referenced, especially in the newer techniques. An

excellent survey of the techniques used for feature extraction (including template

matching, deformable templates, etc.) can be found in Trier et al. (1996). Few of

the textbooks devote much space to shape extraction except Shape Classification

and Analysis (Costa and Cesar, 2009) and Template Matching Techniques in

Computer Vision (Brunelli, 2009), sometimes dismissing it in a couple of pages.

This rather contrasts with the volume of research there has been in this area, and

the HT finds increasing application as computational power continues to increase

(and storage cost reduces). Other techniques use a similar evidence-gathering pro-

cess to the HT. These techniques are referred to as geometric hashing and cluster-

ing techniques (Stockman, 1987; Lamdan et al., 1988). In contrast with the HT,

these techniques do not define an analytic mapping, but they gather evidence by

grouping a set of features computed from the image and from the model.

Essentially, this chapter has focused on shapes which can in some form have a

fixed appearance whether it is exposed by a template, a set of keypoints, or by a

description of local properties. In order to extend the approaches to shapes with

a less constrained description, and rather than describe such shapes by construct-

ing a library of their possible appearances, we require techniques for deformable

shape analysis, as we shall find in the next chapter.

288 CHAPTER 5 High-level feature extraction: fixed shape matching

http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/index.html

5.7 References
Aguado, A.S., 1996. Primitive Extraction via Gathering Evidence of Global Parameterised

Models, Ph.D. Thesis, University of Southampton.

Aguado, A.S., Montiel, E., Nixon, M.S., 1996. On using directional information for param-

eter space decomposition in ellipse detection. Pattern Recog. 28 (3), 369�381.

Aguado, A.S., Nixon, M.S., Montiel, M.E., 1998. Parameterising arbitrary shapes via Fourier

descriptors for evidence-gathering extraction. Comput. Vision Image Understand. 69 (2),

202�221.

Aguado, A.S., Montiel, E., Nixon, M.S., 2000a. On the intimate relationship between the

principle of duality and the Hough transform. Proc. Roy. Soc. A 456, 503�526.

Aguado, A.S., Montiel, E., Nixon, M.S., 2000b. Bias error analysis of the generalised

Hough transform. J. Math. Imag. Vision 12, 25�42.

Altman, J., Reitbock, H.J.P., 1984. A fast correlation method for scale- and translation-

invariant pattern recognition. IEEE Trans. PAMI 6 (1), 46�57.

Arbab-Zavar, B., Nixon, M.S., 2011. On guided model-based analysis for ear biometrics.

Comput. Vision Image Understand. 115, 487�502.

Ballard, D.H., 1981. Generalising the Hough transform to find arbitrary shapes. CVGIP 13,

111�122.

Bay, H., Eas, A., Tuytelaars, T., Van Gool, L., 2008. Speeded-up robust features (SURF).

Comput. Vision Image Understand. 110 (3), 346�359.

Bracewell, R.N., 1986. The Fourier Transform and its Applications, second ed. McGraw-

Hill, Singapore.

Bresenham, J.E., 1965. Algorithm for computer control of a digital plotter. IBM Syst. J.

4 (1), 25�30.

Bresenham, J.E., 1977. A linear algorithm for incremental digital display of circular arcs.

Comms. ACM 20 (2), 750�752.

Brown, C.M., 1983. Inherent bias and noise in the Hough transform. IEEE Trans. PAMI 5,

493�505.

Brunelli, R., 2009. Template Matching Techniques in Computer Vision. Wiley,

Chichester.

Bustard, J.D., Nixon, M.S., 2010. Toward unconstrained ear recognition from two-

dimensional images. IEEE Trans SMC(A) 40 (3), 486�494.

Casasent, D., Psaltis, D., 1977. New optical transforms for pattern recognition. Proc. IEEE

65 (1), 77�83.

Costa, L.F., Cesar, L.M., 2009. Shape Classification and Analysis, second ed. CRC Press

and Taylor & Francis, Boca Raton, FL.

Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detection. Proc.

IEEE Conf. Comput. Vision Pattern Recog. 2, 886�893.

Datta, R., Joshi, D., Li, J., Wang, J.Z., 2008. Image retrieval: ideas, influences, and trends

of the new age. ACM Comput. Surv. 40 (2), Article 5.

Deans, S.R., 1981. Hough transform from the radon transform. IEEE Trans. PAMI 13,

185�188.

Duda, R.O., Hart, P.E., 1972. Use of the Hough transform to detect lines and curves in pic-

tures. Comms. ACM 15, 11�15.

Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A., 2010. The

PASCAL Visual Object Classes (VOC) challenge. Int. J. Comput. Vision 88 (2),

303�338.

2895.7 References

Gerig, G., Klein, F., 1986. Fast contour identification through efficient Hough transform

and simplified interpretation strategy. Proceedings of the Eighth International

Conference on Pattern Recognition, pp. 498�500.

Grimson, W.E.L., Huttenglocher, D.P., 1990. On the sensitivity of the Hough transform for

object recognition. IEEE Trans. PAMI 12, 255�275.

Han, J.H., Koczy, L.T., Poston, T., 1994. Fuzzy Hough transform. Pattern Recog. Lett. 15,

649�659.

Hecker, Y.C., Bolle, R.M., 1994. On geometric hashing and the generalized Hough trans-

form. IEEE Trans. SMC 24, 1328�1338.

Hough, P.V.C., 1962. Method and Means for Recognising Complex Patterns, US Patent

3069654.

Hurley D.J., Arbab-Zavar, B., Nixon, M.S., 2008. The ear as a biometric. In: Jain, A.,

Flynn, P., Ross, A. (Eds.), Handbook of Biometrics, pp. 131�150.

Illingworth, J., Kittler, J., 1987. The adaptive Hough transform. IEEE Trans. PAMI 9 (5),

690�697.

Illingworth, J., Kittler, J., 1988. A survey of the Hough transform. CVGIP 48, 87�116.

Kälviäinen, H., Hirvonen, P., Xu, L., Oja, E., 1995. Probabilistic and non-probabilistic

Hough transforms: overview and comparisons. Image Vision Comput. 13 (4), 239�252.

Kassim, A.A., Tan, T., Tan, K.H., 1999. A comparative study of efficient generalised

Hough transform techniques. Image Vision Comput. 17 (10), 737�748.

Kimme, C., Ballard, D., Sklansky, J., 1975. Finding circles by an array of accumulators.

Comms. ACM 18 (2), 120�122.

Kiryati, N., Bruckstein, A.M., 1991. Antialiasing the Hough transform. CVGIP Graph.

Models Image Process. 53, 213�222.

Lamdan, Y., Schawatz, J., Wolfon, H., 1988. Object recognition by affine invariant match-

ing. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pp. 335�344.

Leavers, V., 1992. Shape Detection in Computer Vision Using the Hough Transform.

Springer-Verlag, London.

Leavers, V., 1993. Which Hough transform, CVGIP: Image Understand., 58.

Li, H., Lavin, M.A., 1986. Fast Hough transform: a hierarchical approach. CVGIP 36,

139�161.

Lienhart, R., Kuranov, A., Pisarevsky, V., 2003. Empirical analysis of detection cascades

of boosted classifiers for rapid object detection. LNCS 2781, 297�304.

Lowe, D.G., 2004. Distinctive image features from scale-invariant key points. Int. J.

Comput. Vision 60 (2), 91�110.

Merlin, P.M., Farber, D.J., 1975. A parallel mechanism for detecting curves in pictures.

IEEE Trans. Computers 24, 96�98.

Mikolajczyk, K., Schmid, C., 2005. A performance evaluation of local descriptors. IEEE

Trans. PAMI 27 (10), 1615�1630.

O’Gorman, F., Clowes, M.B., 1976. Finding picture edges through collinearity of feature

points. IEEE Trans. Computers 25 (4), 449�456.

Philip, K.P., 1991. Automatic Detection of Myocardial Contours in Cine Computed

Tomographic Images, Ph.D. Thesis, Iowa University.

Princen, J., Yuen, H.K., Illingworth, J., Kittler, J., 1992a. Properties of the adaptive Hough

transform. Proceedings of the Sixth Scandinavian Conference on Image Analysis, Oulu,

Finland.

290 CHAPTER 5 High-level feature extraction: fixed shape matching

Princen, J., Illingworth, J., Kittler, J., 1992b. A formal definition of the Hough transform:

properties and relationships. J. Math. Imag. Vision 1, 153�168.

Rosenfeld, A., 1969. Picture Processing by Computer. Academic Press, London.

Schneiderman, H., Kanade, T., 2004. Object detection using the statistics of parts. Int. J.

Comput. Vision 56 (3), 151�177.

Sivic, J., Zisserman, A., Video Google, A, 2003. Text retrieval approach to object matching

in videos. Proc. IEEE ICCV’03 2, 1470�1477.

Sklansky, J., 1978. On the Hough technique for curve detection. IEEE Trans. Computers

27, 923�926.

Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R., 2000. Content-based

image retrieval at the end of the early years. IEEE Trans. PAMI 22 (12), 1349�1378.

Sonka, M., Hllavac, V., Boyle, R., 1994. Image Processing, Analysis and Computer

Vision. Chapman Hall, London.

Stockman, G., 1987. Object recognition and localization via pose clustering. CVGIP 40,

361�387.

Stockman, G.C., Agrawala, A.K., 1977. Equivalence of Hough curve detection to template

matching. Comms. ACM 20, 820�822.

Traver, V.J., Pla, F., 2003. The log-polar image representation in pattern recognition tasks.

Lect. Notes Comput. Sci. 2652, 1032�1040.

Trier, O.D., Jain, A.K., Taxt, T., 1996. Feature extraction methods for character recogni-

tion—a survey. Pattern Recog. 29 (4), 641�662.

Tuytelaars, T., Mikolajczyk, K., 2007. Local invariant feature detectors: a survey. Found.

Trends Comput. Graphics Vision 3 (3), 177�280.

Viola, P., Jones, M., 2001. Rapid object detection using a boosted cascade of simple fea-

tures. Proc. IEEE Conf. Computer Vision Pattern Recog. 1, 511�519.

Viola, P., Jones, M.J., 2004. Robust real-time face detection. Int. J. Comput. Vision 57 (2),

137�154.

Xu, L., Oja, E., Kultanen, P., 1990. A new curve detection method: randomised Hough

transform. Pattern Recog. Lett. 11, 331�338.

Yuen, H.K., Princen, J., Illingworth, J., Kittler, J., 1990. Comparative study of Hough

transform methods for circle finding. Image Vision Comput. 8 (1), 71�77.

Zhu, Q., Avidan, S., Yeh, M.-C., Cheng, K.-T., 2006. Fast human detection using a cascade

of histograms of oriented gradients. Proc. IEEE Conf. Computer Vision Pattern Recog.

2, 1491�1498.

Zokai, S., Wolberg, G., 2005. Image registration using log-polar mappings for recovery of

large-scale similarity and projective transformations. IEEE Trans. IP 14, 1422�1434.

2915.7 References

CHAPTER

6High-level feature extraction:
deformable shape analysis

CHAPTER OUTLINE HEAD

6.1 Overview ... 293

6.2 Deformable shape analysis ... 294

6.2.1 Deformable templates...294

6.2.2 Parts-based shape analysis..297

6.3 Active contours (snakes) .. 299

6.3.1 Basics ...299

6.3.2 The Greedy algorithm for snakes ..301

6.3.3 Complete (Kass) snake implementation ..308

6.3.4 Other snake approaches ..313

6.3.5 Further snake developments ..314

6.3.6 Geometric active contours (level-set-based approaches)318

6.4 Shape skeletonization .. 325

6.4.1 Distance transforms..325

6.4.2 Symmetry ..327

6.5 Flexible shape models—active shape and active appearance............................. 334

6.6 Further reading .. 338

6.7 References .. 338

6.1 Overview
The previous chapter covered finding shapes by matching. This implies knowl-

edge of a model (mathematical or template) of the target shape (feature). The

shape is the fixed in that it is flexible only in terms of the parameters that define

the shape or the parameters that define a template’s appearance. Sometimes, how-

ever, it is not possible to model a shape with sufficient accuracy or to provide a

template of the target as needed for the GHT. It might be that the exact shape is

unknown or it might be that the perturbation of that shape is impossible to

parameterize. In this case, we seek techniques that can evolve to the target solu-

tion or adapt their result to the data. This implies the use of flexible shape formu-

lations. This chapter presents four techniques that can be used to find flexible

Feature Extraction & Image Processing for Computer Vision.

© 2012 Mark Nixon and Alberto Aguado. Published by Elsevier Ltd. All rights reserved.
293

shapes in images. These are summarized in Table 6.1 and can be distinguished by

the matching functional used to indicate the extent of match between image data

and a shape. If the shape is flexible or deformable, so as to match the image

data, we have a deformable template. This is where we shall start. Later, we shall

move to techniques that are called snakes, because of their movement. We shall

explain two different implementations of the snake model. The first one is based

on discrete minimization and the second one on finite element analysis. We shall

also look at determining a shape’s skeleton, by distance analysis and by the sym-

metry of their appearance. This technique finds any symmetric shape by gathering

evidence by considering features between pairs of points. Finally, we shall con-

sider approaches that use the statistics of a shape’s possible appearance to control

selection of the final shape, called active shape models (ASMs).

6.2 Deformable shape analysis
6.2.1 Deformable templates
One of the earlier approaches to deformable template analysis (Yuille, 1991) was

aimed to find facial features for purposes of recognition. The approach considered

Table 6.1 Overview of Chapter 6

Main Topic Subtopics Main Points

Deformable
templates

Template matching for
deformable shapes. Defining a
way to analyze the best match.

Energy maximization,
computational considerations,
optimization. Parts-based shape
analysis.

Active
contours and
snakes

Finding shapes by evolving
contours. Discrete and
continuous formulations.
Operational considerations and
new active contour approaches.

Energy minimization for curve
evolution. Greedy algorithm. Kass
snake. Parameterization;
initialization and performance.
Gradient vector field and level set
approaches.

Shape
skeletonization

Notions of distance, skeletons,
and symmetry and its
measurement. Application of
symmetry detection by evidence
gathering. Performance factors.

Distance transform and shape
skeleton; medial axis transform.
Discrete symmetry operator.
Accumulating evidence of
symmetrical point arrangements.
Performance: speed and noise.

Active shape
models

Expressing shape variation by
statistics. Capturing shape
variation within feature
extraction.

Active shape model. Active
appearance model. Principal
components analysis.

294 CHAPTER 6 High-level feature extraction: deformable shape analysis

an eye to be comprised of an iris which sits within the sclera and which can be

modeled as a combination of a circle that lies within a parabola. Clearly, the cir-

cle and a version of the parabola can be extracted by using Hough transform tech-

niques, but this cannot be achieved in combination. When we combine the two

shapes and allow them to change in size and orientation, while retaining their spa-

tial relationship (that the iris or circle should reside within the sclera or parabola),

then we have a deformable template.

The parabola is a shape described by a set of points (x,y) related by

y5 a2
a

b2
x2 (6.1)

where, as illustrated in Figure 6.1(a), a is the height of the parabola and b is its

radius. As such, the maximum height is a and the minimum height is zero. A sim-

ilar equation describes the lower parabola, in terms of b and c. The “center” of

both parabolae is cp. The circle is as defined earlier, with center coordinates cc
and radius r. We then seek values of the parameters which give a best match of

this template to the image data. Clearly, one fit we would like to make concerns

matching the edge data to that of the template, like in the Hough transform. The

set of values for the parameters which give a template which matches the most

edge points (since edge points are found at the boundaries of features) could then

be deemed to be the best set of parameters describing the eye in an image. We

then seek values of parameters that maximize

fcp; a; b; c; cc; rg5max
X

Ex;y

x;yAcircle:perimeter;parabolae:perimeter

 !
(6.2)

(a) Eye template (b) Deformable template match
to an eye

cppe1 pe2

a

cp1 p
2

rcc

bb

FIGURE 6.1

Finding an eye with a deformable template.

2956.2 Deformable shape analysis

Naturally, this would prefer the larger shape to the smaller ones, so we could

divide the contribution of the circle and the parabolae by their perimeter to give

an edge energy contribution Ee:

Ee 5
X

Ex;y

x;yAcircle:perimeter

,
circle:perimeter1

X
Ex;y

x;yAparabolae:perimeter

,
parabolae:perimeter

(6.3)

and we seek a combination of values for the parameters {cp, a, b, c, cc, r} which

maximize this energy. This however implies little knowledge of the structure of

the eye. Since we know that the sclera is white (usually. . .) and the iris is darker

than it, then we could build this information into the process. We can form an

energy Ev functional for the circular region which averages the brightness over

the circle area as

Ev 52
X

Px;y

x;yAcircle

,
circle:area (6.4)

This is formed in the negative, since maximizing its value gives the best set of

parameters. Similarly, we can form an energy functional for the light regions

where the eye is white as Ep:

Ep 5
X

Px;y

x;yAparabolae2 circle

,
parabolae-circle:area (6.5)

where parabolae-circle implies points within the parabolae but not within the cir-

cle. We can then choose a set of parameters which maximize the combined

energy functional formed by adding each energy when weighted by some chosen

factors as

E5 ceUEe 1 cvUEv 1 cpUEp (6.6)

where ce, cv, and cp are the weighting factors. In this way, we are choosing values

for the parameters which simultaneously maximize the chance that the edges of the

circle and the perimeter coincide with the image edges, that the inside of the circle

is dark and that the inside of the parabolae are light. The value chosen for each of

the weighting factors controls the influence of that factor on the eventual result.

The energy fields are shown in Figure 6.2 when computed over the entire

image. Naturally, the valley image shows up regions with low image intensity

and the peak image shows regions of high image intensity, like the whites of the

eyes. In its original formulation, this approach actually had five energy terms and

the extra two are associated with the points pe1 and pe2 either side of the iris in

Figure 6.1(a).

This is where the problem starts, as we now have eleven parameters (eight for

the shapes and three for the weighting coefficients). We could of course simply

296 CHAPTER 6 High-level feature extraction: deformable shape analysis

cycle through every possible value. Given, say, 100 possible values for each param-

eter, we then have to search 1022 combinations of parameters which would be no

problem given multithread computers with terra hertz processing speed achieved

via optical interconnect, but computers like that are not ready yet (on our budgets

at least). Naturally, we can reduce the number of combinations by introducing con-

straints on the relative size and position of the shapes, e.g., the circle should lie

wholly within the parabolae, but this will not reduce the number of combinations

much. We can seek two alternatives: one is to use optimization techniques. The

original approach (Yuille, 1991) favored the use of gradient descent techniques;

currently, the genetic algorithm approach (Goldberg, 1988) seems to be most

favored in many approaches which use optimization and this has been shown to

good effect for deformable template eye extraction on a database of 1000 faces

(Benn et al., 1999) (this is the source of the images shown here).

6.2.2 Parts-based shape analysis
A more recent class of approaches is called “parts-based” object analysis: rather

than characterizing an object by a single feature (as in the previous chapter),

objects are represented as a collection of parts arranged in a deformable structure.

This follows an approach which predates the previous template approach

(Fischler and Elschlager, 1973). Essentially, objects can be modeled as a network

of masses which are connected by springs. This is illustrated in Figure 6.3(a)

where, for a face, the two upper masses could represent the eyes and the lower

mass could represent the face. The springs then constrain the mouth to be beneath

and between the eyes. The springs add context to the position of the shape; the

springs control the relationships between the objects and allow the object parts to

move relative to one another. The extraction of the representation is then a com-

promise between the match of the features (the masses) to the image and the

interrelationships (the springs) between the locations of the features. A result by a

(a) Original image (b) Edge image (c) Valley image (d) Peak image

FIGURE 6.2

Energy fields over whole face image (Benn et al., 1999).

2976.2 Deformable shape analysis

later technique is shown in Figure 6.3(b) which shows that the three mass model

of face features can be extended to one with five parts (in a star arrangement) and

the image shows the best fit of this arrangement to an image containing a face.

Let us suggest that we have n parts (in Figure 6.3, n5 3) and mi(li) represents

the difference from the image data when each feature fi(f1, f2, and f3 in

Figure 6.3) is placed at location li. The features can differ in relative position, and

so a measure of the misplacement within the configuration (by how much the

springs extend) can be a function dij(li,lj) which measures the degree of deforma-

tion when features fi and fj are placed at locations li and lj, respectively. The best

match L* of the model to the image is then

L� 5 arg min
XN
i51

miðliÞ1
X
fi;fjAR

dijðli; ljÞ
0
@

1
A

2
4

3
5 (6.7)

These components can be weighted; thus the optimization is the form of

Eq. (6.6). The parameters thus derived are those which are the best compromise

between the positions of the parts and the deformation. Determining these para-

meters is computationally very challenging, as it was for deformable templates. In

the earliest approach, the optimization strategy was dynamic programming (the

Viterbi algorithm). (It’s fantastic that they even tried. In 1973, computers had

the computational power of a modern doorbell and perhaps the same amount of

memory—in the paper the resulting images are by character printing!) More

recently, the minimization has been phrased as a statistical problem, and the solu-

tion requires structure to be imposed on the models, in order that an efficient

solution is achieved (Felzenszwalb and Huttenlocher, 2005). In this way, machine

learning approaches are used to learn—or train—from examples of the target

(a) Mechanical equivalent (b) Finding face features
(Felzenszwalb and Huttenlocher, 2005)

FIGURE 6.3

Parts-based shape model.

298 CHAPTER 6 High-level feature extraction: deformable shape analysis

structures, and these models are then applied in an efficient manner by these

methods. The method was demonstrated in its earliest forms capable of determin-

ing facial features in images, as shown in Figure 6.3(b) and of locating the human

body by representing it as a set of interconnected parts.

An extension to the approach (Felzenszwalb et al., 2010) uses HoG

(Section 5.4.2.2) at different scales to represent spatial models and again employs

techniques from machine learning to improve the matching procedure. The

approach was evaluated on the PASCAL VOC Challenge (Section 5.6) and clearly

offers state-of-art performance on quite challenging datasets. The implementation

of the approach is also available at the PASCAL site. Arguably, a model needs to

be built before the technique can be applied, but that is central to any model-based

approach (e.g., HoG or GHT). As computers’ speeds increase, training on large

sets of data will clearly improve too.

An alternative to deformable models- and parts-based analysis is to seek a dif-

ferent technique that uses fewer parameters. This is where we move to snakes

that are a much more popular approach. These snakes evolve a set of points (a

contour) to match the image data, rather than evolving a shape.

6.3 Active contours (snakes)
6.3.1 Basics
Active contours or snakes (Kass et al., 1988) are a completely different approach

to feature extraction. An active contour is a set of points which aims to enclose a

target feature, the feature to be extracted. It is a bit like using a balloon to “find”

a shape: the balloon is placed outside the shape, enclosing it. Then by taking air

out of the balloon, making it smaller, the shape is found when the balloon stops

shrinking, when it fits the target shape. By this manner, active contours arrange a

set of points so as to describe a target feature, by enclosing it. Snakes are actually

quite recent compared with many computer vision techniques and their original

formulation was as an interactive extraction process, though they are now usually

deployed for automatic feature extraction.

An initial contour is placed outside the target feature and is then evolved so as

to enclose it. The process is illustrated in Figure 6.4 where the target feature is

the perimeter of the iris. First, an initial contour is placed outside the iris

(Figure 6.4(a)). The contour is then minimized to find a new contour which

shrinks so as to be closer to the iris (Figure 6.4(b)). After seven iterations, the

contour points can be seen to match the iris perimeter well (Figure 6.4(d)).

Active contours are actually expressed as an energy minimization process.

The target feature is a minimum of a suitably formulated energy functional. This

energy functional includes more than just edge information: it includes properties

that control the way the contour can stretch and curve. In this way, a snake repre-

sents a compromise between its own properties (like its ability to bend

2996.3 Active contours (snakes)

and stretch) and image properties (like the edge magnitude). Accordingly, the

energy functional is the addition of a function of the contour’s internal energy, its

constraint energy, and the image energy: these are denoted Eint, Econ, and Eimage,

respectively. These are functions of the set of points which make up a snake, v(s),

which is the set of x and y coordinates of the points in the snake. The energy

functional is the integral of these functions of the snake, given SA[0,1) is the nor-

malized length around the snake. The energy functional Esnake is then

Esnake 5

ð1
s50

EintðvðsÞÞ1EimageðvðsÞÞ1EconðvðsÞÞds (6.8)

In this equation, the internal energy, Eint, controls the natural behavior of the

snake and hence the arrangement of the snake points; the image energy, Eimage,

attracts the snake to chosen low-level features (such as edge points); and the con-

straint energy, Econ, allows higher level information to control the snake’s evolu-

tion. The aim of the snake is to evolve by minimizing Eq. (6.8). New snake

contours are those with lower energy and are a better match to the target feature

(according to the values of Eint, Eimage, and Econ) than the original set of points

from which the active contour has evolved. In this manner, we seek to choose a

set of points v(s) such that

dEsnake

dvðsÞ 5 0 (6.9)

This can of course select a maximum rather than a minimum, and a second-

order derivative can be used to discriminate between a maximum and a minimum.

However, this is not usually necessary as a minimum is usually the only

stable solution (on reaching a maximum, it would then be likely to pass over the

top to minimize the energy). Prior to investigating how we can minimize Eq. (6.8),

let us first consider the parameters which can control a snake’s behavior.

The energy functionals are expressed in terms of functions of the snake and of

the image. These functions contribute to the snake energy according to values

(a) Initial contour (b) After the first
iteration

(c) After four
iterations

(d) After seven
iterations

FIGURE 6.4

Using a snake to find an eye’s iris.

300 CHAPTER 6 High-level feature extraction: deformable shape analysis

chosen for respective weighting coefficients. In this manner, the internal image

energy is defined to be a weighted summation of first- and second-order deriva-

tives around the contour:

Eint 5αðsÞ dvðsÞ
ds

����
����
2

1βðsÞ d
2vðsÞ
ds2

����
����
2

(6.10)

The first-order differential, dv(s)/ds, measures the energy due to stretching

which is the elastic energy since high values of this differential imply a high rate

of change in that region of the contour. The second-order differential, d2v(s)/ds2,

measures the energy due to bending, the curvature energy. The first-order differ-

ential is weighted by α(s) which controls the contribution of the elastic energy

due to point spacing; the second-order differential is weighted by β(s) which con-

trols the contribution of the curvature energy due to point variation. Choice of the

values of α and β controls the shape the snake aims to attain. Low values for α
imply the points can change in spacing greatly, whereas higher values imply that

the snake aims to attain evenly spaced contour points. Low values for β imply

that curvature is not minimized and the contour can form corners in its perimeter,

whereas high values predispose the snake to smooth contours. These are the prop-

erties of the contour itself, which is just part of a snake’s compromise between its

own properties and measured features in an image.

The image energy attracts the snake to low-level features, such as brightness

or edge data, aiming to select those with least contribution. The original formula-

tion suggested that lines, edges, and terminations could contribute to the energy

function. Their energy is denoted Eline, Eedge, and Eterm, respectively, and are con-

trolled by weighting coefficients wline, wedge, and wterm, respectively. The image

energy is then

Eimage 5wlineEline 1wedgeEedge 1wtermEterm (6.11)

The line energy can be set to the image intensity at a particular point. If black

has a lower value than white, then the snake will be extracted to dark features.

Altering the sign of wline will attract the snake to brighter features. The edge

energy can be that computed by application of an edge detection operator, the

magnitude, say, of the output of the Sobel edge detection operator. The termina-

tion energy, Eterm, as measured by Eq. (4.52), can include the curvature of level

image contours (as opposed to the curvature of the snake, controlled by β(s)), but
this is rarely used. It is most common to use the edge energy, though the line

energy can find application.

6.3.2 The Greedy algorithm for snakes
The implementation of a snake, to evolve a set of points to minimize Eq. (6.8),

can use finite elements, or finite differences, which is complicated and follows

later. It is easier to start with the Greedy algorithm (Williams and Shah, 1992)

3016.3 Active contours (snakes)

which implements the energy minimization process as a purely discrete algorithm,

illustrated in Figure 6.5. The process starts by specifying an initial contour.

Earlier, Figure 6.4(a) used a circle of 16 points along the perimeter of a circle.

Alternatively, these can be specified manually. The Greedy algorithm then

evolves the snake in an iterative manner by local neighborhood search around

contour points to select new ones which have lower snake energy. The process is

called Greedy by virtue of the way the search propagates around the contour. At

each iteration, all contour points are evolved and the process is actually repeated

for the first contour point. The index to snake points is computed modulo S (the

number of snake points).

More
snake

points?

Finish iteration

Define snake points and
parameters, α, β, and γ

Start with first snake point

Initialize minimum energy
and coordinates

Set new snake point
coordinates to new minimum

Determine coordinates of
neighborhood point with

lowest energy

No

Yes

FIGURE 6.5

Operation of the Greedy algorithm.

302 CHAPTER 6 High-level feature extraction: deformable shape analysis

For a set of snake points vs, ’sA0, S2 1, the energy functional minimized for

each snake point is

EsnakeðsÞ5EintðvsÞ1EimageðvsÞ (6.12)

This is expressed as

EsnakeðsÞ5αðsÞ dvs
ds

����
����
2

1βðsÞ d
2vs

ds2

����
����
2

1 γðsÞEedge (6.13)

where the first- and second-order differentials are approximated for each point

searched in the local neighborhood of the currently selected contour point. The

weighting parameters, α, β, and γ are all functions of the contour. Accordingly,

each contour point has associated values for α, β, and γ. An implementation of

the specification of an initial contour by a function point is given in Code 6.1. In

this implementation, the contour is stored as a matrix of vectors. Each vector has

five elements: two are the x and y coordinates of the contour point, the remaining

three parameters are the values of α, β, and γ for that contour point, set here to

be 0.5, 0.5, and 1.0, respectively. The no contour points are arranged to be in a

circle, radius rad, and center (xc,yc). As such, a vector is returned for each snake

point, points, where (points)0, (points)1, (points)2, (points)3, (points)4 are the

x coordinate, the y coordinate, and α, β, and γ for the particular snake point s: xs,

ys, αs, βs, and γs, respectively.

points(rad,no,xc,yc):= for s∈0..no–1

x xc+floor rad cos
s2

no
+0.5s ← ⋅

⋅ ⋅⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

π

y yc+floor rad sin
s 2

no
+0.5s ← ⋅

⋅ ⋅⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

π

αs←0.5

βs←0.5

γs←1

point

x

y

s

s

s

s

s

s

←

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

α
β
γ

point

CODE 6.1

Specifying an initial contour.

3036.3 Active contours (snakes)

The first-order differential is approximated as the modulus of the difference

between the average spacing of contour points (evaluated as the Euclidean dis-

tance between them), and the Euclidean distance between the currently selected

image point vs and the next contour point. By selection of an appropriate value of

α(s) for each contour point vs, this can control the spacing between the contour

points:

dvs

ds

������
������
2

5
XS21

i50

kvi 2 vi11k=S2 kvs 2 vs11k
�����

�����
5
XS21

i50

ffi
ðxi 2 xi11Þ2 1 ðyi 2 yi11Þ2

q
=S2

ffi
ðxs 2 xs11Þ2 1 ðys 2 ys11Þ2

q�����
�����

(6.14)

as evaluated from the x and the y coordinates of the adjacent snake point (xs11,

ys11) and the coordinates of the point currently inspected (xs,ys). Clearly, the

first-order differential, as evaluated from Eq. (6.14), drops to zero when the con-

tour is evenly spaced, as required. This is implemented by the function Econt in

Code 6.2 which uses a function dist to evaluate the average spacing and a func-

tion dist2 to evaluate the Euclidean distance between the currently searched

point (vs) and the next contour point (vs11). The arguments to Econt are the x and

y coordinates of the point currently being inspected, x and y, the index of the con-

tour point currently under consideration, s, and the contour itself, cont.

The second-order differential can be implemented as an estimate of the

curvature between the next and previous contour points, vs11 and vs21,

dist(s,contour):= s1←mod(s,rows(contour))

s2←mod(s + 1,rows(contour))

[(contours1)0 – (contours2)0]
2 + [(contours1)1 – (contours2)1]

2

s2←mod(s + 1,rows(contour))

[(contours2)0 – x]2 + [(contours2)1 – y]2

dist2(x,y,s,contour):=

Econt(x,y,s,cont):=

D – dist2(x,y,s,cont)

D .
1

rows(cont)
dist(s1, cont)

rows(cont)-1

Σ
s1=0

←

CODE 6.2

Evaluating the contour energy.

304 CHAPTER 6 High-level feature extraction: deformable shape analysis

respectively, and the point in the local neighborhood of the currently inspected

snake point vs:

d2vs

ds2

������
������
2

5 jðvs11 2 2vs 1 vs21Þj2

5 ðxs11 2 2xs 1 xs21Þ2 1 ðys11 2 2ys 1 ys21Þ2
(6.15)

This is implemented by a function Ecur in Code 6.3, whose arguments again

are the x and y coordinates of the point currently being inspected, x and y, the index
of the contour point currently under consideration, s, and the contour itself, con.

Eedge can be implemented as the magnitude of the Sobel edge operator at point

x,y. This is normalized to ensure that its value lies between zero and unity. This is

also performed for the elastic and curvature energies in the current region of inter-

est. This is achieved by normalization using Eq. (3.2) arranged to provide an out-

put ranging between 0 and 1. The edge image could also be normalized within the

current window of interest, but this makes it more possible that the result is influ-

enced by noise. Since the snake is arranged to be a minimization process, the edge

image is inverted so that the points with highest edge strength are given the lowest

edge value (0), whereas the areas where the image is constant are given a high

value (1). Accordingly, the snake will be attracted to the edge points with greatest

magnitude. The normalization process ensures that the contour energy and curva-

ture and the edge strength are balanced forces and ease appropriate selection of

values for α, β, and γ. This is achieved by a balancing function (balance) that
normalizes the contour and curvature energy within the window of interest.

The Greedy algorithm then uses these energy functionals to minimize the

composite energy functional, Eq. (6.13), given in the function grdy in Code 6.4.

This gives a single iteration in the evolution of a contour wherein all snake points

are searched. The energy for each snake point is first determined and is stored as

the point with minimum energy. This ensures that if any other point is found to

have equally small energy, then the contour point will remain in the same posi-

tion. Then, the local 33 3 neighborhood is searched to determine whether any

other point has a lower energy than the current contour point. If it does, that point

is returned as the new contour point.

Ecur(x,y,s,con) := s1 mod(s–1+rows(con),rows(con))

s3 mod(s+1,rows(con))

[(con) –2 x+(con)] +[(con) –2 y+(con)]s1 0 s3 0
2

s1 1 s3 1
2

←

←

⋅⋅

CODE 6.3

Evaluating the contour curvature.

3056.3 Active contours (snakes)

A verbatim implementation of the Greedy algorithm would include three thresh-

olds. One is a threshold on tangential direction and another on edge magnitude. If an

edge point were adjudged to be of direction above the chosen threshold, and with

magnitude above its corresponding threshold, then β can be set to zero for that point

to allow corners to form. This has not been included in Code 6.4, in part because

there is mutual dependence between α and β. Also, the original presentation of the

Greedy algorithm proposed to continue evolving the snake until it becomes static,

when the number of contour points moved in a single iteration is below the third

threshold value. This can lead to instability since it can lead to a situation where

contour points merely oscillate between two solutions and the process would appear

not to converge. Again, this has not been implemented here.

The effect of varying α and β is shown in Figures 6.6 and 6.7. Setting α
to zero removes influence of spacing on the contour points’ arrangement.

In this manner, the points will become unevenly spaced (Figure 6.6(b)) and

grdy(edg,con) := for s1∈0..rows(con)
s←mod(s1,rows(con))
xmin←(cons)0
ymin←(cons)1
forces←balance[(cons)0,(cons)1,edg,s,con]
Emin←(cons)2·Econt(xmin,ymin,s,con)
Emin←Emin+(cons)3·Ecur(xmin,ymin,s,con)
Emin Emin+(con) (edg)s 4 0 (con) ,(con)s 1 0

← ⋅
for x∈(cons)0–1..(cons)0+1

for y∈(cons)1–1..(cons)1+1
if check(x,y,edg0)

xx←x–(cons)0+1
yy←y–(cons)1+1
Ej←(cons)2·(forces0,0)yy,xx
Ej Ej+(con) (forces)s 3 0,1 yy,xx← ⋅
Ej Ej+(con) (edg)s 4 0 y,x← ⋅
if Ej<Emin

Emin←Ej
xmin←x
ymin←y

con

xmin

ymin

(con)

(con)

(con)

s s 2

s 3

s 4

←

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

con

s

CODE 6.4

The Greedy algorithm.

306 CHAPTER 6 High-level feature extraction: deformable shape analysis

eventually can be placed on top of each other. Reducing the control by spacing

can be desirable for features that have high localized curvature. Low values of α
can allow for bunching of points in such regions, giving a better feature

description.

Setting β to zero removes influence of curvature on the contour points’

arrangement, allowing corners to form in the contour, as illustrated in Figure 6.7.

This is manifested in the first iteration (Figure 6.7(b)) and since with β set to

zero for the whole contour, each contour point can become a corner with high

curvature (Figure 6.7(c)) leading to the rather ridiculous result in Figure 6.7(d).

Reducing the control by curvature can clearly be desirable for features that have

high localized curvature. This illustrates the mutual dependence between α and β,
since low values of α can accompany low values of β in regions of high localized

curvature. Setting γ to zero would force the snake to ignore image data and

evolve under its own forces. This would be rather farcical. The influence of γ is

reduced in applications where the image data used is known to be noisy. Note

that one fundamental problem with a discrete version is that the final solution can

oscillate when it swaps between two sets of points which are both with equally

low energy. This can be prevented by detecting the occurrence of oscillation.

(a) Initial contour (b) After iteration 1 (c) After iteration 2 (d) After iteration 3

FIGURE 6.6

Effect of removing control by spacing.

(a) Initial contour (b) After iteration 1 (c) After iteration 2 (d) After iteration 3

FIGURE 6.7

Effect of removing low curvature control.

3076.3 Active contours (snakes)

A further difficulty is that as the contour becomes smaller, the number of contour

points actually constrains the result as they cannot be compressed into too small a

space. The only solution to this is to resample the contour.

6.3.3 Complete (Kass) snake implementation
The Greedy method iterates around the snake to find local minimum energy at

snake points. This is an approximation, since it does not necessarily determine

the “best” local minimum in the region of the snake points, by virtue of iteration.

A complete snake implementation, or Kass snake, solves for all snake points in

one step to ensure that the snake moves to the best local energy minimum. We

seek to choose snake points (v(s)5 (x(s), y(s))) in such a manner that the energy

is minimized, Eq. (6.9). Calculus of variations shows how the solution to

Eq. (6.8) reduces to a pair of differential equations that can be solved by finite

difference analysis (Waite and Welsh, 1990). This results in a set of equations

that iteratively provide new sets of contour points. By calculus of variation, we

shall consider an admissible solution v̂ðsÞ perturbed by a small amount, ε δv(s),
which achieves minimum energy, as

dEsnakeðv̂ðsÞ1 ε δvðsÞÞ
dε

5 0 (6.16)

where the perturbation is spatial, affecting the x and y coordinates of a snake

point:

δvðsÞ5 ðδxðsÞ; δyðsÞÞ (6.17)

This gives the perturbed snake solution as

v̂ðsÞ1 ε δvðsÞ5 ðx̂ðsÞ1 ε δxðsÞ; ŷðsÞ1 ε δyðsÞÞ (6.18)

where x̂ðsÞ and ŷðsÞ are the x and y coordinates, respectively, of the snake points

at the solution ðv̂ðsÞ5 ðx̂ðsÞ; ŷðsÞÞÞ. By setting the constraint energy Econ to zero,

the snake energy, Eq. (6.8), becomes

EsnakeðvðsÞÞ5
ð1
s50

fEintðvðsÞÞ1EimageðvðsÞÞgds (6.19)

Edge magnitude information is often used (so that snakes are attracted to

edges found by an edge-detection operator), so we shall replace Eimage by Eedge.

By substitution for the perturbed snake points, we obtain

Esnakeðv̂ðsÞ1 ε δvðsÞÞ5
ð1
s50

fEintðv̂ðsÞ1 ε δvðsÞÞ1Eedgeðv̂ðsÞ1 ε δvðsÞÞgds (6.20)

308 CHAPTER 6 High-level feature extraction: deformable shape analysis

By substituting from Eq. (6.10), we obtain

Esnakeðv̂ðsÞ1εδvðsÞÞ5ðs51
s50

αðsÞ dðv̂ðsÞ1εδvðsÞÞ
ds

����
����
2

1βðsÞ d
2ðv̂ðsÞ1εδvðsÞÞ

ds2

����
����
2

1Eedgeðv̂ðsÞ1ε δvðsÞÞ
()

ds

(6.21)

By substituting from Eq. (6.18),

Esnakeðv̂ðsÞ1 ε δvðsÞÞ5

ðs51

s50

αðsÞ

�
dx̂ðsÞ
ds

�2
1 2ε

dx̂ðsÞ
ds

dδxðsÞ
ds

1

�
ε
dδxðsÞ
ds

�2

1

�
dŷðsÞ
ds

�2
1 2ε

dŷðsÞ
ds

dδyðsÞ
ds

1

�
ε
dδyðsÞ
ds

�2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

1 βðsÞ

�
d2x̂ðsÞ
ds2

�2
1 2ε

d2x̂ðsÞ
ds2

d2δxðsÞ
ds2

1

�
ε
d2δxðsÞ
ds2

�2

1

�
d2ŷðsÞ
ds2

�2
1 2ε

d2ŷðsÞ
ds2

d2δyðsÞ
ds2

1

�
ε
d2δyðsÞ
ds2

�2

1Eedgeðv̂ðsÞ1 ε δvðsÞÞ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

ds

(6.22)

By expanding Eedge at the perturbed solution by Taylor series, we obtain

Eedgeðv̂ðsÞ1 ε δvðsÞÞ5Eedgeðx̂ðsÞ1 ε δxðsÞ; ŷðsÞ1 ε δyðsÞÞ

5Eedgeðx̂ðsÞ; ŷðsÞÞ1 εδxðsÞ
@Eedge

@x

�����
x̂;ŷ

1 εδyðsÞ
@Eedge

@y

�����
x̂;ŷ

1Oðε2Þ

(6.23)

This implies that the image information must be twice differentiable which

holds for edge information, but not for some other forms of image energy. Ignoring

higher-order terms in ε (since ε is small) by reformulation, Eq. (6.22) becomes

Esnakeðv̂ðsÞ1 ε δvðsÞÞ5Esnakeðv̂ðsÞÞ

1 2ε
ðs51

s50

αðsÞ dx̂ðsÞ
ds

dδxðsÞ
ds

1βðsÞ d
2x̂ðsÞ
ds2

d2δxðsÞ
ds2

1
δxðsÞ
2

@Eedge

@x

�����
x̂;ŷ

ds

1 2ε
ðs51

s50

αðsÞ dŷðsÞ
ds

dδyðsÞ
ds

1βðsÞ d
2ŷðsÞ
ds2

d2δyðsÞ
ds2

1
δyðsÞ
2

@Eedge

@y

�����
x̂;ŷ

ds

(6.24)

3096.3 Active contours (snakes)

Since the perturbed solution is at a minimum, the integration terms in Eq. (6.24)

must be identically zero:

ðs51

s50

αðsÞ dx̂ðsÞ
ds

dδxðsÞ
ds

1βðsÞ d
2x̂ðsÞ
ds2

d2δxðsÞ
ds2

1
δxðsÞ
2

@Eedge

@x x̂;ŷ
ds5 0

���� (6.25)

ðs51

s50

αðsÞ dŷðsÞ
ds

dδyðsÞ
ds

1βðsÞ d
2ŷðsÞ
ds2

d2δyðsÞ
ds2

1
δyðsÞ
2

@Eedge

@y x̂;ŷ
ds5 0

���� (6.26)

By integration we obtain

αðsÞ dx̂ðsÞ
ds

δxðsÞ
2
4

3
5
1

s50

2

ðs51

s50

d

ds
αðsÞ dx̂ðsÞ

ds

8<
:

9=
;δxðsÞds

βðsÞ d
2x̂ðsÞ
ds2

dδxðsÞ
ds

2
4

3
5
1

s50

2
d

ds
βðsÞ d

2x̂ðsÞ
ds2

8<
:

9=
;δxðsÞ

2
4

3
5
1

s50

1

ðs51

s50

d2

ds2
βðsÞ d

2x̂ðsÞ
ds2

8<
:

9=
;δxðsÞds1

1

2

ð1
s50

@Eedge

@x x̂;ŷ
δxðsÞds5 0

����

(6.27)

Since the first, third, and fourth terms are zero (since for a closed contour,

δx(1)2 δx(0)5 0 and δy(1)2 δy(0)5 0), this reduces to

ðs51

s50

2
d

ds
αðsÞ dx̂ðsÞ

ds

�
1

d2

ds2
βðsÞd

2x̂ðsÞ
ds2

�
1
1

2

@Eedge

@x x̂;ŷ

����
�
δxðsÞds5 0

���
(6.28)

Since this equation holds for all δx(s), then

2
d

ds
αðsÞdx̂ðsÞ

ds

�
1

d2

ds2
βðsÞd

2x̂ðsÞ
ds2

�
1
1

2

@Eedge

@x x̂;ŷ
5 0

����
��

(6.29)

Similarly, by a similar development of Eq. (6.26), we obtain

2
d

ds
αðsÞdŷðsÞ

ds

�
1

d2

ds2
βðsÞd

2ŷðsÞ
ds2

�
1
1

2

@Eedge

@y x̂;ŷ
5 0

����
��

(6.30)

This has reformulated the original energy minimization framework, Eq. (6.8),

into a pair of differential equations. To implement a complete snake, we seek the

solution to Eqs (6.29) and (6.30). By the method of finite differences, we substi-

tute for dx(s)/dsDxs112 xs, the first-order difference, and the second-order dif-

ference is d2x(s)/ds2Dxs112 2xs1 xs21 (as in Eq. (6.13)), which by substitution

into Eq. (6.29), for a contour discretized into S points equally spaced by an arc

310 CHAPTER 6 High-level feature extraction: deformable shape analysis

length h (remembering that the indices sA[1,S] to snake points are computed

modulo S), gives

2
1

h
αs11

ðxs11 2 xsÞ
h

2αs

ðxs 2 xs21Þ
h

8<
:

9=
;

1
1

h2
βs11

ðxs12 2 2xs11 1 xsÞ
h2

2 2βs

ðxs11 2 2xs 1 xs21Þ
h2

8<
:

1βs21

ðxs 2 2xs21 1 xs22Þ
h2

9=
;1

1

2

@Eedge

@x xs;ys
5 0

���� (6.31)

By collecting the coefficients of different points, Eq. (6.31) can be expressed as

fs 5 asxs22 1 bsxs21 1 csxs 1 dsxs11 1 esxs12 (6.32)

where

fs 5 2
1

2

@Eedge

@x

�����
xs;ys

; as 5
βs21

h4
; bs 52

2ðβs 1βs21Þ
h4

2
αs

h2

cs 5
βs11 1 4βs 1βs21

h4
1

αs11 1αs

h2
; ds 52

2ðβs11 1βsÞ
h4

2
αs11

h2
; es 5

βs11

h4

This is now in the form of a linear (matrix) equation:

Ax5 fxðx; yÞ (6.33)

where fx(x,y) is the first-order differential of the edge magnitude along the x axis,

where

A5

c1 d1 e1 0 ? a1 b1
b2 c2 d2 e2 0 ? a2
a3 b3 c3 d3 e3 0

^ ^ ^ ^ ^
eS21 0 ? aS21 bS21 cS21 dS21

dS eS 0 ? aS bS cS

2
6666664

3
7777775

Similarly, by analysis of Eq. (6.30), we obtain

Ay5 fyðx; yÞ (6.34)

3116.3 Active contours (snakes)

where fy(x,y) is the first-order difference of the edge magnitude along the y axis.

These equations can be solved iteratively to provide a new vector v, i11. from

an initial vector v, i. , where i is an evolution index. The iterative solution is

ðx, i11. 2 x, i. Þ
Δ

1Ax, i11. 5 fxðx, i. ; y, i. Þ (6.35)

where the control factor Δ is a scalar chosen to control convergence. The control

factor, Δ, actually controls the rate of evolution of the snake: large values make

the snake move quickly, small values make for slow movement. As usual, fast

movement implies that the snake can pass over features of interest without notic-

ing them, whereas slow movement can be rather tedious. So the appropriate

choice for Δ is again a compromise, this time between selectivity and time. The

formulation for the vector of y coordinates is

ðy, i11. 2 y, i. Þ
Δ

1Ay, i11. 5 fyðx, i. ; y, i. Þ (6.36)

By rearrangement, this gives the final pair of equations that can be used to

iteratively evolve a contour; the complete snake solution is then

x, i11. 5 A1
1

Δ
I

� �21
1

Δ
x, i. 1 fxðx, i. ; y, i. Þ

� �
(6.37)

where I is the identity matrix. This implies that the new set of x coordinates is a

weighted sum of the initial set of contour points and the image information. The

fraction is calculated according to specified snake properties, the values chosen

for α and β. For the y coordinates, we have

y, i11. 5 A1
1

Δ
I

� �21
1

Δ
y, i. 1 fyðx, i. ; y, i. Þ

� �
(6.38)

The new set of contour points then becomes the starting set for the next itera-
tion. Note that this is a continuous formulation, as opposed to the discrete

(Greedy) implementation. One penalty is the need for matrix inversion, affecting

speed. Clearly, the benefits are that coordinates are calculated as real functions

and the complete set of new contour points is provided at each iteration. The

result of implementing the complete solution is illustrated in Figure 6.8. The ini-

tialization Figure 6.8(a) is the same as for the Greedy algorithm, but with 32 con-

tour points. At the first iteration (Figure 6.8(b)), the contour begins to shrink and

move toward the eye’s iris. By the sixth iteration (Figure 6.8(c)), some of the con-

tour points have snagged on strong edge data, particularly in the upper part of the

contour. At this point, however, the excessive curvature becomes inadmissible,

and the contour releases these points to achieve a smooth contour again, one

which is better matched to the edge data and the chosen snake features. Finally,

312 CHAPTER 6 High-level feature extraction: deformable shape analysis

Figure 6.8(e) is where the contour ceases to move. Part of the contour has been

snagged on strong edge data in the eyebrow, whereas the remainder of the contour

matches the chosen feature well.

Clearly, a different solution could be obtained by using different values for

the snake parameters; in application the choice of values for α, β, and Δ must be

made very carefully. In fact, this is part of the difficulty in using snakes for prac-

tical feature extraction; a further difficulty is that the result depends on where the

initial contour is placed. These difficulties are called parameterization and ini-

tialization, respectively. These problems have motivated much research and

development.

6.3.4 Other snake approaches
There are many further considerations to implementing snakes and there is a great

wealth of material. One consideration is that we have only considered closed

contours. There are, naturally, open contours. These require slight difference in

formulation for the Kass snake (Waite and Welsh, 1990) and only minor modifi-

cation for implementation in the Greedy algorithm. One difficulty with the

Greedy algorithm is its sensitivity to noise due to its local neighborhood action.

Also, the Greedy algorithm can end up in an oscillatory position where the final

contour simply jumps between two equally attractive energy minima. One solu-

tion (Lai and Chin, 1994) resolved this difficulty by increase in the size of the

snake neighborhood, but this incurs much greater complexity. In order to allow

snakes to expand, as opposed to contracting, a normal force can be included

which inflates a snake and pushes it over unattractive features (Cohen, 1991;

Cohen and Cohen, 1993). The force is implemented by the addition of

Fnormal 5 ρnðsÞ (6.39)

to the evolution equation, where n(s) is the normal force and ρ weights its effect.

This is inherently sensitive to the magnitude of the normal force that, if too large,

can force the contour to pass over features of interest. Another way to allow

(a) Initialization (b) Iteration 1 (c) Iteration 6 (d) Iteration 7 (e) Final

FIGURE 6.8

Illustrating the evolution of a complete snake.

3136.3 Active contours (snakes)

expansion is to modify the elasticity constraint (Berger, 1991) so that the internal

energy becomes

Eint 5αðsÞ dvðsÞ
ds

����
����
2

2 ðL1 εÞ
 !2

1 βðsÞ d
2vðsÞ
ds2

����
����
2

(6.40)

where the length adjustment ε when positive, ε. 0, and added to the contour

length L causes the contour to expand. When negative, ε, 0, this causes the

length to reduce and so the contour contracts. To avoid imbalance due to the con-

traction force, the technique can be modified to remove it (by changing the conti-

nuity and curvature constraints) without losing the controlling properties of the

internal forces (Xu et al., 1994) (and which, incidentally, allowed corners to form

in the snake). This gives a contour no prejudice to expansion or contraction as

required. The technique allowed for integration of prior shape knowledge; meth-

ods have also been developed to allow local shape to influence contour evolution

(Berger, 1991; Williams and Shah, 1992).

Some snake approaches have included factors that attract contours to regions

using statistical models (Ronfard, 1994) or texture (Ivins and Porrill, 1995), to

complement operators that combine edge detection with region growing. Also, the

snake model can be generalized to higher dimensions and there are 3D snake sur-

faces (Cohen et al., 1992; Wang and Wang, 1992). Finally, a new approach has

introduced shapes for moving objects, by including velocity (Peterfreund, 1999).

6.3.5 Further snake developments
Snakes have been formulated not only to include local shape but also phrased in

terms of regularization (Lai and Chin, 1995) where a single parameter controls

snake evolution, emphasizing a snake’s natural compromise between its own

forces and the image forces. Regularization involves using a single parameter to

control the balance between the external and the internal forces. Given a regulari-

zation parameter λ, the snake energy of equation (6.37) can be given as

EsnakeðvðsÞÞ5
ð1
s50

fλEintðvðsÞÞ1ð12λÞEimageðvðsÞÞgds (6.41)

Clearly, if λ5 1, then the snake will use the internal energy only, whereas if

λ5 0, the snake will be attracted to the selected image function only. Usually,

regularization concerns selecting a value in between zero and one guided, say, by

knowledge of the likely confidence in the edge information. In fact, Lai’s

approach calculates the regularization parameter at contour points as

λi 5
σ2
η

σ2
i 1σ2

η
(6.42)

314 CHAPTER 6 High-level feature extraction: deformable shape analysis

where σ2
i appears to be the variance of the point i and σ2

η is the variance of the

noise at the point (even digging into Lai’s PhD thesis provided no explicit clues

here, save that “these parameters may be learned from training samples”—if this

is impossible a procedure can be invoked). As before, λi lies between zero and

one, and where the variances are bounded as

1
�
σ2
i 1 1

�
σ2
η 5 1 (6.43)

This does actually link these generalized active contour models to an

approach we shall meet later, where the target shape is extracted conditional upon

its expected variation. Lai’s approach also addressed initialization and showed

how a GHT could be used to initialize an active contour and built into the extrac-

tion process. A major development of new external force model, which is called

the gradient vector flow (GVF) (Xu and Prince, 1998). The GVF is computed as

a diffusion of the gradient vectors of an edge map. There is however natural limi-

tation on using a single contour for extraction, since it is never known precisely

where to stop.

In fact, many of the problems with initialization with active contours can be

resolved by using a dual contour approach (Gunn and Nixon, 1997) that also

includes local shape and regularization. This approach aims to enclose the target

shape within an inner and an outer contour. The outer contour contracts while

the inner contour expands. A balance is struck between the two contours to allow

them to allow the target shape to be extracted. Gunn showed how shapes could be

extracted successfully, even when the target contour was far from the two initial

contours. Further, the technique was shown to provide better immunity to initiali-

zation, in comparison with the results of a Kass snake and Xu’s approach.

Later, the dual approach was extended to a discrete space (Gunn and Nixon,

1998), using an established search algorithm. The search algorithm used dynamic

programming which has already been used within active contours to find a global

solution (Lai and Chin, 1995) and in matching and tracking contours (Geiger

et al., 1995). This new approach has already been used within an enormous study

(using a database of over 20,000 images no less) on automated cell segmentation

for cervical cancer screening (Bamford and Lovell, 1998), achieving more than

99% accurate segmentation. The approach is formulated as a discrete search using

a dual contour approach, illustrated in Figure 6.9. The inner and the outer con-

tours aim to be inside and outside the target shape, respectively. The space

between the inner and the outer contours is divided into lines (like the spokes on

the wheel of a bicycle) and M points are taken along each of the N lines. We then

have a grid of M3N points, in which the target contour (shape) is expected to

lie. The full lattice of points is shown in Figure 6.10(a). Should we need higher

resolution, then we can choose large values of M and of N, but this in turn implies

more computational effort. One can envisage strategies which allow for lineariza-

tion of the coverage of the space in between the two contours, but these can make

implementation much more complex.

3156.3 Active contours (snakes)

Outer contour

Target contour

Inner contour

3 of N radial lines

M points

FIGURE 6.9

Discrete dual contour search.

(a) Search space

(b) First stage open contour (c) Second stage open contour

End
point

Start
point

First
stage
contour

End
point

Start
point

Final
contour

FIGURE 6.10

Discrete dual contour point space.

316 CHAPTER 6 High-level feature extraction: deformable shape analysis

The approach again uses regularization, where the snake energy is a discrete

form to Eq. (6.41), so the energy at a snake point (unlike earlier formulations,

e.g., Eq. (6.12)) is

EðviÞ5λEintðviÞ1ð12λÞEextðviÞ (6.44)

where the internal energy is formulated as

EintðviÞ5
jvi11 2 2vi 1 vi21j

jvi112vi21j

� �2
(6.45)

The numerator expresses the curvature, seen earlier in the Greedy formulation.

It is scaled by a factor that ensures the contour is scale invariant with no preju-

dice as to the size of the contour. If there is no prejudice, the contour will be

attracted to smooth contours, given appropriate choice of the regularization

parameter. As such, the formulation is simply a more sophisticated version of the

Greedy algorithm, dispensing with several factors of limited value (such as the

need to choose values for three weighting parameters: one only now need be cho-

sen; the elasticity constraint has also been removed, and that is perhaps more

debatable). The interest here is that the search for the optimal contour is con-

strained to be between two contours, as in Figure 6.9. By way of a snake’s formu-

lation, we seek the contour with minimum energy. When this is applied to a

contour which is bounded, then we seek a minimum cost path. This is a natural

target for the well-known Viterbi (dynamic programming) algorithm (for its appli-

cation in vision, see, for example, Geiger et al., 1995). This is designed precisely

to do this: to find a minimum cost path within specified bounds. In order to for-

mulate it by dynamic programming, we seek a cost function to be minimized. We

formulate a cost function C between one snake element and the next as

Ciðvi11; viÞ5min½Ci21ðvi; vi21Þ1λEintðviÞ1ð12λÞEextðviÞ� (6.46)

In this way, we should be able to choose a path through a set of snake that

minimizes the total energy, formed by the compromise between internal and

external energy at that point, together with the path that led to the point. As such,

we will need to store the energies at points within the matrix, which corresponds

directly to the earlier tessellation. We also require a position matrix to store for

each stage (i) the position (vi21) that minimizes the cost function at that stage

(Ci(vi11,vi)). This also needs initialization to set the first point, C1(v1,v0)5 0.

Given a closed contour (one which is completely joined together) then for an

arbitrary start point, we separate optimization routine to determine the best start-

ing and end points for the contour. The full search space is illustrated in

Figure 6.10(a). Ideally, this should be searched for a closed contour, the target

contour of Figure 6.9. It is computationally less demanding to consider an open
contour, where the ends do not join. We can approximate a closed contour by

considering it to be an open contour in two stages. In the first stage (Figure 6.10(b))

the midpoints of the two lines at the start and end are taken as the starting

3176.3 Active contours (snakes)

conditions. In the second stage (Figure 6.10(c)) the points determined by dynamic

programming halfway round the contour (i.e., for two lines at N/2) are taken as the

start and the end points for a new open-contour dynamic programming search, which

then optimizes the contour from these points. The premise is that the points halfway

round the contour will be at, or close to, their optimal position after the first stage

and it is the points at, or near, the starting points in the first stage that require refine-

ment. This reduces the computational requirement by a factor of M2.

The technique was originally demonstrated to extract the face boundary, for

feature extraction within automatic face recognition, as illustrated in Figure 6.11.

The outer boundary (Figure 6.11(a)) was extracted using a convex hull which in

turn initialized an inner and an outer contour (Figure 6.11(b)). The final extraction

by the dual discrete contour is the boundary of facial skin (Figure 6.11(c)). The

number of points in the mesh naturally limits the accuracy with which the final

contour is extracted, but application could naturally be followed by use of a con-

tinuous Kass snake to improve final resolution. In fact, it was shown that human

faces could be discriminated by the contour extracted by this technique, though

the study highlighted potential difficulty with facial organs and illumination. As

mentioned earlier, it was later deployed in cell analysis where the inner and the

outer contours were derived by the analysis of the stained-cell image.

6.3.6 Geometric active contours (level-set-based approaches)
Problems discussed so far with active contours include initialization and poor

convergence to concave regions. Also, parametric active contours (the snakes dis-

cussed earlier) can have difficulty in segmenting multiple objects simultaneously

because of the explicit representation of curve. Geometric active contour (GAC)

(a) Outer boundary
initialization

(b) Outer and inner
contours

(c) Final face boundary

FIGURE 6.11

Extracting the face outline by a discrete dual contour.

318 CHAPTER 6 High-level feature extraction: deformable shape analysis

models have been introduced to solve this problem, where the curve is repre-

sented implicitly in a level set function. Essentially, the main argument is that by

changing the representation, we can improve the result, and there have indeed

been some very impressive results presented. Consider for example the result in

Figure 6.12 where we are extracting the boundary of the hand, by using the ini-

tialization shown in Figure 6.12(a). This would be hard to achieve by the active

contour models discussed so far: there are concavities, sharp corners, and back-

ground contamination which it is difficult for parametric techniques to handle. It

is not perfect, but it is clearly much better (there are techniques to improve on

this result, but this is far enough for the moment). On the other hand, there are no

panaceas in engineering, and we should not expect them to exist. The new techni-

ques can be found to be complex to implement, even to understand, though by

virtue of their impressive results there are new approaches aimed to speed appli-

cation and to ease implementation. As yet, the techniques do not find routine

deployment (certainly not in real-time applications), but this is part of the evolu-

tion of any technique. The complexity and scope of this book mandates a short

description of these new approaches here, but as usual we shall provide pointers

to more in-depth source material.

(a) Initialization (b) Iteration 1 (c) Continuing…

(d) Continuing… (e) Continuing… (f) Final result

FIGURE 6.12

Extraction by curve evolution (a diffusion snake) (Cremers et al., 2002).

3196.3 Active contours (snakes)

Level set methods (Osher and Sethian, 1988) essentially find the shape with-

out parameterizing it, so the curve description is implicit rather than explicit, by

finding it as the zero level set of a function (Sethian, 1999; Osher and Paragios,

2003). The zero level set is the interface between two regions in an image. This

can be visualized as taking slices through a surface shown in Figure 6.13(a). As

we take slices at different levels (as the surface evolves) the shape can split

(Figure 6.13(b)). This would be difficult to parameterize (we would have to detect

when it splits), but it can be handled within a level set approach by considering

the underlying surface. At a lower level (Figure 6.13(c)) we have a single com-

posite shape. As such, we have an extraction which evolves with time (to change

the level). The initialization is a closed curve and we shall formulate how we

want the curve to move in a way analogous to minimizing its energy.

The level set function is the signed distance to the contour. This distance is

arranged to be negative inside the contour and positive outside it. The contour

itself, the target shape, is where the distance is zero—the interface between the

two regions. Accordingly, we store values for each pixel representing this dis-

tance. We then determine new values for this surface, say by expansion. As we

evolve the surface, the level sets evolve accordingly, equivalent to moving the

surface where the slices are taken, as shown in Figure 6.13. Since the distance

map needs renormalization after each iteration, it can make the technique slow in

operation (or need a fast computer).

Let us assume that the interface C is controlled to change in a constant manner

and evolves with time t by propagating along its normal direction with speed F

(where F is a function of, say, curvature (Eq. (4.61)) and speed) according to

@C

@t
5FU

rφ
jrφj (6.47)

(b) Shapes at level 1

(a) Surface (c) Shape at level 2

FIGURE 6.13

Surfaces and level sets.

320 CHAPTER 6 High-level feature extraction: deformable shape analysis

Here, the term rφ
jrφj is a vector pointing in the direction normal to the surface—

previously discussed in Section 4.4.1, Eq. (4.53). (The curvature at a point is mea-

sured perpendicular to the level set function at that point.) The curve is then

evolving in a normal direction, controlled by the curvature. At all times, the inter-

face C is the zero level set

φðCðtÞ; tÞ5 0 (6.48)

The level set function φ is positive outside of the region and negative when it

is inside and it is zero on the boundary of the shape. As such, by differentiation

we get

@φðCðtÞ; tÞ
@t

5 0 (6.49)

and by the chain rule we obtain

@φ
@C

@C

@t
1

@φ
@t

5 0 (6.50)

By rearranging and substituting from Eq. (6.47), we obtain

@φ
@t

52F
@φ
@C

U
rφ
jrφj 52Fjrφj (6.51)

which suggests that the propagation of a curve depends on its gradient. The analy-

sis is actually a bit more complex since F is a scalar and C is a vector in (x,y) we

have that

@φ
@t

52
@C

@t
FU

rφ
jrφj 52F

@C

@t
U
rφ
jrφj

52Fðφx;φyÞU
ðφx;φyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2
x 1φ2

y

q
52F

φ2
x 1φ2

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2
x 1φ2

y

q
52Fjrφj

where (φx,φy) are components of the vector field, so indeed the curve evolution

depends on gradient. In fact, we can include a (multiplicative) stopping function

of the form

S5
1

11 jrPjn (6.52)

where rP is the magnitude of the image gradient giving a stopping function (like

the one in anisotropic diffusion in Eq. (3.42)) which is zero at edge points (hence

stopping evolution) and near unity when there is no edge data (allowing move-

ment). This is in fact a form of the Hamilton�Jacobi equation which is a partial

3216.3 Active contours (snakes)

differential equation that needs to be solved so as to obtain our solution. One way

to achieve this is by finite differences (as earlier approximating the differential

operation) and a spatial grid (the image itself). We then obtain a solution which

differences the contour at iterations , n1 1. and , n. (separated by an inter-

val Δt) as

φði; j;ΔtÞ, n11. 2φði; j;ΔtÞ, n.

Δt
52Fjrijφði; jÞ, n. j (6.53)

where rijφ represents a spatial derivative, leading to the solution

φði; j;ΔtÞ, n11. 5φði; j;ΔtÞ, n. 2ΔtðFjrijφði; jÞ, n. jÞ (6.54)

and we then have the required formulation for iterative operation.

This is only an introductory view, rather simplifying a complex scenario and

much greater detail is to be found in the two major texts in this area (Sethian,

1999; Osher and Paragios, 2003). The real poser is how to solve it all. We shall

concentrate on some of the major techniques, but not go into their details.

Caselles et al. (1993) and Malladi et al. (1995) were the first to propose GAC

models, which use gradient-based information for segmentation. The gradient-

based GAC can detect multiple objects simultaneously but it has other important

problems, which are boundary leakage, noise sensitivity, computational ineffi-

ciency and difficulty of implementation. There have been formulations (Caselles

et al., 1997; Siddiqi et al., 1998; Xie and Mirmehdi, 2004) introduced to solve

these problems; however, they can just increase the tolerance rather than achieve

an exact solution. Several numerical schemes have also been proposed to improve

computational efficiency of the level set method, including narrow band

(Adalsteinsson and Sethian, 1995) (to find the solution within a constrained dis-

tance, i.e., to compute the level set only near the contour), fast marching methods

(Sethian, 1999) (to constrain movement) and additive operator splitting (Weickert

et al., 1998). Despite substantial improvements in efficiency, they can be difficult

to implement and can be slow (we seek the zero level set only but solve the

whole thing). These approaches show excellent results, but they are not for the

less than brave—though there are numerous tutorials and implementations avail-

able on the Web. Clearly, there is a need for unified presentation, and some claim

this—e.g., Caselles et al. (1997) (and linkage to parametric active contour

models).

The technique which many people compare the result of their own new

approach with is a GAC called the active contour without edges, introduced by

Chan and Vese (2001), which is based on the Mumford�Shah functional

(Mumford and Shah, 1989). Their model uses regional statistics for segmentation,

and as such is a region-based level set model. The overall premise is to avoid using

gradient (edge) information since this can lead to boundary leakage and cause the

contour to collapse. A further advantage is that it can find objects when boundary

data is weak or diffuse. The main strategy is to minimize energy, as in an active

322 CHAPTER 6 High-level feature extraction: deformable shape analysis

contour. To illustrate the model, let us presume we have a bimodal image P which

contains an object and a background. The object has pixels of intensity Pi within its

boundary and the intensity of the background is Po, outside of the boundary. We

can then measure a fit of a contour, or curve, C to the image as

FiðCÞ1FoðCÞ5
ð

insideðCÞ

jPðx; yÞ2 cij2 dx dy1
ð

outsideðCÞ

jPðx; yÞ2 coj2 dx dy (6.55)

where the constant ci is the average brightness inside the curve, depending on the

curve, and co is the brightness outside of it. The boundary of the object Co is the

curve which minimizes the fit derived by expressing the regions inside and out-

side the curve as

Co 5 min
C

ðFiðCÞ1FoðCÞÞ (6.56)

(Note that the original description is excellent, though Chan and Vese are

from a maths department, which makes the presentation a bit terse. Also, the strict

version of minimization is actually the infimum or greatest lower bound; inf(X) is

the biggest real number that is smaller than or equal to every number in X.) The

minimum is when

FiðCoÞ1FoðCoÞ � 0 (6.57)

i.e., when the curve is at the boundary of the object. When the curve C is inside

the object, Fi(C)�0 and Fo(C). 0; conversely, when the curve is outside the

object, Fi(C). 0 and Fo(C)�0. When the curve straddles the two and is both

inside and outside the object, then Fi(C). 0 and Fo(C). 0; the function is zero

when C is placed on the boundary of the object. By using regions, we are avoid-

ing using edges and the process depends on finding the best separation between

the regions (and by the averaging operation in the region, we have better noise
immunity). If we constrain this process by introducing terms which depend on

the length of the contour and the area of the contour, we extend the energy func-

tional from Eq. (6.55) as

Fðci; co;CÞ5μUlengthðCÞ1 υUareaðCÞ

1λ1 �
ð

insideðCÞ

jPðx; yÞ2 cij2 dx dy1λ2 �
ð

outsideðCÞ

jPðx; yÞ2 coj2 dx dy

(6.58)

where μ, υ, λ1, and λ2 are parameters controlling selectivity. The contour is then,

for a fixed set of parameters, chosen by minimization of the energy functional as

Co 5 min
ci ;co;C

ðFðci; co;CÞÞ (6.59)

A level set formulation is then used wherein an approximation to the unit step

function (the Heaviside function) is defined to control the influence of points

3236.3 Active contours (snakes)

within and without (outside) the contour, which by differentiation gives an approx-

imation to an impulse (the Dirac function), and with a solution to a form of

equation (6.51) (in discrete form) is used to update the level set.

The active contour without edges model can address problems with initializa-

tion, noise, and boundary leakage (since it uses regions, not gradients) but still

suffers from computational inefficiency and difficulty in implementation because

of the level set method. An example result is shown in Figure 6.14 where the tar-

get aim is to extract the hippo—the active contour without edges aims to split the

image into the extracted object (the hippo) and its background (the grass). In

order to do this, we need to specify an initialization which we shall choose to be

within a small circle inside the hippo, as shown in Figure 6.14(a). The result of

extraction is shown in Figure 6.14(b) and we can see that the technique has

detected much of the hippo, but the result is not perfect. The values used for the

parameters here were λ15λ25 1.0; υ5 0 (i.e., area was not used to control evo-

lution); μ5 0.13 2552 (the length parameter was controlled according to the

image resolution) and some internal parameters were h5 1 (a 1 pixel step space);

Δt5 0.1 (a small time spacing) and ε5 1 (a parameter within the step and hence

the impulse functions). Alternative choices are possible and can affect the result

achieved. The result here has been selected to show performance attributes, the

earlier result (Figure 6.12) was selected to demonstrate finesse.

The regions with intensity and appearance that are most similar to the selected

initialization have been identified in the result: this is much of the hippo, includ-

ing the left ear and the region around the left eye but omitting some of the upper

(b) Result(a) Initialization

FIGURE 6.14

Extraction by a level-set-based approach.

324 CHAPTER 6 High-level feature extraction: deformable shape analysis

body. There are some small potential problems too: there are some birds extracted

on the top of the hippo and a small region underneath it (was this hippo’s break-

fast we wonder?). Note that by virtue of the regional level set formulation, the

image is treated in its entirety and multiple shapes are detected, some well away

from the target shape. By and large, the result looks encouraging as much of the

hippo is extracted in the result and the largest shape contains much of the target;

if we were to seek to get an exact match, then we would need to use an exact

model such as the GHT or impose a model on the extraction, such as a statistical

shape prior. That the technique can operate best when the image is bimodal is

reflected in that extraction is most successful when there is a clear difference

between the target and the background, such as in the lower body. An alternative

interpretation is that the technique clearly can handle situations where the edge

data is weak and diffuse, such as in the upper body.

Techniques have moved on and can now include statistical priors to guide

shape extraction (Cremers et al., 2007). One study shows the relationship between

parametric and GACs (Xu et al., 2000). As such, snakes and evolutionary

approaches to shape extraction remain an attractive and stimulating area of

research, so as ever it is well worth studying the literature to find new, accurate,

techniques with high performance and low computational cost. We shall now

move to determining skeletons which, though more a form of low-level opera-

tion, can use evidence gathering in implementation thus motivating its inclusion

rather late in this book.

6.4 Shape skeletonization
6.4.1 Distance transforms
It is possible to describe a shape not just by its perimeter, or its area, but also by

its skeleton. Here we do not mean an anatomical skeleton, more a central axis to

a shape. This is then the axis which is equidistant from the borders of a shape and

can be determined by a distance transform. In this way we have a representation

that has the same topology, the same size, and orientation, but contains just the

essence of the shape. As such, we are again in morphology and there has been

interest for some while in binary shape analysis (Borgefors, 1986).

Essentially, the distance transform shows the distance from each point in an

image shape to its central axis. (We are measuring distance here by difference in

coordinate values, other measures of distance such as Euclidean are considered

later in Chapter 8.) Intuitively, the distance transform can be achieved by succes-

sive erosion and each pixel is labeled with the number of erosions before it disap-

peared. Accordingly, the pixels at the border of a shape will have a distance

transform of unity, those adjacent inside will have a value of two, and so on. This

is illustrated in Figure 6.15 where Figure 6.15(a) shows the analyzed shape

(a rectangle derived by, say, thresholding an image—the superimposed pixel values

3256.4 Shape skeletonization

are arbitrary here as it is simply a binary image) and Figure 6.15(b) shows the dis-

tance transform where the pixel values are the distance. Here the central axis has a

value of three as it takes that number of erosions to reach it from either side.

The application to a rectangle at higher resolution is shown in Figure 6.16(a)

and (b). Here we can see that the central axis is quite clear and actually includes

parts that reach toward the corners (and the central axis can be detected (Niblack

et al., 1992) from the transform data). The application to a more irregular shape

is shown applied to that of a card suit in Figure 6.16(c) and (d).

The natural difficulty is of course the effect of noise. This can change the

resulting, as shown in Figure 6.17. This can certainly be ameliorated by using the

earlier morphological operators (Section 3.6) to clean the image, but this can

1 1 1 1 1
1 2 2 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 2 2 1

10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10

1 1 1 1 1

(b) Distance transform(a) Initial shape

FIGURE 6.15

Illustrating distance transformation.

(a) Rectangle (b) Distance transform (c) Card suit (d) Distance transform

FIGURE 6.16

Applying the distance transformation.

326 CHAPTER 6 High-level feature extraction: deformable shape analysis

obscure the shape when the noise is severe. The major point is that this noise

shows that the effect of a small change in the object can be quite severe on the

resulting distance transform. As such, it has little tolerance of occlusion or in

change to its perimeter.

The natural extension from distance transforms is to the medial axis transform

(Blum, 1967), which determines the skeleton that consists of the locus of all the

centers of maximum disks in the analyzed region/shape. This has found use in

feature extraction and description so naturally approaches have considered

improvement in speed (Lee, 1982). One more recent study (Katz and Pizer, 2003)

noted the practical difficulty experienced in noisy imagery: “It is well documen-

ted how a tiny change to an object’s boundary can cause a large change in its

medial axis transform.” To handle this, and hierarchical shape decomposition, the

new approach “provides a natural parts-hierarchy while eliminating instabilities

due to small boundary changes.” In fact, there is a more authoritative study avail-

able on medial representations (Siddiqi and Pizer, 2008) which describes formula-

tions and properties of medial axis and distance transformations, together with

applications. An alternative is to seek an approach which is designed implicitly to

handle noise, say by averaging, and we shall consider this type of approach next.

6.4.2 Symmetry
Symmetry is a natural property, and there have been some proposed links with

human perception of beauty. Rather than rely on finding the border of a shape, or

its shape, we can locate features according to their symmetrical properties. So it

is a totally different basis to find shapes and is intuitively very appealing since it

exposes structure. (An old joke is that “symmetry” should be a palindrome, fail!)

(a) Noisy rectangle (b) Distance transform

FIGURE 6.17

Distance transformation on noisy images.

3276.4 Shape skeletonization

There are many types of symmetry which are typified by their invariant properties

such as position-invariance, circular symmetry (which is invariant to rotation),

and reflection. We shall concentrate here on bilateral reflection symmetry

(mirror-symmetry), giving pointers to other approaches and analysis later in this

section.

One way to determine reflection symmetry is to find the midpoint of a pair of

edge points and to then draw a line of votes in an accumulator wherein the gradi-

ent of the line of votes is normal to the line joining the two edge points. When

this is repeated for all pairs of edge points, the maxima should define the esti-

mates of maximal symmetry for the largest shape. This process is illustrated in

Figure 6.18 where we have an ellipse. From Figure 6.18(a), a line can be con-

structed that is normal to the line joining two (edge) points P1 and P2 and a simi-

lar line in Figure 6.18(b) for points P3 and P4. These two lines are the lines of

votes that are drawn in an accumulator space as shown in Figure 6.18(c). In this

manner, the greatest number of lines of votes will be drawn along the ellipse

axes. If the shape was a circle, the resulting accumulation of symmetry would

have the greatest number of votes at the center of the circle, since it is a totally

symmetric shape. Note that one major difference between the symmetry operator

and a medial axis transform is that the symmetry operator will find the two axes,

whereas the medial transform will find the largest.

This is shown in Figure 6.19(b) which is the accumulator for the ellipse in

Figure 6.19(a). The resulting lines in the accumulator are indeed the two axes of

symmetry of the ellipse. This procedure might work well in this case, but lacks

the selectivity of a practical operator and will be sensitive to noise and occlusion.

This is illustrated for the accumulation for the shapes in Figure 6.19(c). The result

in Figure 6.19(d) shows the axes of symmetry for the two ellipsoidal shapes and

the point at the center of the circle. It also shows a great deal of noise (the mush

in the image) and this renders this approach useless. (Some of the noise in

P1

P2

(a) Binary ellipse (b) Binary ellipse and a
different pair of points

(c) Accumulating the
symmetry for (a) and (b)

P3

P4

FIGURE 6.18

Primitive symmetry operator—basis.

328 CHAPTER 6 High-level feature extraction: deformable shape analysis

Figure 6.19(b) and (d) is due to implementation but do not let that distract you.)

Basically, the technique needs greater selectivity.

To achieve selectivity, we can use edge direction to filter the pairs of points.

If the pair of points does not satisfy specified conditions on gradient magnitude

and direction, then they will not contribute to the symmetry estimate. This is

achieved in the discrete symmetry operator (Reisfeld et al., 1995) which essen-

tially forms an accumulator of points that are measures of symmetry between

image points. Pairs of image points are attributed symmetry values that are

derived from a distance weighting function, a phase weighting function, and the

edge magnitude at each pair of points. The distance weighting function controls

the scope of the function to control whether points which are more distant con-

tribute in a similar manner to those which are close together. The phase weighting

function shows when edge vectors at the pair of points point to each other and is

arranged to be zero when the edges are pointing in the same direction (were that

to be the case, they could not belong to the same shape—by symmetry). The sym-

metry accumulation is at the center of each pair of points. In this way, the accu-

mulator measures the degree of symmetry between image points controlled by the

edge strength. The distance weighting function D is

Dði; j;σÞ5 1ffiffiffiffiffiffiffiffi
2πσ

p e2
jPi2Pj j

2σ (6.60)

where i and j are the indices to two image points Pi and Pj and the deviation σ
controls the scope of the function by scaling the contribution of the distance

between the points in the exponential function. A small value for the deviation σ
implies local operation and detection of local symmetry. Larger values of σ imply

that points that are further apart contribute to the accumulation process as well as

ones that are close together. In, say, application to the image of a face, large and

small values of σ will aim for the whole face or the eyes, respectively.

(a) Binary ellipse (b) Accumulated
axes of symmetry

for (a)

(d) Accumulated axes of
symmetry for (c)

(c) Binary shapes

FIGURE 6.19

Application of a primitive symmetry operator.

3296.4 Shape skeletonization

The effect of the value of σ on the scalar distance weighting function

expressed as Eq. (6.61) is illustrated in Figure 6.20:

Diðj;σÞ5 1ffiffiffiffiffiffiffiffi
2πσ

p e
2 jffiffi

2
p

σ (6.61)

Figure 6.20(a) shows the effect of a small value for the deviation, σ5 0.6, and

shows that the weighting is greatest for closely spaced points and drops rapidly

for points with larger spacing. Larger values of σ imply that the distance weight

drops less rapidly for points that are more widely spaced, as shown in Figure 6.20(b)

where σ5 5, allowing points which are spaced further apart to contribute to the

measured symmetry. The phase weighting function P is

Pði; jÞ5 ð12 cosðθi 1 θj 2 2αijÞÞ3 ð12 cosðθi 2 θjÞÞ (6.62)

where θ is the edge direction at the two points and αij measures the direction of a

line joining the two points:

αij 5 tan21 yðPjÞ2 yðPiÞ
xðPjÞ2 xðPiÞ

� �
(6.63)

where x(Pi) and y(Pi) are the x and y coordinates of the point Pi, respectively.

This function is minimum when the edge direction at two points is in the same

direction (θj5 θi) and is maximum when the edge direction is away from each

other (θi5 θj1π), along the line joining the two points (θj5αij).

The effect of relative edge direction on phase weighting is illustrated in

Figure 6.21 where Figure 6.21(a) concerns two edge points that point toward each

other and describes the effect on the phase weighting function by varying αij.

This shows how the phase weight is maximum when the edge direction at the two

points is along the line joining them, in this case when αij5 0 and θi5 0.

Figure 6.21(b) concerns one point with edge direction along the line joining two

points, where the edge direction at the second point is varied. The phase weight-

ing function is maximum when the edge direction at each point is toward each

Di(j, 0.6) Di(j, 5)

0 5 10

0.5

j

0 5 10

0.5

j

(a) Small σ (b) Large σ

FIGURE 6.20

Effect of σ on distance weighting.

330 CHAPTER 6 High-level feature extraction: deformable shape analysis

other, in this case when jθjj5π. Naturally, it is more complex than this and

Figure 6.21(c) shows the surface of the phase weighting function for αij5 0, with

its four maxima.

The symmetry relation between two points is then defined as

Cði; j;σÞ5Dði; j;σÞ3Pði; jÞ3EðiÞ3EðjÞ (6.64)

where E is the edge magnitude expressed in logarithmic form as

EðiÞ5 logð11MðiÞÞ (6.65)

where M is the edge magnitude derived by application of an edge detection opera-

tor. The symmetry contribution of two points is accumulated at the midpoint of

the line joining the two points. The total symmetry SPm
at point Pm is the sum of

the measured symmetry for all pairs of points which have their midpoint at Pm,

i.e., those points Γ(Pm) given by

ΓðPmÞ5 ði; jÞ Pi 1Pj

2

����
����5Pm ’i 6¼ j

	

(6.66)

4

3

–2–4 0
θ

2 4

2

1

(1–cos(π – θ))⋅2 (1–cos(θ))⋅(1–cos(– θ))

4

3

1

–2–4

P

0
θ

2 4

2

(a) θj = π and θi = 0, varying αij

(c) Surface plot for θj, θi ∈ –π. .π and αij = 0

(b) θi = αij = 0, varying θj

FIGURE 6.21

Effect of relative edge direction on phase weighting.

3316.4 Shape skeletonization

and the accumulated symmetry is then

SPm
ðσÞ5

X
i;jAΓðPmÞ

Cði; j;σÞ (6.67)

The result of applying the symmetry operator to two images is shown in

Figure 6.22, for small and large values of σ. Figure 6.22(a) and (d) shows the

image of a rectangle and the club, respectively, to which the symmetry operator

was applied, Figure 6.22(b) and (e) for the symmetry operator with a low value for

the deviation parameter, showing detection of areas with high localized symmetry;

Figure 6.22(c) and (f) are for a large value of the deviation parameter which

detects overall symmetry and places a peak near the center of the target shape. In

Figure 6.22(b) and (e), the symmetry operator acts as a corner detector where the

edge direction is discontinuous. (Note that this rectangle is one of the synthetic

images we can use to test techniques, since we can understand its output easily.

We also tested the operator on the image of a circle, since the circle is completely

symmetric and its symmetry plot is a single point at the center of the circle.)

In Figure 6.22(e), the discrete symmetry operator provides a peak close to the posi-

tion of the accumulator space peak in the GHT. Note that if the reference point

(a) Original shape (b) Small σ (c) Large σ

(d) Shape edge magnitude (f) Large σ(e) Small σ

FIGURE 6.22

Applying the symmetry operator for feature extraction.

332 CHAPTER 6 High-level feature extraction: deformable shape analysis

specified in the GHT is the center of symmetry, the results of the discrete symme-

try operator and the GHT would be the same for large values of deviation.

There is a review of the performance of state-of-art symmetry detection

operators (Park et al., 2008) which compared those new operators which offered

multiple symmetry detection, on standard databases. We have been considering a

discrete operator, a continuous symmetry operator has been developed (Zabrodsky

et al., 1995), and a later clarification (Kanatani, 1997) was aimed to address poten-

tial practical difficulty associated with hierarchy of symmetry (namely that sym-

metrical shapes have subsets of regions, also with symmetry). More advanced work

includes symmetry between pairs of points and its extension to constellations (Loy

and Eklundh, 2006) thereby imposing structure on the symmetry extraction, and

analysis of local image symmetry to expose structure via derivative of Gaussian fil-

ters (Griffin and Lillholm, 2010), thereby accruing the advantages of a frequency

domain approach. There have also been a number of sophisticated approaches to

detection of skewed symmetry (Gross and Boult, 1994; Cham and Cipolla, 1995),

with later extension to detection in orthographic projection (Van Gool et al.,

1995). Another generalization addresses the problem of scale (Reisfeld, 1996) and

extracts points of symmetry together with scale. A focusing ability has been added

to the discrete symmetry operator by reformulating the distance weighting function

(Parsons and Nixon, 1999) and we were to deploy this when using symmetry in an

approach which recognize people by their gait (the way they walk) (Hayfron-

Acquah et al., 2003). Why symmetry was chosen for this task is illustrated in

Figure 6.23: this shows the main axes of symmetry of the walking subject

(a) Walking subject’s silhouette (b) Symmetry plot

FIGURE 6.23

Applying the symmetry operator for recognition by gait (Hayfron-Acquah et al., 2003).

3336.4 Shape skeletonization

(Figure 6.23(b)) which exist within the body, largely defining the skeleton. There

is another axis of symmetry between the legs. When the symmetry operator is

applied to a sequence of images, this axis grows and retracts. By agglomerating the

sequence and describing it by a (low-pass filtered) Fourier transform, we can deter-

mine a set of numbers which are the same for the same person and different from

those for other people, thus achieving recognition. No approach as yet has allevi-

ated the computational burden associated with the discrete symmetry operator, and

some of the process used can be used to reduce the requirement (e.g., judicious use

of thresholding).

6.5 Flexible shape models—active shape
and active appearance

So far, our approaches to analyzing shape have concerned a match to image data.

This has concerned usually a match between a model (either a template that can

deform or a shape that can evolve) and a single image. An active contour is flexi-

ble, but its evolution is essentially controlled by local properties, such as the local

curvature or edge strength. The chosen value for, or the likely range of, the para-

meters to weight these functionals may have been learnt by extensive testing on a

database of images of similar type to the one used in application, or selected by

experience. A completely different approach is to consider that if the database

contains all possible variations of a shape, like its appearance or pose, the data-

base can form a model of the likely variation of that shape. As such, if we can

incorporate this as a global constraint, while also guiding the match to the most

likely version of a shape, then we have a deformable approach which is guided

by the statistics of the likely variation in a shape. These approaches are termed

flexible templates and use global shape constraints formulated from exemplars in

training data.

This major new approach is called active shape modeling. The essence of this

approach concerns a model of a shape made up of points: the variation in these

points is called the point distribution model. The chosen landmark points are

labeled on the training images. The set of training images aims to capture all pos-

sible variations of the shape. Each point describes a particular point on the bound-

ary, so order is important in the labeling process. Example choices for these

points include where the curvature is high (e.g., the corner of an eye) or at the

apex of an arch where the contrast is high (e.g., the top of an eyebrow). The sta-

tistics of the variations in position of these points describe the ways in which a

shape can appear. Example applications include finding the human face in

images, for purposes say of automatic face recognition. The only part of the face

for which a distinct model is available is the round circle in the iris—and this can

be small except at very high resolution. The rest of the face is made of unknown

shapes and these can change with change in face expression. As such, they are

334 CHAPTER 6 High-level feature extraction: deformable shape analysis

well suited to a technique which combines shape with distributions, since we

have a known set of shapes and a fixed interrelationship, but some of the detail

can change. The variation in detail is what is captured in an ASM.

Naturally, there is a lot of data. If we choose lots of points and we have lots

of training images, we shall end up with an enormous number of points. That is

where principal components analysis comes in as it can compress data into the

most significant items. Principal components analysis is an established mathemat-

ical tool: help is available in Chapter 12, Appendix 3, on the Web and in the liter-

ature Numerical Recipes (Press et al., 1992). Essentially, it rotates a coordinate

system so as to achieve maximal discriminatory capability: we might not be able

to see something if we view it from two distinct points, but if we view it from

some point in between then it is quite clear. That is what is done here: the coordi-

nate system is rotated so as to work out the most significant variations in the

morass of data. Given a set of N training examples where each example is a set

of n points, for the ith training example xi, we have

xi 5 ðx1i; x2i; . . . ; xniÞ iA1;N (6.68)

where xki is the kth variable in the ith training example. When this is applied to

shapes, each element is the two coordinates of each point. The average is then

computed over the whole set of training examples as

x5
1

N

XN
i51

xi (6.69)

The deviation of each example from the mean δxi is then

δxi 5 xi 2 x (6.70)

This difference reflects how far each example is from the mean at a point.

The 2n3 2n covariance matrix S shows how far all the differences are from the

mean as

S5
1

N

XN
i51

δxi δxTi (6.71)

Principal components analysis of this covariance matrix shows by how much

these examples, and hence a shape, can change. In fact, any of the exemplars of

the shape can be approximated as

xi 5 x1Pw (6.72)

where P5 (p1, p2, . . ., pt) is a matrix of the first t eigenvectors and w5 (w1,

w2, . . ., wt)
T is a corresponding vector of weights where each weight value con-

trols the contribution of a particular eigenvector. Different values in w give differ-

ent occurrences of the model or shape. Given that these changes are within

specified limits, then the new model or shape will be similar to the basic (mean)

3356.5 Flexible shape models—active shape and active appearance

shape. This is because the modes of variation are described by the (unit) eigen-

vectors of S, as

Spk 5λkpk (6.73)

where λk denotes the eigenvalues and the eigenvectors obey orthogonality such

that

pkp
T
k 5 1 (6.74)

and where the eigenvalues are rank ordered such that λk$λk11. Here, the largest

eigenvalues correspond to the most significant modes of variation in the data. The

proportion of the variance in the training data, corresponding to each eigenvector,

is proportional to the corresponding eigenvalue. As such, a limited number of

eigenvalues (and eigenvectors) can be used to encompass the majority of the data.

The remaining eigenvalues (and eigenvectors) correspond to modes of variation

that are hardly present in the data (like the proportion of very high-frequency

contribution of an image; we can reconstruct an image mainly from the low-

frequency components, as used in image coding). Note that in order to examine

the statistics of the labeled landmark points over the training set applied to a new

shape, the points need to be aligned and established procedures are available

(Cootes et al., 1995).

The process of application (to find instances of the modeled shape) involves

an iterative approach to bring about increasing match between the points in the

model and the image. This is achieved by examining regions around model points

to determine the best nearby match. This provides estimates of the appropriate

translation, scale rotation, and eigenvectors to best fit the model to the data. This

is repeated until the model converges to the data, when there is little change to

the parameters. Since the models only change to better fit the data and are con-

trolled by the expected appearance of the shape, they were called ASMs. The

application of an ASM to find the face features of one of the technique’s inven-

tors (yes, that’s Tim behind the target shapes) is shown in Figure 6.24 where the

initial position is shown in Figure 6.24(a), the result after five iterations in

Figure 6.24(b), and the final result in Figure 6.24(c). The technique can operate

in a coarse-to-fine manner, working at low resolution initially (and making rela-

tively fast moves) while slowing to work at finer resolution before the technique

result improves no further at convergence. Clearly, the technique has not been

misled either by the spectacles or by the presence of other features in the back-

ground. This can be used either for enrollment (finding the face automatically) or

for automatic face recognition (finding and describing the features). Naturally, the

technique cannot handle initialization which is too poor—though clearly by

Figure 6.24(a) the initialization needs not to be too close either.

ASMs have been applied in face recognition (Lanitis et al., 1997), medical

image analysis (Cootes et al., 1994) (including 3D analysis, Hill et al., 1994), and

in industrial inspection (Cootes et al., 1995). A similar theory has been used to

336 CHAPTER 6 High-level feature extraction: deformable shape analysis

develop a new approach that incorporates texture, called active appearance mod-

els (AAMs) (Cootes et al., 1998a,b). This approach again represents a shape as a

set of landmark points and uses a set of training data to establish the potential

range of variation in the shape. One major difference is that AAMs explicitly

include texture and updates model parameters to move landmark points closer to

image points by matching texture in an iterative search process. The essential dif-

ferences between ASMs and AAMs include:

1. ASMs use texture information local to a point, whereas AAMs use texture

information in a whole region.

2. ASMs seek to minimize the distance between model points and the

corresponding image points, whereas AAMs seek to minimize distance

between a synthesized model and a target image.

3. ASMs search around the current position—typically along profiles normal to

the boundary, whereas AAMs consider the image only at the current position.

One comparison (Cootes et al., 1999) has shown that although ASMs can be

faster in implementation than AAMs, the AAMs can require fewer landmark

points and can converge to a better result, especially in terms of texture (wherein

the AAM was formulated). We await with interest further developments in these

approaches to flexible shape modeling. An example result by an AAM for face

feature finding is shown in Figure 6.25. Clearly, this cannot demonstrate compu-

tational advantage, but we can see the inclusion of hair in the eyebrows has

improved segmentation there. Inevitably, interest has concerned improving

computational requirements, in one case by an efficient fitting algorithm based on

the inverse compositional image alignment algorithm (Matthews and Baker,

2004). Recent interest has concerned ability to handle occlusion (Gross et al.,

2006), as occurring either by changing (3D) orientation or by gesture.

(a) Initialization (b) After five iterations (c) At convergence, the final
shapes

FIGURE 6.24

Finding face features using an ASM.

3376.5 Flexible shape models—active shape and active appearance

6.6 Further reading
The majority of further reading in finding shapes concerns papers, many of which

have already been referenced. An excellent survey of the techniques used for fea-

ture extraction (including template matching, deformable templates, etc.) can be

found in Trier et al. (1996), while a broader view was taken later (Jain et al.,

1998). A comprehensive survey of flexible extractions from medical imagery

(McInerney and Terzopolous, 1996) reinforces the dominance of snakes in medi-

cal image analysis, to which they are particularly suited given a target of smooth

shapes. (An excellent survey of history and progress of medical image analysis is

available (Duncan and Ayache, 2000).) Few of the textbooks devote much space

to shape extraction and snakes, especially level set methods are too recent a

development to be included in many textbooks. One text alone is dedicated to

shape analysis (Van Otterloo, 1991) and contains many discussions on symmetry,

and there is a text on distance and medial axis transformation (Siddiqi and Pizer,

2008). A visit to Prof. Cootes’ (personal) web pages http://www.isbe.man.ac.uk/

Bbim/ reveals a lengthy report on flexible shape modeling and a lot of support

material (including Windows and Linux code) for active shape modeling.

Alternatively, a textbook from the same team is now available (Davies et al.,

2008). For a review of work on level set methods for image segmentation, see

Cremers et al. (2007).

6.7 References
Adalsteinsson, D., Sethian, J., 1995. A fast level set method for propagating interfaces.

J. Comput. Phys. 118 (2), 269�277.

(a) Initialization (b) After one
iteration

(c) After two
iterations

(d) At convergence

FIGURE 6.25

Finding face features using an AAM.

338 CHAPTER 6 High-level feature extraction: deformable shape analysis

http://www.isbe.man.ac.uk/∼bim/
http://www.isbe.man.ac.uk/∼bim/

Bamford, P., Lovell, B., 1998. Unsupervised cell nucleus segmentation with active con-

tours. Signal Process. 71, 203�213.

Benn, D.E., Nixon, M.S., Carter, J.N., 1999. Extending concentricity analysis by deform-

able templates for improved eye extraction. Proceedings of the Second International

Conference on Audio- and Video-Based Biometric Person Authentication AVBPA99,

pp. 1�6.

Berger, M.O., 1991. Towards dynamic adaption of snake contours. Proceedings of the

Sixth International Conference on Image Analysis and Processing, Como, Italy,

pp. 47�54.

Blum, H., 1967. A transformation for extracting new descriptors of shape. In: Wathen-

Dunn, W. (Ed.), Models for the Perception of Speech and Visual Form. MIT Press,

Cambridge, MA.

Borgefors, G., 1986. Distance transformations in digital images. Comput. Vision Graph.

Image Process. 34 (3), 344�371.

Caselles, V., Catte, F., Coll, T., Dibos, F., 1993. A geometric model for active contours.

Numerische Math. 66, 1�31.

Caselles, V., Kimmel, R., Sapiro, G., 1997. Geodesic active contours. Int. J. Comput.

Vision 22 (1), 61�79.

Cham, T.J., Cipolla, R., 1995. Symmetry detection through local skewed symmetries.

Image Vision Comput. 13 (5), 439�450.

Chan, T.F., Vese, L.A., 2001. Active contours without edges. IEEE Trans. IP 10 (2),

266�277.

Cohen, L.D., 1991. On active contour models and balloons. CVGIP: Image Understanding

53 (2), 211�218.

Cohen, L.D., Cohen, I., 1993. Finite-element methods for active contour models and bal-

loons for 2D and 3D images. IEEE Trans. PAMI 15 (11), 1131�1147.

Cohen, I., Cohen, L.D., Ayache, N., 1992. Using deformable surfaces to segment 3D images

and inter differential structures. CVGIP: Image Understanding 56 (2), 242�263.

Cootes, T.F., Hill, A., Taylor, C.J., Haslam, J., 1994. The use of active shape models for

locating structures in medical images. Image Vision Comput. 12 (6), 355�366.

Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J., 1995. Active shape models—their

training and application. CVIU 61 (1), 38�59.

Cootes, T.F., Edwards, G.J., Taylor, C.J., 1998a. A Comparative evaluation of active

appearance model algorithms. In: Lewis, P.H., Nixon, M.S. (Eds.), Proceedings of the

British Machine Vision Conference 1998, BMVC98, vol. 2, pp. 680�689.

Cootes, T., Edwards, G.J., Taylor, C.J., 1998b. Active appearance models. In: Burkhardt,

H., Neumann, B. (Eds.), Proceedings of the ECCV 98, vol. 2, pp. 484�498.

Cootes, T.F., Edwards, G.J., Taylor, C.J., 1999. Comparing active shape models with active

appearance models. In: Pridmore, T., Elliman, D. (Eds.), Proceedings of the British

Machine Vision Conference 1999, BMVC99, vol. 1, pp. 173�182.

Cremers, D., Tischhäuser, F., Weickert, J., Schnörr, C., 2002. Diffusion snakes: introducing

statistical shape knowledge into the Mumford�Shah functional. Int. J. Comput. Vision

50 (3), 295�313.

Cremers, D., Rousson, M., Deriche, R., 2007. A review of statistical approaches to level

set segmentation: integrating color, texture, motion and shape. Int. J. Comput. Vision

72 (2), 195�215.

Davies, R., Twining, C., Taylor, C.J., 2008. Statistical Models of Shape: Optimisation and

Evaluation. Springer.

3396.7 References

Duncan, J.S., Ayache, N., 2000. Medical image analysis: progress over two decades and

the challenges ahead. IEEE Trans. PAMI 22 (1), 85�106.

Felzenszwalb, P.F., Huttenlocher, D.P., 2005. Pictorial structures for object recognition.

Int. J. Comput. Vision 61 (1), 55�79.

Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D., 2010. Object detection

with discriminatively trained part based models. Trans. PAMI 32 (9), 1627�1645.

Fischler, M.A., Elschlager, R.A., 1973. The representation and matching of pictorial struc-

tures. IEEE Trans. Comp. C-22 (1), 67�92.

Geiger, D., Gupta, A., Costa, L.A., Vlontsos, J., 1995. Dynamical programming for

detecting, tracking and matching deformable contours. IEEE Trans. PAMI 17 (3),

294�302.

Goldberg, D., 1988. Genetic Algorithms in Search, Optimisation and Machine Learning.

Addison-Wesley.

Griffin, L.D., Lillholm, M., 2010. Symmetry sensitivities of derivative-of-Gaussian filters.

IEEE Trans. PAMI 32 (6), 1072�1083.

Gross, A.D., Boult, T.E., 1994. Analysing skewed symmetries. Int. J. Comput. Vision 13 (1),

91�111.

Gross, R., Matthews, I., Baker, S., 2006. Active appearance models with occlusion. Image

Vision Comput. 24 (6), 593�604.

Gunn, S.R., Nixon, M.S., 1997. A robust snake implementation: a dual active contour.

IEEE Trans. PAMI 19 (1), 63�68.

Gunn, S.R., Nixon, M.S., 1998. Global and local active contours for head boundary extrac-

tion. Int. J. Comput. Vision 30 (1), 43�54.

Hayfron-Acquah, J.B., Nixon, M.S., Carter, J.N., 2003. Automatic gait recognition by sym-

metry analysis. Pattern Recog. Lett. 24 (13), 2175�2183.

Hill, A., Cootes, T.F., Taylor, C.J., Lindley, K., 1994. Medical image interpretation: a

generic approach using deformable templates. J. Med. Informat. 19 (1), 47�59.

Ivins, J., Porrill, J., 1995. Active region models for segmenting textures and colours. Image

Vision Comput. 13 (5), 431�437.

Jain, A.K., Zhong, Y., Dubuisson-Jolly, M.-P., 1998. Deformable template models: a

review. Signal Process. 71, 109�129.

Kanatani, K., 1997. Comments on “symmetry as a continuous feature”. IEEE Trans. PAMI

19 (3), 246�247.

Kass, M., Witkin, A., Terzopoulos, D., 1988. Snakes: active contour models. Int. J.

Comput. Vision 1 (4), 321�331.

Katz, R.A., Pizer, S.M., 2003. Untangling the blum medial axis transform. Int. J. Comput.

Vision 55 (2-3), 139�153.

Lai, K.F., Chin, R.T., 1994. On regularisation, extraction and initialisation of the active

contour model (snakes). Proceedings of the First Asian Conference on Computer

Vision, pp. 542�545.

Lai, K.F., Chin, R.T., 1995. Deformable contours—modelling and extraction. IEEE Trans.

PAMI 17 (11), 1084�1090.

Lanitis, A., Taylor, C.J., Cootes, T., 1997. Automatic interpretation and coding of face

images using flexible models. IEEE Trans. PAMI 19 (7), 743�755.

Lee, D.T., 1982. Medial axis transformation of a planar shape. IEEE Trans. PAMI 4,

363�369.

340 CHAPTER 6 High-level feature extraction: deformable shape analysis

Loy, G., Eklundh, J.-O., 2006. Detecting symmetry and symmetric constellations of fea-

tures. Proceedings of the ECCV 2006, Part II, LNCS, vol. 3952, pp. 508�521.

Malladi, R., Sethian, J.A., Vemuri, B.C., 1995. Shape modeling with front propagation: a

level set approach. IEEE Trans. PAMI 17 (2), 158�175.

Matthews, I., Baker, S., 2004. Active appearance models revisited. Int. J. Comput. Vision

60 (2), 135�164.

McInerney, T., Terzopolous, D., 1996. Deformable models in medical image analysis, a

survey. Med. Image Anal. 1 (2), 91�108.

Mumford, D., Shah, J., 1989. Optimal approximation by piecewise smooth functions and

associated variational problems. Comms. Pure Appl. Math 42, 577�685.

Niblack, C.W., Gibbons, P.B., Capson, D.W., 1992. Generating skeletons and centerlines from

the distance transform. CVGIP: Graph. Models Image Process. 54 (5), 420�437.

Osher, S.J., Paragios, N. (Eds.), 2003. Vision and Graphics. Springer, New York, NY.

Osher, S.J., Sethian, J., (Eds.), 1988. Fronts propagating with curvature dependent speed:

algorithms based on the Hamilton�Jacobi formulation. J. Comput. Phys. 79, 12�49.

Park, M., Leey, S., Cheny, P.-C., Kashyap, S., Butty, A.A., Liu, Y., 2008. Performance

evaluation of state-of-the-art discrete symmetry detection algorithms. Proceedings of

the CVPR, 8 pp.

Parsons, C.J., Nixon, M.S., 1999. Introducing focus in the generalised symmetry operator.

IEEE Signal Process. Lett. 6 (1), 49�51.

Peterfreund, N., 1999. Robust tracking of position and velocity. IEEE Trans. PAMI 21 (6),

564�569.

Press, W.H., Teukolsky, S.A., Vettering, W.T., Flannery, B.P., 1992. Numerical Recipes

in C—The Art of Scientific Computing, second ed. Cambridge University Press,

Cambridge.

Reisfeld, D., 1996. The constrained phase congruency feature detector: simultaneous locali-

zation, classification and scale determination. Pattern Recog. Lett. 17 (11), 1161�1169.

Reisfeld, D., Wolfson, H., Yeshurun, Y., 1995. Context-free attentional operators: the gen-

eralised symmetry transform. Int. J. Comput. Vision 14, 119�130.

Ronfard, R., 1994. Region-based strategies for active contour models. Int. J. Comput.

Vision 13 (2), 229�251.

Sethian, J., 1999. Level Set Methods: Evolving Interfaces in Computational Geometry,

Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University

Press, New York, NY.

Siddiqi, K., Pizer, S. (Eds.), 2008. Medial Representations: Mathematics, Algorithms and

Applications (Computational Imaging and Vision). Springer.

Siddiqi, K., Lauziere, Y., Tannenbaum, A., Zucker, S., 1998. Area and length minimizing

flows for shape segmentation. IEEE Trans. IP 7 (3), 433�443.

Trier, O.D., Jain, A.K., Taxt, T., 1996. Feature extraction methods for character recogni-

tion—a survey. Pattern Recog. 29 (4), 641�662.

Van Gool, L., Moons, T., Ungureanu, D., Oosterlinck, A., 1995. The characterisation and

detection of skewed symmetry. Comput. Vision Image Underst. 61 (1), 138�150.

Van Otterloo, P.J., 1991. A Contour-Oriented Approach to Shape Analysis. Prentice Hall

International (UK) Ltd., Hemel Hempstead.

Waite, J.B., Welsh, W.J., 1990. Head boundary location using snakes. Br. Telecom J. 8 (3),

127�136.

3416.7 References

Wang, Y.F., Wang, J.F., 1992. Surface reconstruction using deformable models with inte-

rior and boundary constraints. IEEE Trans. PAMI 14 (5), 572�579.

Weickert, J., Ter Haar Romeny, B.M., Viergever, M.A., 1998. Efficient and reliable

schemes for nonlinear diffusion filtering. IEEE Trans. IP 7 (3), 398�410.

Williams, D.J., Shah, M., 1992. A fast algorithm for active contours and curvature estima-

tion. CVGIP: Image Underst. 55 (1), 14�26.

Xie, X., Mirmehdi, M., 2004. RAGS: region-aided geometric snake. IEEE Trans. IP 13 (5),

640�652.

Xu, C., Prince, J.L., 1998. Snakes, shapes, and gradient vector flow. IEEE Trans. IP 7 (3),

359�369.

Xu, C., Yezzi, A., Prince, J.L., 2000. On the relationship between parametric and geometric

active contours and its applications. Proceedings of the 34th Asilomar Conference on

Signals, Systems, and Computers, Pacific Grove, CA, pp. 483�489.

Xu, G., Segawa, E., Tsuji, S., 1994. Robust active contours with insensitive parameters.

Pattern Recog. 27 (7), 879�884.

Yuille, A.L., 1991. Deformable templates for face recognition. J. Cognitive Neurosci. 3 (1),

59�70.

Zabrodsky, H., Peleg, S., Avnir, D., 1995. Symmetry as a continuous feature. IEEE Trans.

PAMI 17 (12), 1154�1166.

342 CHAPTER 6 High-level feature extraction: deformable shape analysis

CHAPTER

7Object description

CHAPTER OUTLINE HEAD

7.1 Overview ... 343

7.2 Boundary descriptions.. 345

7.2.1 Boundary and region...345

7.2.2 Chain codes ...346

7.2.3 Fourier descriptors..349

7.2.3.1 Basis of Fourier descriptors ... 350

7.2.3.2 Fourier expansion.. 351

7.2.3.3 Shift invariance.. 354

7.2.3.4 Discrete computation... 355

7.2.3.5 Cumulative angular function ..357

7.2.3.6 Elliptic Fourier descriptors ...369

7.2.3.7 Invariance ... 372

7.3 Region descriptors ... 378

7.3.1 Basic region descriptors ..378

7.3.2 Moments ...383

7.3.2.1 Basic properties .. 383

7.3.2.2 Invariant moments... 387

7.3.2.3 Zernike moments .. 388

7.3.2.4 Other moments ... 393

7.4 Further reading .. 395

7.5 References .. 395

7.1 Overview
Objects are represented as a collection of pixels in an image. Thus, for purposes

of recognition we need to describe the properties of groups of pixels. The descrip-

tion is often just a set of numbers—the object’s descriptors. From these, we can

compare and recognize objects by simply matching the descriptors of objects in

an image against the descriptors of known objects. However, in order to be useful

for recognition, descriptors should have four important properties. First, they

Feature Extraction & Image Processing for Computer Vision.

© 2012 Mark Nixon and Alberto Aguado. Published by Elsevier Ltd. All rights reserved.
343

should define a complete set, i.e., two objects must have the same descriptors if

and only if they have the same shape. Secondly, they should be congruent. As

such, we should be able to recognize similar objects when they have similar

descriptors. Thirdly, it is convenient that they have invariant properties. For

example, rotation-invariant descriptors will be useful for recognizing objects

whatever their orientation. Other important invariance properties naturally

include scale and position and also invariance to affine and perspective changes.

These last two properties are very important when recognizing objects observed

from different viewpoints. In addition to these three properties, the descriptors

should be a compact set, namely, a descriptor should represent the essence of an

object in an efficient way, i.e., it should only contain information about what

makes an object unique or different from the other objects. The quantity of infor-

mation used to describe this characterization should be less than the information

necessary to have a complete description of the object itself. Unfortunately, there

is no set of complete and compact descriptors to characterize general objects.

Thus, the best recognition performance is obtained by carefully selected proper-

ties. As such, the process of recognition is strongly related to each particular

application with a particular type of object.

In this chapter, we present the characterization of objects by two forms of

descriptors. These descriptors are summarized in Table 7.1. Region and shape
descriptors characterize an arrangement of pixels within the area and the arrange-

ment of pixels in the perimeter or boundary, respectively. This region versus

Table 7.1 Overview of Chapter 7

Main
Topic

Subtopics Main Points

Boundary
descriptions

How to determine the boundary
and the region it encloses. How to
form a description of the boundary
and necessary properties in that
description. How we describe a
curve/boundary by Fourier
approaches

Basic approach: chain codes.
Fourier descriptors: discrete
approximations; cumulative
angular function and elliptic Fourier
descriptors

Region
descriptors

How we describe the area of a
shape. Basic shape measures:
heuristics and properties.
Describing area by statistical
moments: need for invariance and
more sophisticated descriptions.
What do the moments describe,
and reconstruction from the
moments

Basic shape measures: area;
perimeter; compactness; and
dispersion. Moments: basic;
centralized; invariant; Zernike.
Properties and reconstruction

344 CHAPTER 7 Object description

perimeter kind of representation is common in image analysis. For example,

edges can be located by region growing (to label area) or by differentiation (to

label perimeter), as covered in Chapter 4. There are actually many techniques that

can be used to obtain descriptors of an object’s boundary. Here, we shall just con-

centrate on three forms of descriptors: chain codes and two forms based on

Fourier characterization. For region descriptors, we shall distinguish between

basic descriptors and statistical descriptors defined by moments.

7.2 Boundary descriptions
7.2.1 Boundary and region
A region usually describes contents (or interior points) that are surrounded by a

boundary (or perimeter) which is often called the region’s contour. The form of

the contour is generally referred to as its shape. A point can be defined to be on

the boundary (contour) if it is part of the region and there is at least one pixel in

its neighborhood that is not part of the region. The boundary itself is usually

found by contour following: we first find one point on the contour and then prog-

ress round the contour either in a clockwise direction or in an anticlockwise, find-

ing the nearest (or next) contour point.

In order to define the interior points in a region and the points in the bound-

ary, we need to consider neighboring relationships between pixels. These relation-

ships are described by means of connectivity rules. There are two common ways

of defining connectivity: 4-way (or 4-neighborhood) where only immediate neigh-

bors are analyzed for connectivity; or 8-way (or 8-neighborhood) where all the

eight pixels surrounding a chosen pixel are analyzed for connectivity. These two

types of connectivity are shown in Figure 7.1. In this figure, the pixel is shown in

(a) 4-way connectivity (b) 8-way connectivity

FIGURE 7.1

Main types of connectivity analysis.

3457.2 Boundary descriptions

MAC_ALT_TEXT Figure 7.1

light gray and its neighbors in dark gray. In 4-way connectivity (Figure 7.1(a)) a

pixel has four neighbors in the directions: North, East, South, and West, its imme-

diate neighbors. The four extra neighbors in 8-way connectivity (Figure 7.1(b))

are those in the directions: North East, South East, South West, and North West,

the points at the corners.

A boundary and a region can be defined using both types of connectivity and

they are always complementary, i.e., if the boundary pixels are connected in

4-way, the region pixels will be connected in 8-way and vice versa. This relation-

ship can be seen in the example shown in Figure 7.2, where the boundary is

shown in dark gray and the region in light gray. We can observe that for a diag-

onal boundary, the 4-way connectivity gives a staircase boundary, whereas the

8-way connectivity gives a diagonal line formed from the points at the corners of

the neighborhood. Note that all the pixels that form the region in Figure 7.2(b)

have 4-way connectivity, while the pixels in Figure 7.2(c) have 8-way connectiv-

ity. This is complementary to the pixels in the border.

7.2.2 Chain codes
In order to obtain a representation of a contour, we can simply store the coordi-

nates of a sequence of pixels in the image. Alternatively, we can just store the rel-

ative position between consecutive pixels. This is the basic idea behind chain

codes. Chain codes are actually one of the oldest techniques in computer vision

originally introduced in the 1960s (Freeman, 1961) (an excellent review came

later; Freeman, 1974). Essentially, the set of pixels in the border of a shape is

translated into a set of connections between them. Given a complete border, one

(a) Original region (b) Boundary and region for
4-way connectivity

(c) Boundary and region for
8-way connectivity

FIGURE 7.2

Boundaries and regions.

346 CHAPTER 7 Object description

MAC_ALT_TEXT Figure 7.2

that is a set of connected points, then starting from one pixel we need to be able

to determine the direction in which the next pixel is to be found, namely, the next

pixel is one of the adjacent points in one of the major compass directions. Thus,

the chain code is formed by concatenating the number that designates the direc-

tion of the next pixel, i.e., given a pixel, the successive direction from one pixel

to the next pixel becomes an element in the final code. This is repeated for each

point until the start point is reached when the (closed) shape is completely

analyzed.

Directions in 4- and 8-way connectivity can be assigned as shown in

Figure 7.3. The chain codes for the example region in Figure 7.2(a) are shown in

Figure 7.4. Figure 7.4(a) shows the chain code for the 4-way connectivity. In this

case, we have that the direction from the start point to the next is South (i.e.,

code 2), so the first element of the chain code describing the shape is 2. The

direction from point P1 to the next, P2, is East (code 1), so the next element of

the code is 1. The next point after P2 is P3 that is South giving a code 2. This

coding is repeated until P23 that is connected eastward to the starting point, so

the last element (the 12th element) of the code is 1. The code for 8-way connec-

tivity shown in Figure 7.4(b) is obtained in an analogous way, but the directions

are assigned according to the definition in Figure 7.3(b). Note that the length of

the code is shorter for this connectivity, given that the number of boundary points

is smaller for 8-way connectivity than it is for 4-way.

Clearly this code will be different when the start point changes. Accordingly,

we need start point invariance. This can be achieved by considering the elements

of the code to constitute the digits in an integer. Then, we can shift the digits

cyclically (replacing the least significant digit with the most significant one, and

shifting all other digits left one place). The smallest integer is returned as the start

(a) 4-way connectivity (b) 8-way connectivity

North
0

West
3

East
1

South
2

Origin

North
0

North
West

7

South
West

5

South
East

3

North
East

1

West
6

East
2

South
4

Origin

FIGURE 7.3

Connectivity in chain codes.

3477.2 Boundary descriptions

MAC_ALT_TEXT Figure 7.3

point invariant chain code description. This is shown in Figure 7.5 where the ini-

tial chain code is that from the shape in Figure 7.4. Here, the result of the first

shift is given in Figure 7.5(b), which is equivalent to the code that would have

been derived by using point P1 as the starting point. The result of two shifts, in

Figure 7.5(c), is the chain code equivalent to starting at point P2, but this is not a

code corresponding to the minimum integer. The minimum integer code, as in

Figure 7.5(d), is the minimum of all the possible shifts and is actually the chain

code which would have been derived by starting at point P11. That fact could not

be used in application since we would need to find P11; naturally, it is much eas-

ier to shift to achieve a minimum integer.

In addition to starting point invariance, we can also obtain a code that does

not change with rotation. This can be achieved by expressing the code as a

{2,1,2,2,1,2,2,3,2,2,3,0,3,0,3,0,3,0,0,1,0,1,0,1} Code = {3,4,3,4,4,5,4,6,7,7,7,0,0,1,1,2}

(a) Chain code given 4-way connectivity (b) Chain code given 8-way connectivity

P23

P21

P19 P20

P18

P17 P16

P22 P1 P2

P3

P4 P5

P6

P7P8

P9

P10P11

P12P13

P14P15

Start

P1

P2

P3

P4

P5

P6

P7P8

P9

P10

P11

P12

P13

P14P14

P15 Start

FIGURE 7.4

Chain codes by different connectivity.

Code = {3,4,3,4,4,5,4,6,7,7,7,0,0,1,1,2} Code = {4,3,4,4,5,4,6,7,7,7,0,0,1,1,2,3}

Code = {0,0,1,1,2,3,4,3,4,4,5,4,6,7,7,7}

(a) Initial chain code

(c) Result of two shifts

(b) Result of one shift

(d) Minimum integer chain code

Code = {3,4,4,5,4,6,7,7,7,0,0,1,1,2,3,4}

FIGURE 7.5

Start point invariance in chain codes.

348 CHAPTER 7 Object description

MAC_ALT_TEXT Figure 7.4
MAC_ALT_TEXT Figure 7.5

difference of chain code: relative descriptions remove rotation dependence.

Change of scale can complicate matters greatly since we can end up with a set of

points which is of different size to the original set. As such, the boundary needs

to be resampled before coding. This is a tricky issue. Furthermore, noise can

have drastic effects. If salt and pepper noise were to remove, or to add, some

points the code would change. Clearly, such problems can lead to great difficulty

with chain codes. However, their main virtue is their simplicity and as such they

remain a popular technique for shape description. Further developments of chain

codes have found application with corner detectors (Liu and Srinath, 1990;

Seeger and Seeger, 1994). However, the need to be able to handle noise, the

requirement of connectedness, and the local nature of description naturally moti-

vates alternative approaches. Noise can be reduced by filtering, which naturally

leads back to the Fourier transform, with the added advantage of a global

description.

7.2.3 Fourier descriptors
Fourier descriptors, often attributed to early work by Cosgriff (1960), allow us to

bring the power of Fourier theory to shape description. The main idea is to char-

acterize a contour by a set of numbers that represent the frequency content of a

whole shape. Based on frequency analysis, we can select a small set of numbers

(the Fourier coefficients) that describe a shape rather than any noise (i.e., the

noise affecting the spatial position of the boundary pixels). The general recipe to

obtain a Fourier description of the curve involves two main steps. First, we have

to define a representation of a curve. Secondly, we expand it using Fourier theory.

We can obtain alternative flavors by combining different curve representations

and different Fourier expansions. Here, we shall consider Fourier descriptors of

angular and complex contour representations. However, Fourier expansions can

be developed for other curve representations (Persoon and Fu, 1977; Van

Otterloo, 1991).

In addition to the curve’s definition, a factor that influences the development

and properties of the description is the choice of Fourier expansion. If we con-

sider that the trace of a curve defines a periodic function, we can opt to use a

Fourier series expansion. However, we could also consider that the description is

not periodic. Thus, we could develop a representation based on the Fourier trans-

form. In this case, we could use alternative Fourier integral definitions. Here, we

will develop the presentation based on expansion in Fourier series. This is the

common way used to describe shapes in pattern recognition.

It is important to note that although a curve in an image is composed of dis-

crete pixels, Fourier descriptors are developed for continuous curves. This is con-

venient since it leads to a discrete set of Fourier descriptors. Additionally, we

should remember that the pixels in the image are actually the sampled points of a

continuous curve in the scene. However, the formulation leads to the definition of

the integral of a continuous curve. In practice, we do not have a continuous curve

3497.2 Boundary descriptions

but a sampled version. Thus, the expansion is actually approximated by means of

numerical integration.

7.2.3.1 Basis of Fourier descriptors
In the most basic form, the coordinates of boundary pixels are x and y point coor-

dinates. A Fourier description of these essentially gives the set of spatial frequen-

cies that fit the boundary points. The first element of the Fourier components

(the d.c. component) is simply the average value of the x and y coordinates, giv-

ing the coordinates of the center point of the boundary, expressed in complex

form. The second component essentially gives the radius of the circle that best

fits the points. Accordingly, a circle can be described by its zero- and first-order

components (the d.c. component and first harmonic). The higher-order compo-

nents increasingly describe detail, as they are associated with higher frequencies.

This is shown in Figure 7.6. Here, the Fourier description of the ellipse in

Figure 7.6(a) is the frequency components in Figure 7.6(b), depicted in logarith-

mic form for purposes of display. The Fourier description has been obtained by

using the ellipse boundary points’ coordinates. Here, we can see that the low-

order components dominate the description, as to be expected for such a smooth

shape. In this way, we can derive a set of numbers that can be used to recognize

the boundary of a shape: a similar ellipse should give a similar set of numbers,

whereas a completely different shape will result in a completely different set of

numbers.

We do, however, need to check the result. One way is to take the descriptors

of a circle since the first harmonic should be the circle’s radius. A better way

though is to reconstruct the shape from its descriptors; if the reconstruction

log Fcvn

n

(a) Original ellipse (b) Fourier components

FIGURE 7.6

An ellipse and its Fourier description.

350 CHAPTER 7 Object description

MAC_ALT_TEXT Figure 7.6

matches the original shape, then the description would appear correct. Naturally,

we can reconstruct a shape from this Fourier description since the descriptors are

regenerative. The zero-order component gives the position (or origin) of a shape.

The ellipse can be reconstructed by adding in all spatial components to extend

and compact the shape along the x- and y-axes, respectively. By this inversion,

we return to the original ellipse. When we include the zero and first descriptor,

then we reconstruct a circle, as expected, shown in Figure 7.7(b). When we

include all Fourier descriptors the reconstruction (Figure 7.7(c)) is very close to

the original (Figure 7.7(a)) with slight difference due to discretization effects.

But this is only an outline of the basis to Fourier descriptors since we have yet

to consider descriptors that give the same description whatever be an object’s

position, scale, and rotation. Here, we have just considered an object’s description

that is achieved in a manner that allows for reconstruction. In order to develop

practically useful descriptors, we shall need to consider more basic properties. As

such, we first turn to the use of Fourier theory for shape description.

7.2.3.2 Fourier expansion
In order to define a Fourier expansion, we can start by considering that a continu-

ous curve c(t) can be expressed as a summation of the form

cðtÞ5
X
k

ck fkðtÞ (7.1)

where ck defines the coefficients of the expansion, and the collection of functions

fk(t) define the basis functions. The expansion problem centers on finding the

coefficients given a set of basis functions. This equation is very general and dif-

ferent basis functions can also be used. For example, fk(t) can be chosen such that

the expansion defines a polynomial. Other bases define splines, Lagrange, and

(a) Original ellipse (b) Reconstruction by zero-
and first-order components

(c) Reconstruction by all
Fourier components

FIGURE 7.7

Reconstructing an ellipse from a Fourier description.

3517.2 Boundary descriptions

MAC_ALT_TEXT Figure 7.7

Newton interpolant functions. A Fourier expansion represents periodic functions

by a basis defined as a set of infinite complex exponentials, i.e.,

cðtÞ5
XN

k52N

ck e
jkωt (7.2)

Here, ω defines the fundamental frequency and it is equal to 2π/T, where T is

the period of the function. The main feature of the Fourier expansion is that it

defines an orthogonal basis. This simply means that

ðT
0

fkðtÞfjðtÞdt5 0 (7.3)

for k 6¼ j. This property is important for two main reasons. First, it ensures that

the expansion does not contain redundant information (each coefficient is unique

and contains no information about the other components). Secondly, it simplifies

the computation of the coefficients, i.e., in order to solve for ck in Eq. (7.1), we

can simply multiply both sides by fk(t) and perform integration. Thus, the coeffi-

cients are given by

ck 5

ðT
0

cðtÞfkðtÞ
.ðT

0

f 2k ðtÞ (7.4)

By considering the definition in Eq. (7.2), we have that

ck 5
1

T

ðT
0

cðtÞe2jkwt (7.5)

In addition to the exponential form given in Eq. (7.2), the Fourier expansion

can also be expressed in trigonometric form. This form shows that the Fourier

expansion corresponds to the summation of trigonometric functions that increase

in frequency. It can be obtained by considering that

cðtÞ5 c0 1
XN
k51

ðcke jkωt 1 c2ke
2jkωtÞ (7.6)

In this equation, the values of e jkωt and e2jkωt define a pair of complex conju-

gate vectors. Thus, ck and c2k describe a complex number and its conjugate. Let

us define these numbers as

ck 5 ck;1 2 jck;2 and c2k 5 ck;1 1 jck;2 (7.7)

352 CHAPTER 7 Object description

By substitution of this definition in Eq. (7.6), we obtain

cðtÞ5 c0 1 2
XN
k51

ck;1
e jkωt 1 e2jkωt

2

� �
1 jck;2

2 e jkωt 1 e2jkωt

2

� �� �
(7.8)

That is,

cðtÞ5 c0 1 2
XN
k51

ðck;1 cosðkωtÞ1 ck;2 sinðkωtÞÞ (7.9)

If we define

ak 5 2ck;1 and bk 5 2ck;2 (7.10)

we obtain the standard trigonometric form given by

cðtÞ5 a0

2
1
XN
k51

ðak cosðkωtÞ1 bk sinðkωtÞÞ (7.11)

The coefficients of this expansion, ak and bk, are known as the Fourier

descriptors. These control the amount of each frequency that contributes to make

up the curve. Accordingly, these descriptors can be said to describe the curve

since they do not have the same values for different curves. Note that according

to Eqs (7.7) and (7.10), the coefficients of the trigonometric and exponential form

are related by

ck 5
ak 2 jbk

2
and c2k 5

ak 1 jbk

2
(7.12)

The coefficients in Eq. (7.11) can be obtained by considering the orthogonal

property in Eq. (7.3). Thus, one way to compute values for the descriptors is

ak 5
2

T

ðT
0

cðtÞcosðkωtÞdt and bk 5
2

T

ðT
0

cðtÞsinðkωtÞdt (7.13)

In order to obtain the Fourier descriptors, a curve can be represented by the

complex exponential form of Eq. (7.2) or by the sin/cos relationship of

Eq. (7.11). The descriptors obtained by using either of the two definitions are

equivalent, and they can be related by the definitions of Eq. (7.12). Generally,

Eq. (7.13) is used to compute the coefficients since it has a more intuitive form.

However, some works have considered the complex form (e.g., Granlund, 1972).

The complex form provides an elegant development of rotation analysis.

3537.2 Boundary descriptions

7.2.3.3 Shift invariance
Chain codes required special attention to give start point invariance. Let us see if

that is required here. The main question is whether the descriptors will change

when the curve is shifted. In addition to Eqs (7.2) and (7.11), a Fourier expansion

can be written in another sinusoidal form. If we consider that

jckj5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2k 1 b2k

q
and ϕk 5 a tan21ðbk=akÞ (7.14)

then the Fourier expansion can be written as

cðtÞ5 a0

2
1
XN
k50

jckj cosðkωt1ϕkÞ (7.15)

Here jckj is the amplitude and ϕk is the phase of the Fourier coefficient. An

important property of the Fourier expansion is that jckj does not change when the

function c(t) is shifted (i.e., translated), as in Section 2.6.1. This can be observed

by considering the definition of Eq. (7.13) for a shifted curve c(t1α). Here,
α represents the shift value. Thus,

a0k 5
2

T

ðT
0

cðt0 1αÞcosðkωt0Þdt and b0k 5
2

T

ðT
0

cðt0 1αÞsinðkωt0Þdt (7.16)

By defining a change of variable by t5 t0 1α, we have

a0k 5
2

T

ðT
0

cðtÞcosðkωt2 kωαÞdt and b0k 5
2

T

ðT
0

cðtÞsinðkωt2 kωαÞdt (7.17)

After some algebraic manipulation, we obtain

a0k 5 ak cosðkωαÞ1 bk sinðkωαÞ and b0k 5 bk cosðkωαÞ2 ak sinðkωαÞ (7.18)

The amplitude jc0kj is given by

jc0kj5
ffi
ðak cosðkωαÞ1 bk sinðkωαÞÞ2 1 ðbk cosðkωαÞ2 ak sinðkωαÞÞ2

q
(7.19)

That is,

jc0kj5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2k 1 b2k

q
(7.20)

Thus, the amplitude is independent of the shift α. Although shift invariance

could be incorrectly related to translation invariance, actually, as we shall see,

this property is related to rotation invariance in shape description.

354 CHAPTER 7 Object description

7.2.3.4 Discrete computation
Before defining Fourier descriptors, we must consider the numerical procedure

necessary to obtain the Fourier coefficients of a curve. The problem is that Eqs

(7.11) and (7.13) are defined for a continuous curve. However, given the discrete

nature of the image, the curve c(t) will be described by a collection of points.

This discretization has two important effects. First, it limits the number of fre-

quencies in the expansion. Secondly, it forces numerical approximation to the

integral defining the coefficients.

Figure 7.8 shows an example of a discrete approximation of a curve.

Figure 7.8(a) shows a continuous curve in a period, or interval, T. Figure 7.8(b)

shows the approximation of the curve by a set of discrete points. If we try to

obtain the curve from the sampled points, we will find that the sampling process

reduces the amount of detail. According to the Nyquist theorem, the maximum

frequency fc in a function is related to the sample period τ by

τ5
1

2fc
(7.21)

Thus, if we have m sampling points, then the sampling period is equal to

τ5 T/m. Accordingly, the maximum frequency in the approximation is given by

fc 5
m

2T
(7.22)

Each term in Eq. (7.11) defines a trigonometric function at frequency fk5 k/T.

By comparing this frequency with the relationship in Eq. (7.15), we have that the

maximum frequency is obtained when

k5
m

2
(7.23)

(a) Continuous curve (b) Discrete approximation

T0

Sampling points

Fourier approximation

c(t)c(t)

T0 τ

FIGURE 7.8

Example of a discrete approximation.

3557.2 Boundary descriptions

MAC_ALT_TEXT Figure 7.8

Thus, in order to define a curve that passes through the m sampled points, we

need to consider only m/2 coefficients. The other coefficients define frequencies

higher than the maximum frequency. Accordingly, the Fourier expansion can be

redefined as

cðtÞ5 a0

2
1
Xm=2
k51

ðak cosðkωtÞ1 bk sinðkωtÞÞ (7.24)

In practice, Fourier descriptors are computed for fewer coefficients than the

limit of m/2. This is because the low-frequency components provide most of the

features of a shape. High frequencies are easily affected by noise and only repre-

sent detail that is of little value to recognition. We can interpret Eq. (7.22) the

other way around: if we know the maximum frequency in the curve, then we can

determine the appropriate number of samples. However, the fact that we consider

c(t) to define a continuous curve implies that in order to obtain the coefficients in

Eq. (7.13), we need to evaluate an integral of a continuous curve. The approxima-

tion of the integral is improved by increasing the number of sampling points.

Thus, as a practical rule, in order to improve accuracy, we must try to have a

large number of samples even if it is theoretically limited by the Nyquist

theorem.

Our curve is only a set of discrete points. We want to maintain a continuous

curve analysis in order to obtain a set of discrete coefficients. Thus, the only

alternative is to approximate the coefficients by approximating the value of the

integrals in Eq. (7.13). We can approximate the value of the integral in several

ways. The most straightforward approach is to use a Riemann sum. Figure 7.9

shows this approach. In Figure 7.9(b), the integral is approximated as the summa-

tion of the rectangular areas. The middle point of each rectangle corresponds to

each sampling point. Sampling points are defined at the points whose parameter

(a) Continuous curve

Σ(T/m)ci cos(kωiτ)

0 τ T

Σ(T/m)ci cos(kωiτ)

τ0 T

c(t)cos(kωt)

0 T

c(t)cos(kωt)dt

(b) Riemann sum (c) Linear interpolation

FIGURE 7.9

Integral approximation.

356 CHAPTER 7 Object description

MAC_ALT_TEXT Figure 7.9

is t5 iτ, where i is an integer between 1 and m. We consider that ci defines the

value of the function at the sampling point i, i.e.,

ci 5 cðiτÞ (7.25)

Thus, the height of the rectangle for each pair of coefficients is given by

ci cos(kωiτ) and ci sin(kωiτ). Each interval has a length τ5 T/m. Thus,

ðT
0

cðtÞcosðkωtÞdt �
Xm
i51

T

m
ci cosðkωiτÞ and

ðT
0

cðtÞsinðkωtÞdt �
Xm
i51

T

m
ci sinðkωiτÞ

(7.26)

Accordingly, the Fourier coefficients are given by

ak 5
2

m

Xm
i51

ci cosðkωiτÞ and bk 5
2

m

Xm
i51

ci sinðkωiτÞ (7.27)

Here, the error due to the discrete computation will be reduced with increase

in the number of points used to approximate the curve. These equations actually

correspond to a linear approximation to the integral. This approximation is shown

in Figure 7.9(c). In this case, the integral is given by the summation of the trape-

zoidal areas. The sum of these areas leads to Eq. (7.26). Note that b0 is zero and

a0 is twice the average of the ci values. Thus, the first term in Eq. (7.24) is the

average (or center of gravity) of the curve.

7.2.3.5 Cumulative angular function
Fourier descriptors can be obtained by using many boundary representations. In a

straightforward approach, we could consider, for example, that t and c(t) define

the angle and modulus of a polar parameterization of the boundary. However, this

representation is not very general. For some curves, the polar form does not

define a single valued curve, and thus we cannot apply Fourier expansions.

A more general description of curves can be obtained by using the angular func-

tion parameterization. This function was already defined in Chapter 4 in the dis-

cussion about curvature.

The angular function ϕ(s) measures the angular direction of the tangent line as

a function of arc length. Figure 7.10 shows the angular direction at a point in a

curve. In Cosgriff (1960), this angular function was used to obtain a set of

Fourier descriptors. However, this first approach to Fourier characterization has

some undesirable properties. The main problem is that the angular function has

discontinuities even for smooth curves. This is because the angular direction is

3577.2 Boundary descriptions

bounded from zero to 2π. Thus, the function has discontinuities when the angular

direction increases to a value of more than 2π or decreases to be less than zero

(since it will change abruptly to remain within bounds). In Zahn and Roskies’

approach (Zahn and Roskies, 1972), this problem is eliminated by considering a

normalized form of the cumulative angular function.

The cumulative angular function at a point in the curve is defined as the

amount of angular change from the starting point. It is called cumulative since it

represents the summation of the angular change to each point. Angular change is

given by the derivative of the angular function ϕ(s). We discussed in Chapter 4

that this derivative corresponds to the curvature κ(s). Thus, the cumulative angu-

lar function at the point given by s can be defined as

γðsÞ5
ðs
0

κðrÞdr2κð0Þ (7.28)

Here, the parameter s takes values from zero to L (i.e., the length of the curve).

Thus, the initial and final values of the function are γ(0)5 0 and γ(L)522π,
respectively. It is important to note that in order to obtain the final value of 22π,
the curve must be traced in a clockwise direction. Figure 7.10 shows the relation

between the angular function and the cumulative angular function. In the figure,

z(0) defines the initial point in the curve. The value of γ(s) is given by the angle

formed by the inclination of the tangent to z(0) and that of the tangent to the point

z(s). If we move the point z(s) along the curve, this angle will change until it

reaches the value of22π. In Eq. (7.28), the cumulative angle is obtained by adding

the small angular increments for each point.

The cumulative angular function avoids the discontinuities of the angular

function. However, it still has two problems. First, it has a discontinuity at the

y

x

z(s)

z(0)

ϕ(s) ϕ(0)

γ(s)

FIGURE 7.10

Angular direction.

358 CHAPTER 7 Object description

MAC_ALT_TEXT Figure 7.10

end. Secondly, its value depends on the length of curve analyzed. These problems

can be solved by defining the normalized function γ*(t), where

γ�ðtÞ5 γ
L

2π
t

� �
1 t (7.29)

Here, t takes values from 0 to 2π. The factor L/2π normalizes the angular func-

tion such that it does not change when the curve is scaled, i.e., when t5 2π, the
function evaluates the final point of the function γ(s). The term t is included to

avoid discontinuities at the end of the function (remember that the function is peri-

odic), i.e., it makes that γ*(0)5 γ*(2π)5 0. Additionally, it causes the cumulative

angle for a circle to be zero. This is consistent as a circle is generally considered

the simplest curve and, intuitively, simple curves will have simple representations.

Figure 7.11 shows the definitions of the cumulative angular function with two

examples. Figure 7.11(b)�(d) defines the angular functions for a circle in

Figure 7.11(a). Figure 7.11(f)�(h) defines the angular functions for the rose in

Figure 7.11(e). Figure 7.11(b)�(f) defines the angular function ϕ(s). We can

observe the typical toroidal form. Once the curve is greater than 2π, there is a dis-
continuity while its value returns to zero. The position of the discontinuity actu-

ally depends on the selection of the starting point. The cumulative function γ(s)
shown in Figure 7.11(c) and (g) inverts the function and eliminates discontinu-

ities. However, the start and end points are not the same. If we consider that this

function is periodic, there is a discontinuity at the end of each period. The nor-

malized form γ*(t) shown in Figure 7.11(d) and (h) has no discontinuity and the

period is normalized to 2π.
The normalized cumulative functions are very nice indeed. However, it is

tricky to compute them from images. Additionally, since they are based on mea-

sures of changes in angle, they are very sensitive to noise and difficult to compute

at inflexion points (e.g., corners). Code 7.1 illustrates the computation of the

angular functions for a curve given by a sequence of pixels. The matrices X and Y
store the coordinates of each pixel. The code has two important steps. First, the

computation of the angular function stored in the matrix A. Generally, if we use

only the neighboring points to compute the angular function, then the resulting

function is useless due to noise and discretization errors. Thus, it is necessary to

include a procedure that can obtain accurate measures. For purposes of illustra-

tion, in the presented code, we average the position of pixels in order to filter out

noise; however, other techniques such as the fitting process discussed in

Section 4.4.1 can provide a suitable alternative. The second important step is the

computation of the cumulative function. In this case, the increment in the angle

cannot be computed as the simple difference between the current and precedent

angular values. This will produce as result a discontinuous function. Thus, we

need to consider the periodicity of the angles. In the code, this is achieved by

checking the increment in the angle. If it is greater than a threshold, we consider

that the angle has exceeded the limits of 0 or 2π.

3597.2 Boundary descriptions

(e) Curve(a) Curve

(b) Angular function (f) Angular function

(g) Cumulative(c) Cumulative

(h) Normalized(d) Normalized

250

200

150

100

50

0
250200150100500

6

4

2

0

0

1
0

–1
–2
–3
–4
–5
–6
–7

250 30020015010050

250 30020015010050

0

6

4

2

0

–2

–4

–6

250

200

150

100

50

0
250200150100500

6

4

2

0

0

1
0

–1
–2
–3
–4
–5
–6
–7

100 200 300 400

0 100 200 300 400

6

4

2

0

–2

–4

–6
0 1 2 3 4 5 60 1 2 3 4 5 6

FIGURE 7.11

Angular function and cumulative angular function.

360 CHAPTER 7 Object description

MAC_ALT_TEXT Figure 7.11

%Angular function
function AngFuncDescrp(curve)

%Function
X=curve(1,:); Y=curve(2,:);
M=size(X,2); %number points

%Arc length
 S=zeros(1,m);
 S(1)=sqrt((X(1)-X(m))^2+(Y(1)-Y(m))^2);
 for i=2:m

S(i)=S(i-1)+sqrt((X(i)-X(i-1))^2+(Y(i)-Y(i-1))^2);
End
L=S(m);

%Normalised Parameter
t=(2*pi*S)/L;

%Graph of the curve
subplot(3,3,1);
plot(X,Y);
mx=max(max(X),max(Y))+10;
axis([0,mx,0,mx]); axis square; %Aspect ratio

%Graph of the angular function y’/x’
avrg=10;
A=zeros(1,m);
for i=1:m

x1=0; x2=0; y1=0; y2=0;
for j=1:avrg

pa=i-j; pb=i+j;
if(pa<1) pa=m+pa; end

end

if(pb>m) pb=pb-m; end
x1=x1+X(pa); y1=y1+Y(pa);
x2=x2+X(pb); y2=y2+Y(pb);

x1=x1/avrg; y1=y1/avrg;
x2=x2/avrg; y2=y2/avrg;
dx=x2-x1; dy=y2-y1;

if dx>0 & dy>0
A(i)=atan(dy/dx);
elseif dx>0 & dy<0
A(i)=atan(dy/dx)+2*pi;

else
A(i)=atan(dy/dx)+pi;

end
end

if(dx==0) dx=.00001; end

CODE 7.1

Angular functions.

3617.2 Boundary descriptions

MAC_ALT_TEXT Code 7.1

Figure 7.12 shows an example of the angular functions computed using Code 7.1,

for a discrete curve. These are similar to those in Figure 7.11(a)�(d) but show noise

due to discretization which produces a ragged effect on the computed values. The

effects of noise will be reduced if we use more points to compute the average in the

angular function. However, this reduces the level of detail in the curve. Additionally,

it makes it more difficult to detect when the angle exceeds the limits of 0 or 2π. In a

Fourier expansion, noise will affect the coefficients of the high-frequency compo-

nents, as seen in Figure 7.12(d).

In order to obtain a description of the curve, we need to expand γ*(t) in

Fourier series. In a straightforward approach, we can obtain γ*(t) from an image

and apply the definition in Eq. (7.27) for c(t)5 γ*(t). However, we can obtain a

computationally more attractive development with some algebraic simplifications.

By considering the form of the integral in Eq. (7.13), we have that

a�k 5
1

π

ð2π
0

γ�ðtÞcosðktÞdt and b�k 5
1

π

ð2π
0

γ�ðtÞsinðktÞdt (7.30)

plot(S,A);
axis([0,S(m),-1,2*pi+1]);

subplot(3,3,2);

%Cumulative angular G(s)=-2pi
G=zeros(1,m);
for i=2:m

 d=min(abs(A(i)-A(i-1)),abs(abs(A(i)-A(i-1))-2*pi));

if d>.5
G(i)=G(i-1);

elseif (A(i)-A(i-1))<-pi
G(i)=G(i-1)-(A(i)-A(i-1)+2*pi);

elseif (A(i)-A(i-1))>pi
G(i)=G(i-1)-(A(i)-A(i-1)-2*pi);

else
G(i)=G(i-1)-(A(i)-A(i-1));

end
end

subplot(3,3,3);
plot(S,G);
axis([0,S(m),-2*pi-1,1]);

%Cumulative angular Normalised
F=G+t;

subplot(3,3,4);
plot(t,F);
axis([0,2*pi,-2*pi,2*pi]);

CODE 7.1

(Continued)

362 CHAPTER 7 Object description

MAC_ALT_TEXT Code 7.1

By substitution of Eq. (7.29), we obtain

a�0 5
1

π

ð2π
0

γððL=2πÞtÞdt1 1

π

ð2π
0

t dt

a�k 5
1

π

ð2π
0

γððL=2πÞtÞcosðktÞdt1 1

π

ð2π
0

t cosðktÞdt

b�k 5
1

π

ð2π
0

γððL=2πÞtÞsinðktÞdt1 1

π

ð2π
0

t sinðktÞdt

(7.31)

By computing the second integrals of each coefficient, we obtain a simpler form as

a�0 5 2π1
1

π

ð2π
0

γððL=2πÞtÞdt

a�k 5
1

π

ð2π
0

γððL=2πÞtÞcosðktÞdt

b�k 52
2

k
1

1

π

ð2π
0

γððL=2πÞtÞsinðktÞdt

(7.32)

250

200

150

100

50

0
200 250150

(a) Curve

(c) Cumulative

(b) Angular function

(d) Normalized

100500

1

0

–1

–2

–3

–4

–5

–6

–7
200 250 300150100500

6

4

2

0

–2

–4

–6
0 1 2 3 4 5 6

6

4

2

0

200 250 300150100500

FIGURE 7.12

Discrete computation of the angular functions.

3637.2 Boundary descriptions

MAC_ALT_TEXT Figure 7.12

In an image, we measure distances, thus it is better to express these equations

in arc-length form. For that, we know that s5 (L/2π)t. Thus,

dt5
2π
L
ds (7.33)

Accordingly, the coefficients in Eq. (7.32) can be rewritten as

a�0 5 2π1
2

L

ðL
0

γðsÞds

a�k 5
2

L

ðL
0

γðsÞcos
�
2πk
L

s

�
ds

b�k 52
2

k
1

2

L

ðL
0

γðsÞsin
�
2πk
L

s

�
ds

(7.34)

In a similar way to Eq. (7.26), the Fourier descriptors can be computed by

approximating the integral as a summation of rectangular areas. This is shown in

Figure 7.13. Here, the discrete approximation is formed by rectangles of length τi
and height γi. Thus,

a�0 5 2π1
2

L

Xm
i51

γiτi

a�k 5
2

L

Xm
i51

γiτi cos
�
2πk
L

si

�

b�k 52
2

k
1

2

L

Xm
i51

γiτi sin
�
2πk
L

si

�
(7.35)

(a) Continuous curve (b) Riemann sum

0 T

γ(t)

∫γ(t)

0 TS4S3S2S1τ1 τ2 τ3

Σ γi

FIGURE 7.13

Integral approximations.

364 CHAPTER 7 Object description

MAC_ALT_TEXT Figure 7.13

where si is the arc length at the ith point. Note that

si 5
Xi
r51

τr (7.36)

It is important to observe that although the definitions in Eq. (7.35) use only

the discrete values of γ(t), they obtain a Fourier expansion of γ*(t). In the original

formulation (Zahn and Roskies, 1972), an alternative form of the summation is

obtained by rewriting the coefficients in terms of the increments of the angular

function. In this case, the integrals in Eq. (7.34) are evaluated for each interval.

Thus, the coefficients are represented as a summation of integrals of constant

values as

a�0 5 2π1
2

L

Xm
i51

ðsi
si21

γi ds

a�k 5
2

L

Xm
i51

ðsi
si21

γi cos
2πk
L

s

� �
ds

b�k 52
2

k
1

2

L

Xm
i51

ðsi
si21

γi sin
2πk
L

s

� �
ds

(7.37)

By evaluating the integral, we obtain

a�0 5 2π1
2

L

Xm
i51

γiðsi 2 si21Þ

a�k 5
1

πk

Xm
i51

γi sin
2πk
L

si

0
@

1
A2 sin

2πk
L

si21

0
@

1
A

0
@

1
A

b�k 52
2

k
1

1

πk

Xm
i51

γi cos
2πk
L

si

0
@

1
A2 cos

2πk
L

si21

0
@

1
A

0
@

1
A

(7.38)

A further simplification can be obtained by considering that Eq. (7.28) can be

expressed in discrete form as

γi 5
Xi
r51

κrτr 2κ0 (7.39)

3657.2 Boundary descriptions

where κr is the curvature (i.e., the difference of the angular function) at the rth

point. Thus,

a�0 52 2π2
2

L

Xm
i51

κisi21

a�k 52
1

πk

Xm
i51

κiτi sin
�
2πk
L

si21

�

b�k 52
2

k
2

1

πk

Xm
i51

κiτi cos
�
2πk
L

si21

�
1

1

πk

Xm
i51

κiτi

(7.40)

Since Xm
i51

κiτi 5 2π (7.41)

thus,

a�0 52 2π2
2

L

Xm
i51

κisi21

a�k 52
1

πk

Xm
i51

κiτi sin
�
2πk
L

si21

�

b�k 52
1

πk

Xm
i51

κiτi cos
�
2πk
L

si21

�
(7.42)

These equations were originally presented in Zahn and Roskies (1972) and are

algebraically equivalent to Eq. (7.35). However, they express the Fourier coeffi-

cients in terms of increments in the angular function rather than in terms of the

cumulative angular function. In practice, both implementations (Eqs (7.35) and

(7.40)) produce equivalent Fourier descriptors.

It is important to note that the parameterization in Eq. (7.21) does not depend

on the position of the pixels but only on the change in angular information. That

is, shapes in different position and with different scale will be represented by the

same curve γ*(t). Thus, the Fourier descriptors obtained are scale and translation

invariant. Rotation-invariant descriptors can be obtained by considering the shift

invariant property of the coefficients’ amplitude. Rotating a curve in an image

produces a shift in the angular function. This is because the rotation changes the

starting point in the curve description. Thus, according to Section 7.2.3.2, the

values

jc�k j5
ffi
ða�k Þ2 1 ðb�k Þ2

q
(7.43)

provide a rotation, scale, and translation-invariant description. The function

AngFourierDescrp in Code 7.2 computes the Fourier descriptors in this equation by

using the definitions in Eq. (7.35). This code uses the angular functions in Code 7.1.

366 CHAPTER 7 Object description

%Fourier descriptors based on the Angular function
function AngFuncDescrp(curve,n,scale)

%n=number coefficients
%if n=0 then n=m/2
%Scale amplitude output

%Angular functions
AngFuncDescrp(curve);

%Fourier Descriptors
if(n==0) n=floor(m/2); end; %number of coefficients

a=zeros(1,n); b=zeros(1,n); %Fourier coefficients

for k=1:n
a(k)=a(k)+G(1)*(S(1))*cos(2*pi*k*S(1)/L);
b(k)=b(k)+G(1)*(S(1))*sin(2*pi*k*S(1)/L);

%Graphs
subplot(3,3,7);
bar(a);
axis([0,n,-scale,scale]);

subplot(3,3,8);
bar(b);
axis([0,n,-scale,scale]);

%Rotation invariant Fourier descriptors
CA=zeros(1,n);
for k=1:n

CA(k)=sqrt(a(k)^2+b(k)^2);
end

%Graph of the angular coefficients
subplot(3,3,9);
bar(CA);
axis([0,n,-scale,scale]);

for i=2:m
a(k)=a(k)+G(i)*(S(i)-S(i-1))*cos(2*pi*k*S(i)/L);
b(k)=b(k)+G(i)*(S(i)-S(i-1))*sin(2*pi*k*S(i)/L);

end
a(k)=a(k)*(2/L);
b(k)=b(k)*(2/L)-2/k;

end

CODE 7.2

Angular Fourier descriptors.

3677.2 Boundary descriptions

MAC_ALT_TEXT Code 7.2

Figure 7.14 shows three examples of the results obtained using Code 7.2. In

each example, we show the curve, the angular function, the cumulative normal-

ized angular function, and the Fourier descriptors. The curves in Figure 7.14(a)

and (e) represent the same object (the contour of an F-14 fighter), but the curve

in Figure 7.14(e) was scaled and rotated. We can see that the angular function

(a) Curve (e) Curve (i) Curve

(b) Angular function (f) Angular function (j) Angular function

(k) Normalized(c) Normalized (g) Normalized

(d) Fourier descriptors (h) Fourier descriptors (I) Fourier descriptors

200

150

100

50

0

6

4

2

0

5

0

–5

–1

0.5

1

0

–0.5

200

150

100

50

0

6

4

2

0

0 200 400 600 0 200 400 600 8000 200 400 600 800

0.5

1

0

–1

–0.5

0 5 10 15 200 5 10 15 20 0 5 10 15 20

200

150

100

50

0
0 100 2000 100 2000 100 200

6

4

2

0

5

0

–5

0.5

1

0

–1

–0.5

5

0

–5

0 2 4 60 2 4 6 0 2 4 6

FIGURE 7.14

Example of angular Fourier descriptors.

368 CHAPTER 7 Object description

MAC_ALT_TEXT Figure 7.14

changes significantly, while the normalized function is very similar but with a

remarkable shift due to the rotation. The Fourier descriptors shown in Figure 7.14(d)

and (h) are quite similar since they characterize the same object. We can see a clear

difference between the normalized angular function for the object presented in

Figure 7.14(i) (the contour of a different plane, a B1 bomber). These examples show

that Fourier coefficients are indeed invariant to scale and rotation and that they can

be used to characterize different objects.

7.2.3.6 Elliptic Fourier descriptors
The cumulative angular function transforms the 2D description of a curve into a

1D periodic function suitable for Fourier analysis. In contrast, elliptic Fourier

descriptors maintain the description of the curve in a 2D space (Granlund, 1972).

This is achieved by considering that the image space defines the complex plane,

i.e., each pixel is represented by a complex number. The first coordinate repre-

sents the real part, while the second coordinate represents the imaginary part.

Thus, a curve is defined as

cðtÞ5 xðtÞ1 jyðtÞ (7.44)

Here, we will consider that the parameter t is given by the arc-length parame-

terization. Figure 7.15 shows an example of the complex representation of a

Imaginary

Real 0 T 2T

0

T

2T

x(t)

y(t)

FIGURE 7.15

Example of complex curve representation.

3697.2 Boundary descriptions

MAC_ALT_TEXT Figure 7.15

curve. This example illustrates two periods of each component of the curve.

Generally, T5 2π, thus the fundamental frequency is ω5 1. It is important to

note that this representation can be used to describe open curves. In this case, the

curve is traced twice in opposite directions. In fact, this representation is very

general and can be extended to obtain the elliptic Fourier description of irregular

curves (i.e., those without derivative information) (Montiel et al., 1996, 1997).

In order to obtain the elliptic Fourier descriptors of a curve, we need to obtain

the Fourier expansion of the curve in Eq. (7.44). The Fourier expansion can be

performed by using the complex or trigonometric form. In the original work in

Granlund (1972), the expansion is expressed in the complex form. However, other

works have used the trigonometric representation (Kuhl and Giardina, 1982).

Here, we will pass from the complex form to the trigonometric representation.

The trigonometric representation is more intuitive and easier to implement.

According to Eq. (7.5), we have that the elliptic coefficients are defined by

ck 5 cxk 1 jcyk (7.45)

where

cxk 5
1

T

ðT
0

xðtÞe2jkωt and cyk 5
1

T

ðT
0

yðtÞe2jkωt (7.46)

By following Eq. (7.12), we note that each term in this expression can be

defined by a pair of coefficients, i.e.,

cxk 5
axk 2 jbxk

2
cyk 5

ayk 2 jbyk

2

cx2k 5
axk 1 jbxk

2
cy2k 5

ayk 1 jbyk

2

(7.47)

Based on Eq. (7.13), the trigonometric coefficients are defined as

axk 5
2

T

ðT
0

xðtÞcosðkωtÞdt and bxk 5
2

T

ðT
0

xðtÞsinðkωtÞdt

ayk 5
2

T

ðT
0

yðtÞcosðkωtÞdt and byk 5
2

T

ðT
0

yðtÞsinðkωtÞdt
(7.48)

That according to Eq. (7.27) can be computed by the discrete approximation

given by

axk 5
2

m

Xm
i51

xi cosðkωiτÞ and bxk 5
2

m

Xm
i51

xi sinðkωiτÞ

ayk 5
2

m

Xm
i51

yi cosðkωiτÞ and byk 5
2

m

Xm
i51

yi sinðkωiτÞ
(7.49)

370 CHAPTER 7 Object description

where xi and yi define the value of the functions x(t) and y(t) at the sampling

point i. By considering Eqs (7.45) and (7.47), we can express ck as the sum of a

pair of complex numbers, i.e.,

ck 5Ak 2 jBk and c2k 5Ak 1 jBk (7.50)

where

Ak 5
axk 1 jayk

2
and Bk 5

bxk 1 jbyk

2
(7.51)

Based on the definition in Eq. (7.45), the curve can be expressed in the expo-

nential form given in Eq. (7.6) as

cðtÞ5 c0 1
XN
k51

ðAk 2 jBkÞejkωt 1
X21

k52N

ðAk 1 jBkÞejkωt (7.52)

Alternatively, according to Eq. (7.11), the curve can be expressed in trigono-

metric form as

cðtÞ5ax0

2
1
XN
k51

axkcosðkωtÞ1bxksinðkωtÞ1j
ay0

2
1
XN
k51

aykcosðkωtÞ1byksinðkωtÞ
 ! !

(7.53)

Generally, this equation is expressed in matrix form as

xðtÞ
yðtÞ
� �

5
1

2

ax0
ay0

� �
1
XN
k51

axk bxk
ayk byk

� �
cosðkωtÞ
sinðkωtÞ
� �

(7.54)

Each term in this equation has an interesting geometric interpretation as an

elliptic phasor (a rotating vector). That is, for a fixed value of k, the trigonometric

summation defines the locus of an ellipse in the complex plane. We can imagine

that as we change the parameter t, the point traces ellipses moving at a speed pro-

portional to the harmonic number k. This number indicates how many cycles (i.e.,

turns) give the point in the time interval from zero to T. Figure 7.16(a) shows this

concept. Here, a point in the curve is given as the summation of three vectors that

define three terms in Eq. (7.54). As the parameter t changes, each vector defines

an elliptic curve. In this interpretation, the values of ax0/2 and ay0/2 define the

start point of the first vector (i.e., the location of the curve). The major axes

of each ellipse are given by the values of jAkj and jBkj. The definition of the

ellipse locus for a frequency is determined by the coefficients as shown in

Figure 7.16(b).

3717.2 Boundary descriptions

7.2.3.7 Invariance
As in the case of angular Fourier descriptors, elliptic Fourier descriptors can be

defined such that they remain invariant to geometric transformations. In order to

show these definitions, we must first study how geometric changes in a shape

modify the form of the Fourier coefficients. Transformations can be formulated

by using both the exponential and the trigonometric form. We will consider

changes in translation, rotation, and scale using the trigonometric definition in

Eq. (7.54).

Let us denote c0(t)5 x0(t)1 jy0(t) as the transformed contour. This contour is

defined as

x0ðtÞ
y0ðtÞ
� �

5
1

2

a0x0
a0y0

� �
1
XN
k51

a0xk b0xk
a0yk b0yk

� �
cosðkωtÞ
sinðkωtÞ
� �

(7.55)

If the contour is translated by tx and ty along the real and the imaginary axes,

respectively, we have that

x0ðtÞ
y0ðtÞ
� �

5
1

2

ax0
ay0

� �
1
XN
k51

axk bxk
ayk byk

� �
cosðkωtÞ
sinðkωtÞ
� �

1
tx
ty

� �
(7.56)

that is,

x0ðtÞ
y0ðtÞ
� �

5
1

2

ax0 1 2tx
ay0 1 2ty

� �
1
XN
k51

axk bxk
ayk byk

� �
cosðkωtÞ
sinðkωtÞ
� �

(7.57)

(a) Sum of three frequencies (b) Elliptic phasor

A
B

byk

bxk axk

ayk

2

ay0

2

ax0 ,

FIGURE 7.16

Example of a contour defined by elliptic Fourier descriptors.

372 CHAPTER 7 Object description

MAC_ALT_TEXT Figure 7.16

Thus, by comparing Eqs (7.55) and (7.57), we have that the relationship

between the coefficients of the transformed and original curves is given by

a0xk 5 axk b0xk 5 bxk a0yk 5 ayk b0yk 5 byk for k 6¼ 0

a0x0 5 ax0 1 2tx a0y0 5 ay0 1 2ty
(7.58)

Accordingly, all the coefficients remain invariant under translation except ax0
and ay0. This result can be intuitively derived by considering that these two coef-

ficients represent the position of the center of gravity of the contour of the shape,

and translation changes only the position of the curve.

The change in scale of a contour c(t) can be modeled as the dilation from its

center of gravity, i.e., we need to translate the curve to the origin, scale it, and

then return it back to its original location. If s represents the scale factor, then

these transformations define the curve as

x0ðtÞ
y0ðtÞ
� �

5
1

2

ax0
ay0

� �
1 s
XN
k51

axk bxk
ayk byk

� �
cosðkωtÞ
sinðkωtÞ
� �

(7.59)

Note that in this equation, the scale factor does not modify the coefficients ax0
and ay0 since the curve is expanded with respect to its center. In order to define

the relationships between the curve and its scaled version, we compare Eqs (7.55)

and (7.59). Thus,

a0xk 5 saxk b0xk 5 sbxk a0yk 5 sayk b0yk 5 sbyk for k 6¼ 0

a0x0 5 ax0 a0y0 5 ay0
(7.60)

That is, under dilation, all the coefficients are multiplied by the scale factor

except ax0 and ay0, which remain invariant.

Rotation can be defined in a similar way to Eq. (7.59). If ρ represents the rota-

tion angle, then we have that

x0ðtÞ
y0ðtÞ
� �

5
1

2

ax0
ay0

� �
1

cosðρÞ sinðρÞ
2 sinðρÞ cosðρÞ

� �XN
k51

axk bxk
ayk byk

� �
cosðkωtÞ
sinðkωtÞ
� �

(7.61)

This equation can be obtained by translating the curve to the origin, rotating

it, and then returning it back to its original location. By comparing Eqs (7.55) and

(7.61), we have that

a0xk 5 axk cosðρÞ1 ayk sinðρÞ b0xk 5 bxk cosðρÞ1 byk sinðρÞ
a0yk 52axk sinðρÞ1 ayk cosðρÞ b0yk 52 bxk sinðρÞ1 byk cosðρÞ
a0x0 5 ax0 a0y0 5 ay0

(7.62)

That is, under rotation, the coefficients are defined by a linear combination

dependent on the rotation angle, except for ax0 and ay0, which remain invariant. It

is important to note that rotation relationships are also applied for a change in the

starting point of the curve.

3737.2 Boundary descriptions

Equations (7.58), (7.60), and (7.62) define how the elliptic Fourier coefficients

change when the curve is translated, scaled, or rotated. We can combine these

results to define the changes when the curve undergoes the three transformations.

In this case, transformations are applied in succession. Thus,

a0xk 5 sðaxk cosðρÞ1 ayk sinðρÞÞ b0xk 5 sðbxk cosðρÞ1 byk sinðρÞÞ
a0yk 5 sð2axk sinðρÞ1 ayk cosðρÞÞ b0yk 5 sð2bxk sinðρÞ1 byk cosðρÞÞ
a0x0 5 ax0 1 2tx a0y0 5 ay0 1 2ty

(7.63)

Based on this result, we can define alternative invariant descriptors. In order

to achieve invariance to translation, when defining the descriptors coefficient for

k5 0 is not used. In Granlund (1972), invariant descriptors are defined based on

the complex form of the coefficients. Alternatively, invariant descriptors can be

simply defined as

jAkj
jA1j

1
jBkj
jB1j

(7.64)

The advantage of these descriptors with respect to the definition in Granlund

(1972) is that they do not involve negative frequencies and that we avoid multipli-

cation by higher frequencies that are more prone to noise. By considering the

definitions in Eqs (7.51) and (7.63), we can prove that

jA0
kj

jA0
1j

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2xk 1 a2yk

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x1 1 a2y1

q and
jB0

kj
jB0

1j
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2xk 1 b2yk

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2x1 1 b2y1

q (7.65)

These equations contain neither the scale factor, s, nor the rotation, ρ. Thus,
they are invariant. Note that if the square roots are removed, invariance proper-

ties are still maintained. However, high-order frequencies can have undesirable

effects.

The function EllipticDescrp in Code 7.3 computes the elliptic Fourier

descriptors of a curve. The code implements Eqs (7.49) and (7.64) in a straight-

forward way. By default, the number of coefficients is half of the number of

points that define the curve. However, the number of coefficients can be specified

by the parameter n. The number of coefficients used defines the level of detail of

the characterization. In order to illustrate this idea, we can consider the different

curves that are obtained by using a different number of coefficients. Figure 7.17

shows an example of the reconstruction of a contour. In Figure 7.17(a), we can

observe that the first coefficient represents an ellipse. When the second coeffi-

cient is considered (Figure 7.17(b)), then the ellipse changes into a triangular

shape. When adding more coefficients, the contour is refined until the curve

represents an accurate approximation of the original contour. In this example, the

contour is represented by 100 points. Thus, the maximum number of coefficients

is 50.

374 CHAPTER 7 Object description

%Elliptic Fourier Descriptors
function EllipticDescrp(curve,n,scale)

%n=num coefficients
%if n=0 then n=m/2
%Scale amplitud output

%Function from image
X=curve(1,:);
Y=curve(2,:);
m=size(X,2);

%Graph of the curve
subplot(3,3,1);
plot(X,Y);
mx=max(max(X),max(Y))+10;
axis([0,mx,0,mx]); %Axis of the graph pf the curve
axis square; %Aspect ratio

%Graph of X
p=0:2*pi/m:2*pi-pi/m; %Parameter

subplot(3,3,2);
plot(p,X);
axis([0,2*pi,0,mx]); %Axis of the graph pf the curve

%Graph of Y
subplot(3,3,3);
plot(p,Y);
axis([0,2*pi,0,mx]); %Axis of the graph pf the curve

%Graph coefficient ax
subplot(3,3,4);
bar(ax);
axis([0,n,-scale,scale]);

for k=1:n
for i=1:m
ax(k)=ax(k)+X(i)*cos(k*t*(i-1));
bx(k)=bx(k)+X(i)*sin(k*t*(i-1));
ay(k)=ay(k)+Y(i)*cos(k*t*(i-1));

end
by(k)=by(k)+Y(i)*sin(k*t*(i-1));

ax(k)=ax(k)*(2/m);
bx(k)=bx(k)*(2/m);
ay(k)=ay(k)*(2/m);
by(k)=by(k)*(2/m);

end

%Fourier Coefficients
ax=zeros(1,n); bx=zeros(1,n);
ay=zeros(1,n); by=zeros(1,n);

t=2*pi/m;

%Elliptic Fourier Descriptors
if(n==0) n=floor(m/2); end; %number of coefficients

CODE 7.3

Elliptic Fourier descriptors.

3757.2 Boundary descriptions

MAC_ALT_TEXT Code 7.3

%Graph coefficient ay
subplot(3,3,5);
bar(ay);
axis([0,n,-scale,scale]);

%Graph coefficient bx
subplot(3,3,6);
bar(bx);
axis([0,n,-scale,scale]);

%Graph coefficient by
subplot(3,3,7);
bar(by);
axis([0,n,-scale,scale]);

%Invariant
CE=zeros(1,n);
for k=1:n
CE(k)=sqrt((ax(k)^2+ay(k)^2)/(ax(1)^2+ay(1)^2))+

sqrt((bx(k)^2+by(k)^2)/(bx(1)^2+by(1)^2));
end

%Graph of Elliptic descriptors
subplot(3,3,8);
bar(CE);
axis([0,n,0,2.2]);

CODE 7.3

(Continued)

(a) 1 coefficient

200

150

100

50

0

(b) 2 coefficients

200

150

100

50

0

(c) 4 coefficients

200

150

100

50

0

(d) 6 coefficients

0 100 200 0 100 200 0 100 200 0 100 200

0 100 200 0 100 200 0 100 200 0 100 200

200

150

100

50

0

(e) 8 coefficients

200

150

100

50

0

(f) 12 coefficients

200

150

100

50

0

(g) 20 coefficients

200

150

100

50

0

(h) 50 coefficients

200

150

100

50

0

FIGURE 7.17

Fourier approximation.

376 CHAPTER 7 Object description

MAC_ALT_TEXT Code 7.3
MAC_ALT_TEXT Figure 7.17

Figure 7.18 shows three examples of the results obtained using Code 7.3.

Each example shows the original curve, the x and y coordinate functions and the

Fourier descriptors defined in Eq. (7.64). The maximum in Eq. (7.64) is equal to

two and is obtained when k5 1. In the figure, we have scaled the Fourier

(a) Plane 1 curve

(b) x(t)

(c) y(t)

(d) Fourier descriptors

(e) Rotated and scaled
plane 1 curve

(f) x(t)

(g) y(t)

(h) Fourier descriptors

(i) Plane 2 curve

(j) x(t)

(k) y(t)

(l) Fourier descriptors

0

200

150

100

50

200

150

100

50

0

0.6

0.4

0.2

0

200

150

100

50

0

200

150

100

50

0

0

200

150

100

50

0.6

0.4

0.2

0

200

150

100

50

0

60 2 4 60 2 4 0 2 4 6

60 2 4 60 2 4 0 2 4 6

200

150

100

50

0

150

100

0

200

50

0.4

0.2

0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0.6

200

150

100

50

0
2000 100 0 100 2000 100 200

FIGURE 7.18

Example of elliptic Fourier descriptors.

3777.2 Boundary descriptions

MAC_ALT_TEXT Figure 7.18

descriptors to show the differences between higher-order coefficients. In this

example, we can see that the Fourier descriptors for the curves in Figure 7.18(a)

and (e) (F-14 fighter) are very similar. Small differences can be explained by dis-

cretization errors. However, the coefficients remain the same after changing its

location, orientation, and scale. The descriptors of the curve in Figure 7.18(i) (B1

bomber) are clearly different, showing that elliptic Fourier descriptors truly char-

acterize the shape of an object.

Fourier descriptors are one of the most popular boundary descriptions. As

such, they have attracted considerable attention and there are many further aspects.

Naturally, we can use the descriptions for shape recognition (Aguado et al., 1998).

It is important to mention that some work has suggested that there is some ambi-

guity in the Fourier characterization. Thus, an alternative set of descriptors has

been designed specifically to reduce ambiguities (Crimmins, 1982). However, it is

well known that Fourier expansions are unique. Thus, Fourier characterization

should uniquely represent a curve. Additionally, the mathematical opacity of the

technique in Crimmins (1982) does not lend itself to tutorial type presentation.

Interestingly, there has not been much study on alternative decompositions to

Fourier though Walsh functions have been suggested for shape representation

(Searle, 1970), and recently wavelets have been used (Kashi et al., 1996) (though

these are not an orthonormal basis function). The 3D Fourier descriptors were

introduced for analysis of simple shapes (Staib and Duncan, 1992) and have

recently been found to give good performance in application (Undrill et al., 1997).

Fourier descriptors have also been used to model shapes in computer graphics

(Aguado et al., 1999). Naturally, Fourier descriptors cannot be used for occluded

or mixed shapes, relying on extraction techniques with known indifference to

occlusion (the HT, say). However, there have been approaches aimed to classify

partial shapes using Fourier descriptors (Lin and Chellappa, 1987).

7.3 Region descriptors
So far, we have concentrated on descriptions of the perimeter or boundary. The nat-

ural counterpart is to describe the region, or the area, by regional shape descrip-

tors. Here, there are two main contenders that differ in focus: basic regional

descriptors characterize the geometric properties of the region; moments concen-

trate on density of the region. First though, we shall look at the simpler descriptors.

7.3.1 Basic region descriptors
A region can be described by considering scalar measures based on its geometric

properties. The simplest property is given by its size or area. In general, the area

of a region in the plane is defined as

AðSÞ5
ð
x

ð
y

Iðx; yÞdy dx (7.66)

378 CHAPTER 7 Object description

where I(x,y)5 1 if the pixel is within a shape, (x,y)AS, and 0 otherwise. In prac-

tice, integrals are approximated by summations, i.e.,

AðSÞ5
X
x

X
y

Iðx; yÞΔA (7.67)

where ΔA is the area of one pixel. Thus, if ΔA5 1, then the area is measured in

pixels. Area changes with changes in scale. However, it is invariant to image rota-

tion. Small errors in the computation of the area will appear when applying a

rotation transformation due to discretization of the image.

Another simple property is defined by the perimeter of the region. If x(t) and

y(t) denote the parametric coordinates of a curve enclosing a region S, then the

perimeter of the region is defined as

PðSÞ5
ð
t

ffi
x2ðtÞ1 y2ðtÞ

p
dt (7.68)

This equation corresponds to the sum of all the infinitesimal arcs that define

the curve. In the discrete case, x(t) and y(t) are defined by a set of pixels in the

image. Thus, Eq. (7.68) is approximated by

PðSÞ5
X
i

ffi
ðxi 2 xi21Þ2 1 ðyi 2 yi21Þ2

q
(7.69)

where xi and yi represent the coordinates of the ith pixel forming the curve. Since

pixels are organized in a square grid, then the terms in the summation can only

take two values. When the pixels (xi,yi) and (xi21,yi21) are 4-neighbors (as shown

in Figure 7.1(a)), the summation term is unity. Otherwise, the summation term is

equal to
ffiffiffi
2

p
: Note that the discrete approximation in Eq. (7.69) produces small

errors in the measured perimeter. As such, it is unlikely that an exact value of

2πr will be achieved for the perimeter of a circular region of radius r.

Based on the perimeter and area, it is possible to characterize the compactness

of a region. Compactness is an oft-expressed measure of shape given by the ratio

of perimeter to area, i.e.,

CðSÞ5 4πAðsÞ
P2ðsÞ (7.70)

3797.3 Region descriptors

In order to show the meaning of this equation, we can rewrite it as

CðSÞ5 AðsÞ
P2ðsÞ=4π (7.71)

Here, the denominator represents the area of a circle whose perimeter is P(S).

Thus, compactness measures the ratio between the area of the shape and the circle

that can be traced with the same perimeter, i.e., compactness measures the effi-

ciency with which a boundary encloses area. In mathematics, it is known as the

isoperimetric quotient, which smacks rather of grandiloquency. For a perfectly

circular region (Figure 7.19(a)), we have that C(circle)5 1, which represents the

maximum compactness value: a circle is the most compact shape. Figure 7.19(b)

and (c) shows two examples in which compactness is reduced. If we take the

perimeter of these regions and draw a circle with the same perimeter, we can

observe that the circle contains more area. This means that the shapes are not

compact. A shape becomes more compact if we move region pixels far away

from the center of gravity of the shape to fill empty spaces closer to the center of

gravity. For a perfectly square region, C(square)5π/4. Note that neither for a

perfect square nor for a perfect circle, does the measure include size (the width

and radius, respectively). In this way, compactness is a measure of shape only.

Note that compactness alone is not a good discriminator of a region; low values

of C are associated with convoluted regions such as the one in Figure 7.19(b) and

also with simple though highly elongated shapes. This ambiguity can be resolved

by employing additional shape measures.

Another measure that can be used to characterize regions is dispersion.

Dispersion (irregularity) has been measured as the ratio of major chord length to

area (Chen et al., 1995). A simple version of this measure can be defined as

irregularity

IðSÞ5 π maxððxi 2 xÞ2 1 ðyi 2 yÞ2Þ
AðSÞ (7.72)

where ðx; yÞ represent the coordinates of the center of mass of the region. Note

that the numerator defines the area of the maximum circle enclosing the region.

(a) Circle (b) Convoluted region (c) Ellipse

FIGURE 7.19

Examples of compactness.

380 CHAPTER 7 Object description

MAC_ALT_TEXT Figure 7.19

Thus, this measure describes the density of the region. An alternative measure of

dispersion can, actually, also be expressed as the ratio of the maximum to the

minimum radius, i.e., an alternative form of the irregularity

IRðSÞ5
max

ffi
ðxi 2 xÞ2 1 ðyi 2 yÞ2

q� �

min

ffi
ðxi2xÞ2 1 ðyi2yÞ2

q� � (7.73)

This measure defines the ratio between the radius of the maximum circle

enclosing the region and the maximum circle that can be contained in the region.

Thus, the measure will increase as the region spreads. In this way, the irregularity

of a circle is unity, IR(circle)5 1; the irregularity of a square is IRðsquareÞ5
ffiffiffi
2

p
;

which is larger. As such the measure increases for irregular shapes, whereas the

compactness measure decreases. Again, for perfect shapes, the measure is irre-

spective of size and is a measure of shape only. One disadvantage of the irregu-

larity measures is that they are insensitive to slight discontinuity in the shape,

such as a thin crack in a disk. On the other hand, these discontinuities will be reg-

istered by the earlier measures of compactness since the perimeter will increase

disproportionately with the area. Naturally, this property might be desired and so

irregularity is to be preferred when this property is required. In fact, the perimeter

measures will vary with rotation due to the nature of discrete images and are

more likely to be affected by noise than the measures of area (since the area mea-

sures have inherent averaging properties). Since the irregularity is a ratio of dis-

tance measures and compactness is a ratio of area to distance, then intuitively it

would appear that irregularity will vary less with noise and rotation. Such factors

should be explored in application to check that desired properties have indeed

been achieved.

Code 7.4 shows the implementation for the region descriptors. The code is

a straightforward implementation of Eqs (7.67), (7.69), (7.70), (7.72), and

(7.73). A comparison of these measures for the three regions shown in

Figure 7.19 is presented in Figure 7.20. Clearly, for the circle, the compactness

and dispersion measures are close to unity. For the ellipse, the compactness

decreases while the dispersion increases. The convoluted region has the lowest

compactness measure and the highest dispersion values. Clearly, these mea-

surements can be used to characterize and hence discriminate between areas of

differing shape.

Other measures, rather than focus on the geometric properties, characterize the

structure of a region. This is the case of the Poincarré measure and the Euler

number. The Poincarré measure concerns the number of holes within a region.

Alternatively, the Euler number is the difference of the number of connected

regions from the number of holes in them. There are many more potential measures

for shape description in terms of structure and geometry. Recent interest has devel-

oped a measure (Rosin and Zunic, 2005) that can discriminate rectilinear regions,

3817.3 Region descriptors

%Region descriptors (compactness)

function RegionDescrp(inputimage)

%Image size
[rows,columns]=size(inputimage);

%area
A=0;

for x=1:columns
for y=1:rows

if inputimage(y,x)==0 A=A+1; end
end

end

%Obtain Contour
C=Contour(inputimage);

%Perimeter & mean
X=C(1,:); Y=C(2,:); m=size(X,2);

mx=mx/m; my=my/m;

%Compactness
Cp=4*pi*A/P^2;

%Dispersion
max=0; min=99999;

for i=1:m
d=((X(i)-mx)^2+(Y(i)-my)^2);
if (d>max) max=d; end
if (d<min) min=d; end

end

I=pi*max/A;
IR=sqrt(max/min);

%Results
disp('perimeter='); disp(P);
disp('area='); disp(A);
disp('Compactness='); disp(Cp);
disp('Dispersion='); disp(I);
disp('DispersionR='); disp(IR);

mx=X(1); my=Y(1);
P=sqrt((X(1)-X(m))^2+(Y(1)-Y(m))^2);
for i=2:m
P=P+sqrt((X(i)-X(i-1))^2+(Y(i)-Y(i-1))^2);
mx=mx+X(i); my=my+Y(i);

end

CODE 7.4

Evaluating basic region descriptors.

382 CHAPTER 7 Object description

MAC_ALT_TEXT Code 7.4

e.g., for discriminating buildings from within remotely sensed images. We could

evaluate global or local curvature (convexity and concavity) as a further measure

of geometry; we could investigate proximity and disposition as a further measure

of structure. However, these do not have the advantages of a unified structure.

We are simply suggesting measures with descriptive ability, but this ability is

reduced by the correlation between different measures. We have already seen the

link between the Poincarré measure and the Euler number; there is a natural link

between circularity and irregularity. But the region descriptors we have considered

so far lack structure and are largely heuristic—though clearly they may have suffi-

cient descriptive ability for some applications. As such we shall now look at a uni-

fied basis for shape description which aims to reduce this correlation and provides

a unified theoretical basis for region description, with some similarity to the advan-

tages of the frequency selectivity in a Fourier transform description.

7.3.2 Moments
7.3.2.1 Basic properties
Moments describe a shape’s layout (the arrangement of its pixels), a bit like com-

bining area, compactness, irregularity, and higher-order descriptions together.

Moments are a global description of a shape, accruing this same advantage as

Fourier descriptors since there is selectivity which is an in-built ability to discern,

and filter, noise. Further, in image analysis, they are statistical moments, as

opposed to mechanical ones, but the two are analogous. For example, the

mechanical moment of inertia describes the rate of change in momentum; the sta-

tistical second-order moment describes the rate of change in a shape’s area. In

this way, statistical moments can be considered as a global region description.

Moments for image analysis were again originally introduced in the 1960s (Hu,

1962) (an exciting time for computer vision researchers too!) and an excellent

review is available (Prokop and Reeves, 1992).

Moments are actually often associated more with statistical pattern recognition,

than with model-based vision since a major assumption is that there is an

A(S) = 4917

P(S) = 259.27

C(S) = 0.91

I(S) = 1.00

IR(S) = 1.03

A(S) = 6104

P(S) = 310.93

C(S) = 0.79

I(S) = 1.85

IR(S) = 1.91

A(S) = 2316

P(S) = 498.63

C(S) = 0.11

I(S) = 2.24

IR(S) = 6.67

(a) Descriptors for the circle (b) Descriptors for the
convoluted region

(c) Descriptors for the ellipse

FIGURE 7.20

Basic region descriptors.

3837.3 Region descriptors

MAC_ALT_TEXT Figure 7.20

unoccluded view of the target shape. Target images are often derived by threshold-

ing, usually one of the optimal forms that can require a single object in the field of

view. More complex applications, including handling occlusion, could presuppose

feature extraction by some means, with a model to in-fill for the missing parts.

However, moments do provide a global description with invariance properties and

with the advantages of a compact description aimed to avoid the effects of noise.

As such, they have proved popular and successful in many applications.

The 2D Cartesian moment is actually associated with an order that starts from

low (where the lowest is zero) up to higher orders. The moment of order p and q,

mpq of a function I(x,y) is defined as

mpq 5

ðN
2N

ðN
2N

xpyqIðx; yÞdx dy (7.74)

For discrete images, Eq. (7.74) is usually approximated by

mpq 5
X
x

X
y

xpyqIðx; yÞΔA (7.75)

whereΔA is again the area of a pixel. These descriptors have a uniqueness property

in that it can be shown that if the function satisfies certain conditions, then moments

of all orders exist. Also, and conversely, the set of descriptors uniquely determines

the original function, in a manner similar to reconstruction via the inverse Fourier

transform. However, these moments are descriptors rather than a specification

which can be used to reconstruct a shape. The zero-order moment, m00, is

m00 5
X
x

X
y

Iðx; yÞΔA (7.76)

which represents the total mass of a function. Note that this equation is equal to

Eq. (7.67) when I(x,y) takes values of zero and one. However, Eq. (7.76) is more

general since the function I(x,y) can take a range of values. In the definition of

moments, these values are generally related to density. The two first-order

moments, m01 and m10, are given by

m10 5
X
x

X
y

x Iðx; yÞΔA m01 5
X
x

X
y

y Iðx; yÞΔA (7.77)

For binary images, these values are proportional to the shape’s center coordi-

nates (the values merely require division by the shape’s area). In general, the cen-

ter of mass ðx; yÞ can be calculated from the ratio of the first-order to the zero-

order components as

x5
m10

m00

y5
m01

m00

(7.78)

The first 10 x-axis moments of an ellipse are shown in Figure 7.21. The

moments rise exponentially so are plotted in logarithmic form. Evidently, the

384 CHAPTER 7 Object description

moments provide a set of descriptions of the shape: measures that can be collected

together to differentiate between different shapes.

Should there be an intensity transformation that scales brightness by a particu-

lar factor, say α, such that a new image I0(x,y) is a transformed version of the

original one I(x,y) given by

I0ðx; yÞ5αIðx; yÞ (7.79)

Then the transformed moment values m0
pq are related to those of the original

shape mpq by

m0
pq 5αmpq (7.80)

Should it be required to distinguish mirror symmetry (reflection of a shape

about a chosen axis), then the rotation of a shape about the, say, x-axis gives a

new shape I0(x,y) which is the reflection of the shape I(x,y) given by

I0ðx; yÞ5 Ið2x; yÞ (7.81)

The transformed moment values can be given in terms of the original shape’s

moments as

m0
pq 5 ð21Þpmpq (7.82)

However, we are usually concerned with more basic invariants than mirror

images, namely invariance to position, size, and rotation. Given that we now

have an estimate of a shape’s center (in fact, a reference point for that shape), the

centralized moments, μpq, which are invariant to translation can be defined as

μpq 5
X
x

X
y

ðx2 xÞpðy2 yÞqIðx; yÞΔA (7.83)

0 5 10

10

20

30

log (ellipse_momentp, 0)

p

FIGURE 7.21

Horizontal axis ellipse moments.

3857.3 Region descriptors

MAC_ALT_TEXT Figure 7.21

Clearly, the zero-order centralized moment is again the shape’s area. However,

the first-order centralized moment μ01 is given by

μ01 5
X
x

X
y

ðy2yÞ1Iðx; yÞΔA

5
X
x

X
y

yIðx; yÞΔA2
X
x

X
y

yIðx; yÞΔA

5m01 2 y
X
x

X
y

Iðx; yÞΔA

(7.84)

From Eq. (7.77), m01 5
P

x

P
yyIðx; yÞΔA and from Eq. (7.78), y5m01=m00, so

μ01 5m01 2
m01

m00

m00

5 0

5μ10

(7.85)

Clearly, neither of the first-order centralized moments has any description

capability since they are both zero. Going to higher order, one of the second-order

moments, μ20, is

μ20 5
X
x

X
y

ðx2xÞ2Iðx; yÞΔA

5
X
x

X
y

ðx2 2 2xx1 x2ÞIðx; yÞΔA

5
X
x

X
y

x2Iðx; yÞΔA2 2x
X
x

X
y

xIðx; yÞΔA1 x2
X
x

X
y

Iðx; yÞΔA

(7.86)

Since m10 5
X
x

X
y

xIðx; yÞΔA and x5m10=m00

μ20 5m20 2 2
m10

m00

m10 1
m10

m00

0
@

1
A
2

m00

5m20 2
m10

2

m00

(7.87)

and this has descriptive capability.

The use of moments to describe an ellipse is shown in Figure 7.22. Here, an

original ellipse (Figure 7.22(a)) gives the second-order moments in Figure 7.22(d).

In all cases, the first-order moments are zero, as expected. The moments

(Figure 7.22(e)) of the translated ellipse (Figure 7.22(b)) are the same as those of

the original ellipse. In fact, these moments show that the greatest rate of change in

mass is around the horizontal axis, as consistent with the ellipse. The second-order

moments (Figure 7.22(f)) of the ellipse when rotated by 90� (Figure 7.22(c)) are

simply swapped around, as expected: the rate of change of mass is now greatest

386 CHAPTER 7 Object description

around the vertical axis. This illustrates how centralized moments are invariant to

translation but not to rotation.

7.3.2.2 Invariant moments
Centralized moments are only translation invariant: they are constant only with

change in position, and no other appearance transformation. In order to accrue

invariance to scale and rotation, we require normalized central moments, ηpq,
defined as (Hu, 1962)

ηpq 5
μpq

μγ
00

(7.88)

where

γ5
p1 q

2
1 1 ’p1 q$ 2 (7.89)

Seven invariant moments can be computed from these given by

M1 5 η20 1 η02
M2 5 ðη20 2 η02Þ2 1 4η211
M3 5 ðη30 2 3η12Þ2 1 ð3η21 2 η03Þ2
M4 5 ðη30 1 η12Þ2 1 ðη21 1 η03Þ2
M5 5 ðη30 2 3η12Þðη30 1 η12Þððη30 1 η12Þ2 2 3ðη21 1 η03Þ2Þ

1 ð3η21 2 η03Þðη21 1 η03Þð3ðη30 1 η12Þ2 2 ðη21 1 η03Þ2Þ
M6 5 ðη20 2 η02Þððη30 1 η12Þ2 2 ðη21 1 η03Þ2Þ1 4η11ðη30 1 η12Þðη21 1 η03Þ
M7 5 ð3η21 2 η03Þðη30 1 η12Þððη30 1 η12Þ2 2 3ðη21 1 η03Þ2Þ

1 ð3η12 2 η30Þðη21 1 η03Þð3ðη12 1 η30Þ2 2 ðη21 1 η03Þ2Þ
(7.90)

(a) Original ellipse (b) Translated ellipse (c) Rotated ellipse

μ02 = 2.4947×106

μ20 = 6.4217×105
μ02 = 6.4217×105

μ20 = 2.4947×106
μ02 = 2.4947×106

μ20 = 6.4217×105

(d) Second-order centralized
moments of original ellipse

(f) Second-order centralized
moments of rotated ellipse

(e) Second-order centralized
moments of translated ellipse

FIGURE 7.22

Describing a shape by centralized moments.

3877.3 Region descriptors

MAC_ALT_TEXT Figure 7.22

The first of these, M1 and M2, are second-order moments—those for which

p1 q5 2. Those remaining are third-order moments since p1 q5 3. (The first-

order moments are of no consequence since they are zero.) The last moment M7

is introduced as a skew invariant deigned to distinguish mirror images.

Code 7.5 shows the Mathcad implementation that computes the invariant

moments M1, M2, and M3. The code computes the moments by straight imple-

mentation of Eqs (7.83) and (7.90). The use of these invariant moments to

describe three shapes is shown in Figure 7.23. Figure 7.23(b) corresponds to the

same plane in Figure 7.23(a) but with a change of scale and a rotation. Thus, the

invariant moments for these two shapes are very similar. In contrast, the invariant

moments for the plane in Figure 7.23(c) differ. These invariant moments have the

most important invariance properties. However, these moments are not orthogo-

nal, as such there is potential for reducing the size of the set of moments

required to describe a shape accurately.

7.3.2.3 Zernike moments
Invariance can be achieved by using Zernike moments (Teague, 1980) that give

an orthogonal set of rotation-invariant moments. These find greater deployment

where invariant properties are required. Rotation invariance is achieved by using

polar representation, as opposed to the Cartesian parameterization for centralized

moments. The complex Zernike moment, Zpq, is

Zpq 5
p1 1

π

ð2π
0

ðN
0

Vpqðr; θÞ�f ðr; θÞr dr dθ (7.91)

μ(p,q,shape):= cmom←

cmom←cmom+[(shapes)0–xc]
p⋅[(shapes)1–yc]

q⋅(shapes)2

xc← .1

rows(shape)

rows(shape)–1

Σ
i=0

(shapei)0

yc← .1

rows(shape)

rows(shape)–1

Σ
i=0

(shapei)1

for s∈0..rows(shape)–1

cmom

0

η(p,q,im):=
μ(p,q,im)

μ(0,0,im)
p+q

2
+1

M1(im):=η(2,0,im)+η(2,0,im)

M2(im):=(η(2,0,im)–η(0,2,im))2+4⋅η(1,1,im)2

M3(im):=(η(3,0,im)–3⋅η(1,2,im))2+(3⋅η(2,1,im)–η(0,3,im))2

CODE 7.5

Computing M1, M2, and M3.

388 CHAPTER 7 Object description

MAC_ALT_TEXT Code 7.5

where p is now the radial magnitude, and q is the radial direction and where * again

denotes the complex conjugate (as in Section 5.3.2) of a Zernike polynomial,

Vpq, given by

Vpqðr; θÞ5RpqðrÞejqθ where p2 q is even and 0# q# jpj (7.92)

Rpq is a real-valued polynomial given by

RpqðrÞ5
Xp2jqj2

m50

ð21Þm ðp2mÞ!
m! p1 jqj

2
2m

� �
! p2 jqj

2
2m

� �
!
r p22m (7.93)

The order of the polynomial is denoted by p and the repetition by q. The repe-

tition q can take negative values (since q# jpj), so the radial polynomial uses its

magnitude and thus the inverse relationship holds: Rp,q (r)5Rp,2q (r) (changing

the notation of the polynomial slightly by introducing a comma to make clear the

moment just has the sign of q inverted). The polynomials of lower degree are

R00ðrÞ 5 1

R11ðrÞ 5 r

R22ðrÞ 5 r2

R20ðrÞ 5 r2 2 1

R31ðrÞ 5 3r2 2 2r

R40ðrÞ 5 6r4 2 6r2 1 1

(7.94)

and some of these are plotted in Figure 7.24. In Figure 7.24(a), we can see that

the frequency components increase with the order p and the functions approach

unity as r-1. The frequency content reflects the level of detail that can be

(a) F-14 fighter (b) F-14 fighter rotated and
scaled

(c) B1 bomber

M1 = 0.2199
M2 = 0.0035
M3 = 0.0070

M1 = 0.2202
M2 = 0.0037
M3 = 0.0070

M1 = 0.2764
M2 = 0.0176
M3 = 0.0083

(d) Invariant moments for (a) (e) Invariant moments for (b) (f) Invariant moments for (c)

FIGURE 7.23

Describing a shape by invariant moments.

3897.3 Region descriptors

MAC_ALT_TEXT Figure 7.23

captured by the particular polynomial. The change between the different polyno-

mials shows how together they can capture different aspects of an underlying sig-

nal, across the various values of r. The repetition controls the way in which the

function approaches unity: the influence along the polynomial and the polyno-

mials for different values of q are shown in Figure 7.24(b).

These polynomials are orthogonal within the unit circle, so the analyzed shape

(the area of interest) has to be remapped to be of this size before calculation of its

moments. This naturally implies difficulty in mapping a unit circle to a Cartesian

grid. As shown in Figure 7.25, (a) the circle can be within the area of interest,

losing corner information (but that is information rarely of interest) or (b) around

0

–1

–0.5

0.5

1

R(8,0,r)

R(8,2,r)

R(8,4,r) 1

R(8,6,r)

r

(b) Different repetitions
R8q, q ∈ 0, 2, 4, 6

(a) Different orders
Rp0, p ∈ 2, 4, 6, 8

r

0 0.250.25 0.50.5 0.750.750.250.25 0.50.5 0.750.75 1

R(4,0,r)

R(6,0,r)

R(8,0,r)

R (2,0,r)

1

–1

0.25 0.5 0.750.25 0.5 0.75

FIGURE 7.24

Zernike polynomials.

(a) Unit circle within area of interest (b) Area of interest within unit circle

FIGURE 7.25

Mapping a unit circle to an area of interest.

390 CHAPTER 7 Object description

MAC_ALT_TEXT Figure 7.24
MAC_ALT_TEXT Figure 7.25

(encompassing) the area of interest which then covers areas where there is no

information but ensures that all the information within the area of interest is

included.

The orthogonality of these polynomials assures the reduction in the set of

numbers used to describe a shape. More simply, the radial polynomials can be

expressed as

RpqðrÞ5
Xp
k5q

Bpqkr
k (7.95)

where the Zernike coefficients are

Bpqk 5 ð21Þp2k2 ððp1 kÞ=2Þ!
ððp2 kÞ=2Þ!ððk1 qÞ=2Þ!ððk2 qÞ=2Þ! (7.96)

for p2 k5 even. The Zernike moments can actually be calculated from central-

ized moments as

Zpq 5
p1 1

π

Xp
k5q

Xt
l50

Xq
m50

ð2jÞm t

l

� �
q

m

� �
Bpqkμðk22l2q1mÞðq12l2mÞ (7.97)

where t5 (k2 q)/2 and where

t

l

� �
5

t!

l!ðt2 lÞ! (7.98)

A Zernike polynomial kernel is shown in Figure 7.26. This shows that the ker-

nel can capture differing levels of shape detail (and that multiple kernels are needed

to give a shape’s description). This kernel is computed in radial form, which is how

it is deployed in shape analysis. Note that differing sets of parameters such as order

(b) Image(a) Surface plot

1

0.5

0

–0.5

FIGURE 7.26

Zernike polynomial kernel.

3917.3 Region descriptors

MAC_ALT_TEXT Figure 7.26

and repetition control the level of detail that is analyzed by application of this ker-

nel to a shape. The plot shows the real part of the kernel; the imaginary part is simi-

lar but rotated.

Analysis (and by Eq. (7.83)), assuming that x and y are constrained to the

interval [21,1], gives

Z00 5
μ00

π

Z11 5
2

π
ðμ01 2 jμ10Þ5 0

Z22 5
3

π
ðμ02 2 j2μ11 2μ20Þ

(7.99)

which can be extended further (Teague, 1980), and with remarkable similarity to

the Hu invariant moments (Eq. (7.90)).

The magnitude of these Zernike moments remains invariant to rotation, which

affects only the phase; the Zernike moments can be made scale invariant by nor-

malization. An additional advantage is that there is a reconstruction theorem. For

Nm moments, the original shape f can be reconstructed from its moments and the

Zernike polynomials as

f ðx; yÞ �
XNm
p50

X
q

ZpqVpqðx; yÞ (7.100)

This is shown in Figure 7.27 for reconstructing a simple binary object, the let-

ter A, from different numbers of moments. When reconstructing this up to the

10th order of a Zernike moment description (this requires 66 moments), we

achieve a gray level image, which contains much of the overall shape, shown in

Figure 7.27(b). This can be thresholded to give a binary image (Figure 7.27(e))

that shows the overall shape, without any corners. When we use more moments,

we increase the detail in the reconstruction: Figure 7.27(c) is up to 15th order

(136 moments) and Figure 7.27(d) is 20th order (231 moments). The latter of

these is much closer to the original image, especially in its thresholded form

(Figure 7.27(d)). This might sound like a lot of moments, but the compression

from the original image is very high. Note also that even though we can achieve

recognition from a smaller set of moments, these might not represent the hole in

the shape that is not present at the 10th order, which just shows the overall shape

of the letter A. As such, reconstruction can give insight as to the shape contribution

of selected moments: their significance can be assessed by this and other tests.

These Zernike descriptors have been shown to good effect in application by

reconstructing a good approximation to a shape with only few descriptors (Boyce

and Hossack, 1983) and in recognition (Khotanzad and Hong, 1990). As ever, fast

computation has been of (continuing) interest (Mukundan and Ramakrishnan,

1995; Gu et al., 2002).

392 CHAPTER 7 Object description

7.3.2.4 Other moments
There are pseudo Zernike moments (Teh and Chin, 1988) aimed to relieve the

restriction on normalization to the unit circle. Also, there are complex moments

(Abu-Mostafa and Psaltis, 1985), again aimed to provide a simpler moment

description with invariance properties. In fact, since there is an infinite variety of

functions that can be used as the basis function, we also have Legendre (Teague,

1980) and, more recently, Tchebichef (though this is sometimes spelt as

Chebyshev) moments (Mukundan, 2001). There is no detailed comparison yet

available, but there are advantages and disadvantages to the differing moments,

often exposed by application.

Finally, there are affine invariant moments which do not change with position,

rotation, and different scales along the coordinate axes, as a result, say, of a cam-

era not being normal to the object plane. Here, the earliest approach appears to be

by Flusser and Suk (1993). One of the reviews (Teh and Chin, 1988) concentrates

on information content (redundancy), noise sensitivity, and on representation abil-

ity, comparing the performance of several of the more popular moments in these

respects.

It is actually possible to explore the link between moments and Fourier theory

(Mukundan and Ramakrishnan, 1998). The discrete Fourier transform of an image

(Eq. (2.22)) can be written as

FPu;v 5
1

N

XN21

x50

XN21

y50

Px;y e
2j2π

N
ux e2j2π

N
vy (7.101)

(a) Original shape,
the letter A

(b) Reconstruction
up to 10th order

(d) Reconstruction
up to 20th order

(c) Reconstruction
up to 15th order

(e) Thresholded (b) (f) Thresholded (c) (g) Thresholded (d)

FIGURE 7.27

Reconstructing a shape from its moments (Prismall et al., 2002).

3937.3 Region descriptors

MAC_ALT_TEXT Figure 7.27

By using the Taylor expansion of the exponential function

ez 5
XN
p50

zp

p!
(7.102)

we can substitute for the exponential functions as

FPu;v 5
1

N

XN21

x50

XN21

y50

Px;y

XN
p50

2j 2π
N
ux

� �p
p!

XN
q50

2j 2π
N
vy

� �q
q!

(7.103)

which by collecting terms gives

FPu;v 5
1

N

XN21

x50

XN21

y50

xpyqPx;y

XN
p50

XN
q50

2j 2π
N

� �p1q

p!q!
upvq (7.104)

and by the definition of Cartesian moments (Eq. (7.74)), we have

FPu;v 5
1

N

XN
p50

XN
q50

2j 2π
N

� �p1q

p!q!
upvqmpq (7.105)

This implies that the Fourier transform of an image can be derived from its

moments. There is then a link between the Fourier decomposition and that by

moments, showing the link between the two. But we can go further since there is

the inverse Fourier transform (Eq. (2.23))

Px;y 5
XN21

u50

XN21

v50

FPu;v e
j2π
N
ux ej

2π
N
vy (7.106)

So the original image can be computed from the moments as

Px;y 5
XN21

x50

XN21

y50

ej
2π
N
ux ej

2π
N
vy 1

N

XN
p50

XN
q50

2j 2π
N

� �p1q

p!q!
upvqmpq (7.107)

and this shows that we can get back to the image from our moment description,

though care must be exercised in the choice of windows from which data are

selected. This is reconstruction: we can reconstruct an image from its moment

description. There has not been much study on reconstruction from moments,

despite its apparent importance in understanding the potency of the description

that has been achieved. Potency is usually investigated in application by deter-

mining the best set of moment features to maximize recognition capability (and

we shall turn to this in Chapter 8). Essentially, reconstruction from basic geomet-

ric (Cartesian) moments is impractical (Teague, 1980), and the orthogonal bases

functions such as the Zernike polynomials offer a simpler route to reconstruction,

but these still require thresholding. More recently, Prismall et al. (2002) used

(Zernike) moments for the reconstruction of moving objects.

394 CHAPTER 7 Object description

7.4 Further reading
This chapter has essentially been based on unified techniques for border and

region description. There is actually much more to contour and region analysis

than indicated at the start of the chapter, for this is one of the start points of mor-

phological analysis. There is an extensive review available (Loncaric, 1998) with

many important references in this topic. The analysis neighborhood can be

extended to be larger (Marchand and Sharaiha, 1997), and there is consideration

of appropriate distance metrics for this (Das and Chatterji, 1988). A much more

detailed study of boundary-based representation and application can be found in

Otterloo’s fine text (Van Otterloo, 1991). Naturally, there are many other ways to

describe features, though few have the unique attributes of moments and Fourier

descriptors. Naturally, there is an interrelation between boundary and region

description: curvature can be computed from a chain code (Rosenfeld, 1974);

Fourier descriptors can also be used to calculate region descriptions (Kiryati and

Maydan, 1989). There have been many approaches to boundary approximation by

fitting curves to the data. Some of these use polynomial approximation, or there

are many spline-based techniques. A spline is a local function used to model a

feature in sections. There are quadratic and cubic forms (for a good review of

spline theory, try Ahlberg et al., 1967 or Dierckx, 1995); of interest, snakes are

actually energy minimizing splines. There are many methods for polygonal

approximations to curves, and recently, a new measure has been applied to com-

pare performance on a suitable curve of techniques based on dominant point anal-

ysis (Rosin, 1997). To go with the earlier-mentioned review (Prokop and Reeves,

1992), there is a book available on moment theory (Mukundan and

Ramakrishnan, 1998) showing the whole moment picture. As in the previous

chapter, the skeleton of a shape can be used for recognition. This is a natural tar-

get for thinning techniques that have not been covered here. An excellent survey

of these techniques, as used in character description following extraction, can be

found in Trier et al. (1996)—describing use of moments and Fourier descriptors.

7.5 References
Abu-Mostafa, Y.S., Psaltis, D., 1985. Image normalisation by complex moments. IEEE

Trans. PAMI 7, 46�55.

Aguado, A.S., Nixon, M.S., Montiel, E., 1998. Parameterising arbitrary shapes via Fourier

descriptors for evidence-gathering extraction. CVIU: Comput. Vision Image

Understand. 69 (2), 202�221.

Aguado, A.S., Montiel, E., Zaluska, E., 1999. Modelling generalised cylinders via Fourier

morphing. ACM Trans. Graph. 18 (4), 293�315.

Ahlberg, J.H., Nilson, E.N., Walsh, J.L., 1967. The Theory of Splines and Their

Applications. Academic Press, New York, NY.

Boyce, J.F., Hossack, W.J., 1983. Moment invariants for pattern recognition. Pattern

Recog. Lett. 1, 451�456.

3957.5 References

Chen, Y.Q., Nixon, M.S., Thomas, D.W., 1995. Texture classification using statistical geo-

metric features. Pattern Recog. 28 (4), 537�552.

Cosgriff, R.L., 1960. Identification of Shape, Rep. 820-11, ASTIA AD 254792. Ohio State

University Research Foundation, Columbus, OH.

Crimmins, T.R., 1982. A complete set of Fourier descriptors for two-dimensional shapes.

IEEE Trans. Syst. Man Cybernetics 12 (6), 848�855.

Das, P.P., Chatterji, B.N., 1988. Knight’s distances in digital geometry. Pattern Recog.

Lett. 7, 215�226.

Dierckx, P., 1995. Curve and Surface Fitting with Splines. Oxford University Press,

Oxford.

Flusser, J., Suk, T., 1993. Pattern-recognition by affine moment invariants. Pattern Recog.

26 (1), 167�174.

Freeman, H., 1961. On the encoding of arbitrary geometric configurations. IRE Trans. EC-

10 (2), 260�268.

Freeman, H., 1974. Computer processing of line drawing images. Comput. Surv. 6 (1),

57�95.

Granlund, G.H., 1972. Fourier preprocessing for hand print character recognition. IEEE

Trans. Comp. 21, 195�201.

Gu, J., Shua, H.Z., Toumoulinb, C., Luoa., L.M., 2002. A novel algorithm for fast compu-

tation of Zernike moments. Pattern Recog. 35 (12), 2905�2911.

Hu, M.K., 1962. Visual pattern recognition by moment invariants. IRE Trans. Inform.

Theor. IT-8, 179�187.

Kashi, R.S., Bhoj-Kavde, P., Nowakowski, R.S., Papathomas, T.V., 1996. 2-D shape repre-

sentation and averaging using normalised wavelet descriptors. Simulation 66 (3),

164�178.

Khotanzad, A., Hong, Y.H., 1990. Invariant image recognition by Zernike moments. IEEE

Trans. PAMI 12, 489�498.

Kiryati, N., Maydan, D., 1989. Calculating geometric properties from Fourier representa-

tion. Pattern Recog. 22 (5), 469�475.

Kuhl, F.P., Giardina, C.R., 1982. Elliptic Fourier descriptors of a closed contour. CVGIP

18, 236�258.

Lin, C.C., Chellappa, R., 1987. Classification of partial 2D shapes using Fourier descrip-

tors. IEEE Trans. PAMI 9 (5), 686�690.

Liu, H.C., Srinath, M.D., 1990. Corner detection from chain-coded curves. Pattern Recog.

23 (1), 51�68.

Loncaric, S., 1998. A survey of shape analysis techniques. Pattern Recog. 31 (8),

983�1001.

Marchand, S., Sharaiha, Y.M., 1997. Discrete convexity, straightness and the 16-neighbour-

hood. Comput. Vision Image Understand. 66 (3), 316�329.

Montiel, E., Aguado, A.S., Zaluska, E., 1996. Topology in fractals. Chaos, Solitons

Fractals 7 (8), 1187�1207.

Montiel, E., Aguado, A.S., Zaluska, E., 1997. Fourier series expansion of irregular curves.

Fractals 5 (1), 105�199.

Mukundan, R., 2001. Image analysis by Tchebichef moments. IEEE Trans. IP 10 (9),

1357�1364.

Mukundan, R., Ramakrishnan, K.R., 1995. Fast computation of Legendre and Zernike

moments. Pattern Recog. 28 (9), 1433�1442.

396 CHAPTER 7 Object description

Mukundan, R., Ramakrishnan, K.R., 1998. Moment Functions in Image Analysis: Theory

and Applications. World Scientific, Singapore.

Van Otterloo, P.J., 1991. A Contour-Oriented Approach to Shape Analysis. Prentice Hall,

Hertfordshire.

Persoon, E., Fu, K-S, 1977. Shape description using Fourier descriptors. IEEE Trans. SMC

3, 170�179.

Prismall, S.P., Nixon, M.S., Carter, J.N., 2002. On moving object reconstruction by

moments. Proceedings of the BMVC, pp. 73�82.

Prokop, R.J., Reeves, A.P., 1992. A survey of moment-based techniques for unoccluded

object representation and recognition. CVGIP: Graph. Models Image Process. 54 (5),

438�460.

Rosenfeld, A., 1974. Digital straight line segments. IEEE Trans. Comput. 23, 1264�1269.

Rosin, P., 1997. Techniques for assessing polygonal approximations to curves. IEEE Trans.

PAMI 19 (6), 659�666.

Rosin, P., Zunic, J., 2005. Measuring rectilinearity. Comput. Vision Image Understand. 99 (2),

175�188.

Searle, N.H., 1970. Shape analysis by use of Walsh functions. In: Meltzer, B., Mitchie, D.

(Eds.), Machine Intelligence, vol. 5. Edinburgh University Press.

Seeger, U., Seeger, R., 1994. Fast corner detection in gray-level images. Pattern Recog.

Lett. 15, 669�675.

Staib, L., Duncan, J., 1992. Boundary finding with parametrically deformable models.

IEEE Trans. PAMI 14, 1061�1075.

Teague, M.R., 1980. Image analysis by the general theory of moments. J. Opt. Soc. Am.

70, 920�930.

Teh, C.H., Chin, R.T., 1988. On image analysis by the method of moments. IEEE Trans.

PAMI 10, 496�513.

Trier, O.D., Jain, A.K., Taxt, T., 1996. Feature extraction methods for character recogni-

tion—a survey. Pattern Recog. 29 (4), 641�662.

Undrill, P.E., Delibasis, K., Cameron, G.G., 1997. An application of genetic algorithms to

geometric model-guided interpretation of brain anatomy. Pattern Recog. 30 (2),

217�227.

Zahn, C.T., Roskies, R.Z., 1972. Fourier descriptors for plane closed curves. IEEE Trans.

Comput. C-21 (3), 269�281.

3977.5 References

CHAPTER

8Introduction to texture
description, segmentation,
and classification

CHAPTER OUTLINE HEAD

8.1 Overview ... 399

8.2 What is texture?... 400

8.3 Texture description .. 403

8.3.1 Performance requirements ..403

8.3.2 Structural approaches...403

8.3.3 Statistical approaches...406

8.3.4 Combination approaches ...409

8.3.5 Local binary patterns ..411

8.3.6 Other approaches ...417

8.4 Classification... 417

8.4.1 Distance measures ...417

8.4.2 The k-nearest neighbor rule ...424

8.4.3 Other classification approaches ...428

8.5 Segmentation... 429

8.6 Further reading .. 431

8.7 References .. 432

8.1 Overview
This chapter is concerned with how we can use many of the feature extraction

and description techniques presented earlier to characterize regions in an image.

The aim here is to describe how we can collect together measurements for pur-

poses of recognition, using texture by way of introduction and as a vehicle for

using feature extraction in recognition. We shall also use it as a mechanism to

introduce distance measures which describe how different features appear to be

by their measurements.

We shall first look at what is meant by texture and then how we can use

Fourier transform techniques, statistics, and region measures to describe it. We

shall then look at how the measurements provided by these techniques, the

Feature Extraction & Image Processing for Computer Vision.

© 2012 Mark Nixon and Alberto Aguado. Published by Elsevier Ltd. All rights reserved.
399

description of the texture, can be collected together to recognize it. Finally, we

shall label an image according to the texture found within it, to give a segmenta-

tion into classes known to exist within the image. Since we could be recognizing

shapes described by Fourier descriptors, region measures, or by other feature

extraction and description approaches, the material is actually general and could

be applied for purposes of recognition to measures other than texture (Table 8.1).

8.2 What is texture?
Texture is actually a very nebulous concept, often attributed to human perception,

as either the feel or the appearance of (woven) fabric. Everyone has their own

interpretation as to the nature of texture; there is no mathematical definition for

texture, it simply exists. By way of reference, let us consider one of the dictionary

definitions (Oxford Concise English Dictionary, 4th Ed, 1958):

“texture n., & v.t. 1. n. arrangement of threads etc. in textile fabric. character-

istic feel due to this; arrangement of small constituent parts, perceived struc-

ture, (of skin, rock, soil, organic tissue, literary work, etc.); representation of

structure and detail of objects in art; . . .”

That covers quite a lot. If we change “threads” for “pixels,” the definition could

apply to images (except for the bit about artwork). Essentially, texture can be what

Table 8.1 Overview of Chapter 8

Main Topic Subtopics Main Points

Texture
description

What is image texture and how do
we determine sets of numbers
that allow us to be able to
recognize it

Feature extraction: Fourier
transform, cooccurrence matrices,
and regions; modern techniques:
local binary patterns (LPB) and
uniform LBP; feature descriptions:
energy, entropy, and inertia

Distance
measures

How different do (texture) features
appear to be, from the
measurements we have made;
different ways of measuring
distance and understanding
dissimilarity

Distance metrics: Manhattan city
block and Euclidean (L1 and L2
distances), Mahalanobis,
Bhattacharyya, and cosine;
construction, visualization, and the
confusion matrix

Texture
classification

How do we associate the
numbers we have derived with
those that we have already stored
for known examples

k-nearest neighbor rule, support
vector machines, and other
classification approaches

Texture
segmentation

How do we find regions of texture
within images

Convolution, tiling, and
thresholding

400 CHAPTER 8 Texture description, segmentation, and classification

we define it to be. Why might we want to do this? By way of example, analysis of

remotely sensed images is now a major application of image-processing techni-

ques. In such analysis, pixels are labeled according to the categories of a required

application, such as whether the ground is farmed or urban in land-use analysis or

water for estimation of surface analysis. An example of remotely sensed image is

given in Figure 8.1(a) which is of an urban area (in the top left) and some farmland.

Here, the image resolution is low, and each pixel corresponds to a large area of the

ground. Square groups of pixels have then been labeled either as urban or as farm-

land according to their texture properties as shown in Figure 8.1(b) where black

represents the area classified as urban and white is for the farmland. In this way,

we can assess the amount of area that urban areas occupy. As such, we have used

real textures to label pixels, the perceived textures of the urban and farming areas.

As an alternative definition of texture, we can consider it as being defined by

the database of images that researchers use to test their algorithms. Many texture

researchers have used a database of pictures of textures (Brodatz, 1968), produced

for artists and designers, rather than for digital image analysis. Parts of three of

the Brodatz texture images are given in Figure 8.2. Here, the French canvas

(Brodatz index D20) shown in Figure 8.2(a) is a detail of Figure 8.2(b) (Brodatz

index D21), taken at four times the magnification. The beach sand shown in

Figure 8.2(c) (Brodatz index D29) is clearly of a different texture to that of cloth.

Given the diversity of texture, there are now many databases available on the

Web, at the sites given in Chapter 1 or at this book’s web site. Alternatively, we

can define texture as a quantity for which texture extraction algorithms provide

meaningful results. One study (Karru et al., 1996) suggests

“The answer to the question ‘is there any texture in the image?’ depends not

only on the input image, but also on the goal for which the image texture is

used and the textural features that are extracted from the image.”

(a) Remotely sensed image (b) Classification result

FIGURE 8.1

Example texture analysis.

4018.2 What is texture?

As we shall find, texture analysis has a rich history in image processing and

computer vision, and there is even a book devoted to texture analysis (Petrou and

Sevilla, 2006). Despite this, approaches which synthesize texture are relatively

recent. This is of course motivated also by graphics, and the need to include tex-

ture to improve the quality of the rendered scenes (Heckbert, 1986). By way of

example, one well-known approach to texture synthesis is to use a Markov ran-

dom field (Efros and Leung, 1999), but we shall not dwell on that here.

Essentially, there is no unique definition of texture and there are many ways

to describe and extract it. It is a very large and exciting field of research and there

continues to be many new developments.

Clearly, images will usually contain samples of more than one texture.

Accordingly, we would like to be able to describe texture (texture descriptions

are measurements which characterize a texture) and then to classify it (classifica-

tion attributes the correct class label to a set of measurements) and then, perhaps

to segment an image according to its texture content. We have used similar classi-

fication approaches to characterize the shape descriptions in the previous chapter.

Actually these are massive fields of research that move on to the broad subject of

pattern recognition. We shall look at an introduction here; later references will

point you to topics of particular interest and to some of the more recent develop-

ments. The main purpose of this introduction is to show how the measurements

can be collected together to recognize objects. Texture is used as the vehicle for

this since it is a region-based property that has not as yet been covered. Since tex-

ture itself is an enormous subject, you will find plenty of references to established

approaches and to surveys of the field. First, we shall look at approaches to deriv-

ing the features (measurements) which can be used to describe textures. Broadly,

these can be split into structural (transform-based), statistical, and combination

approaches. Clearly, the frequency content of an image will reflect its texture; we

shall start with Fourier. First, though, we shall consider some of the required

properties of the descriptions.

(a) French canvas (detail) D20 (b) French canvas D21 (c) Beach sand D29

FIGURE 8.2

Three Brodatz textures.

402 CHAPTER 8 Texture description, segmentation, and classification

8.3 Texture description
8.3.1 Performance requirements
The purpose of texture description is to derive some measurements that can be

used to classify a particular texture. As such, there are invariance requirements

on the measurements, as there were for shape description. Actually, the invariance

requirements for feature extraction, namely invariance to position, scale, and rota-

tion, can apply equally to texture extraction. After all texture is a feature, albeit a

rather nebulous one as opposed to the definition of a shape. Clearly, we require

position invariance: the measurements describing a texture should not vary with

the position of the analyzed section (of a larger image). Also, we require rotation

invariance but this is not as strong a requirement as position invariance; the defi-

nition of texture does not imply knowledge of orientation but could be presumed

to. The least strong requirement is that of scale for this depends primarily on

application. Consider using texture to analyze forests in remotely sensed images.

Scale invariance would imply that closely spaced young trees should give the

same measure as widely spaced mature trees. This should be satisfactory if the

purpose is only to analyze foliage cover. It would be unsatisfactory if the purpose

was to measure age for purposes of replenishment, since a scale-invariant measure

would be of little use as it could not, in principle, distinguish between young trees

and old ones.

Unlike feature extraction, texture description rarely depends on edge extrac-

tion since one main purpose of edge extraction is to remove reliance on overall

illumination level. The higher-order invariants, such as perspective invariance,

are rarely applied to texture description. This is perhaps because many applica-

tions are like remotely sensed imagery or are in constrained industrial application

where the camera geometry can be controlled.

8.3.2 Structural approaches
The most basic approach to texture description is to generate the Fourier trans-

form of the image and then to group the transform data in some way so as to

obtain a set of measurements. Naturally, the size of the set of measurements is

smaller than the size of the image’s transform. In Chapter 2, we saw how the

transform of a set of horizontal lines was a set of vertical spatial frequencies

(since the point spacing varies along the vertical axis). Here, we must remember

that for display we rearrange the Fourier transform so that the d.c. component

(the zero-frequency component) is at the center of the presented image.

The transforms of the three Brodatz textures of Figure 8.2 are shown in

Figure 8.3. Figure 8.3(a) shows a collection of frequency components which are

then replicated with the same structure (consistent with the Fourier transform) in

Figure 8.3(b). (Figure 8.3(a) and (b) also shows the frequency scaling property of

the Fourier transform: greater magnification reduces the high-frequency content.)

4038.3 Texture description

Figure 8.3(c) is clearly different in that the structure of the transform data is

spread in a different manner to that of Figure 8.3(a) and (b). Naturally, these

images have been derived by application of the FFT which we shall denote as

FP5ℑðPÞ (8.1)

where FPu,v and Px,y are the transform (spectral) and pixel data, respectively. One

clear advantage of the Fourier transform is that it possesses shift invariance

(Section 2.6.1): the transform of a bit of (large and uniform) cloth will be the

same, whatever segment we inspect. This is consistent with the observation that

phase is of little use in Fourier-based texture systems (Pratt, 1992), so the modu-

lus of the transform (its magnitude) is usually used. The transform is of the same

size as the image, even though conjugate symmetry of the transform implies that

we do not need to use all its components as measurements. As such we can filter

the Fourier transform (Section 2.8) so as to select those frequency components

deemed to be of interest to a particular application. Alternatively, it is convenient

to collect the magnitude transform data in different ways to achieve a reduced

set of measurements. First though, the transform data can be normalized by

the sum of the squared values of each magnitude component (excepting the zero-

frequency components, those for u5 0 and v5 0), so that the magnitude data is

invariant to linear shifts in illumination to obtain normalized Fourier coefficients

NFP as

NFPu;v 5
jFPu;vjffiX

ðu 6¼0ÞXðv 6¼0Þ

r
jFPu;vj2

(8.2)

The denominator is then a measure of total power, so the magnitude data

becomes invariant to linear shifts. Alternatively, histogram equalization

(a) French canvas (detail) (b) French canvas (c) Beach sand

FIGURE 8.3

Fourier transforms of the three Brodatz textures.

404 CHAPTER 8 Texture description, segmentation, and classification

(Section 3.3.3) can provide such invariance but is more complicated than using

Eq. (8.2). The spectral data can then be described by the entropy, h, as

h5
XN
u51

XN
v51

NFPu;v logðNFPu;vÞ (8.3)

which gives compression weighted by a measure of the information content. A

uniformly distributed image would have zero entropy, so the entropy measures by

how much the image differs from a uniform distribution. Another measure is the

energy, e, as

e5
XN
u51

XN
v51

ðNFPu;vÞ2 (8.4)

which gives priority to larger items (by virtue of the squaring function). The mea-

sure is then appropriate when it is the larger values which are of interest; it will

be of little use when the measure has a uniform distribution. Another measure is

the inertia, i, defined as

i5
XN
u51

XN
v51

ðu2 vÞ2NFPu;v (8.5)

which emphasizes components which have a large separation. As such, each mea-

sure describes a different facet of the underlying data. These measures are shown

for the three Brodatz textures in Code 8.1. In a way, they are like the shape

descriptions in the previous chapter: the measures should be the same for the

same object and should differ for a different one. Here, the texture measures are

actually different for each of the textures. Perhaps the detail in the French canvas

(Code 8.1(a)) could be made to give a closer measure to that of the full resolution

(Code 8.1(b)) by using the frequency scaling property of the Fourier transform, as

discussed in Section 2.6.3. The beach sand clearly gives a different set of mea-

sures from the other two (Code 8.1(c)). In fact, the beach sand in Code 8.1(c)

would appear to be more similar to the French canvas in Code 8.1(b), since the

inertia and energy measures are much closer than those for Code 8.1(a) (only the

entropy measure in Code 8.1(a) is closest to Code 8.1(b)). This is consistent with

the images: each of the beach sand and French canvas has a large proportion of

higher frequency information, since each is a finer texture than that of the detail

in the French canvas.

entropy(FD20)=–253.11 entropy(FD21)=–196.84 entropy(FD29)=–310.61
inertia(FD20)=5.55·105 inertia(FD21)=6.86·105 inertia(FD29)=6.38·105

energy(FD20)=5.41 energy(FD21)=7.49 energy(FD29)=12.37

(a) French canvas (detail) (b) French canvas (c) Beach sand

CODE 8.1

Measures of the Fourier transforms of the three Brodatz textures.

4058.3 Texture description

By Fourier analysis, the measures are inherently position invariant. Clearly,

the entropy, inertia, and energy are relatively immune to rotation, since order is

not important in their calculation. Also, the measures can be made scale invariant,

as a consequence of the frequency scaling property of the Fourier transform.

Finally, the measurements (by virtue of the normalization process) are inherently

invariant to linear changes in illumination. Naturally, the descriptions will be

subject to noise. In order to handle large datasets we need a larger set of measure-

ments (larger than the three given here) in order to better discriminate between

different textures. Other measures can include:

1. the energy in the major peak,

2. the Laplacian of the major peak,

3. the largest horizontal frequency magnitude,

4. the largest vertical frequency magnitude.

Among others, these are elements of Liu’s features (Liu and Jernigan, 1990)

chosen in a way aimed to give Fourier transform-based measurements good per-

formance in noisy conditions.

Naturally, there are many other transforms and these can confer different attri-

butes in analysis. The wavelet transform is very popular since it allows for locali-

zation in time and frequency (Laine and Fan, 1993; Lu et al., 1997). Other

approaches use the Gabor wavelet (Bovik et al., 1990; Jain and Farrokhnia, 1991;

Daugman and High, 1993; Dunn et al., 1994), as introduced in Section 2.7.3. One

comparison between Gabor wavelets and tree- and pyramidal-structured wavelets

suggested that Gabor has the greater descriptional ability, at penalty of greater

computational complexity (Pichler et al., 1996; Grigorescu et al., 2002). There

has also been interest in Markov random fields (Gimmel’farb and Jain, 1996; Wu

and Wei, 1996). Others, such as Walsh transform (where the basis functions are

1s and 0s), appear yet to await application in texture description, no doubt due to

basic properties. In fact, one survey (Randen and Husoy, 2000) includes the use

of Fourier, wavelet, and discrete cosine transforms (Section 2.7.1) for texture

characterization. These approaches are structural in nature: an image is viewed in

terms of a transform applied to a whole image as such exposing its structure.

This is like the dictionary definition of an arrangement of parts. Another part of

the dictionary definition concerned detail: this can of course be exposed by analy-

sis of the high-frequency components, but these can be prone to noise. An alterna-

tive way to analyze the detail is to consider the statistics of an image.

8.3.3 Statistical approaches
The most famous statistical approach is the cooccurrence matrix. This was the

result of the first approach to describe, and then classify, image texture (Haralick

et al., 1973). It remains popular today by virtue of good performance. The cooc-

currence matrix contains elements that are counts of the number of pixel pairs for

406 CHAPTER 8 Texture description, segmentation, and classification

specific brightness levels, when separated by some distance and at some relative

inclination. For brightness levels b1 and b2, the cooccurrence matrix C is

Cb1;b2 5
XN
x51

XN
y51

ðPx;y 5 b1ÞXðPx0 ;y0 5 b2Þ (8.6)

where X denotes the logical AND operation and where the x coordinate x0 is the
offset given by the specified distance d and inclination θ by

x0 5 x1 d cosðθÞ ’ðdA1; maxðdÞÞXðθA0; 2πÞ (8.7)

and the y coordinate y0 is

y0 5 y1 d sinðθÞ ’ðdA1; maxðdÞÞXðθA0; 2πÞ (8.8)

When Eq. (8.6) is applied to an image, we obtain a square, symmetric, matrix

whose dimensions equal the number of gray levels in the picture. The cooccur-

rence matrices for the three Brodatz textures of Figure 8.2 are shown in

Figure 8.4. In the cooccurrence matrix generation, the maximum distance was one

pixel and the directions were set to select the four nearest neighbors of each point.

Now the result for the two samples of French canvas (Figure 8.4(a) and (b))

appear to be much more similar and quite different to the cooccurrence matrix for

sand (Figure 8.4(c)). As such, the cooccurrence matrix looks like it can better

expose the underlying nature of texture than can the Fourier description. This is

because the cooccurrence measures spatial relationships between brightness, as

opposed to frequency content. This clearly gives alternative results. To generate

results faster, the number of gray levels can be reduced by brightness scaling of

the whole image, reducing the dimensions of the cooccurrence matrix, but this

reduces discriminatory ability.

These matrices have been achieved by the implementation in Code 8.2. The

subroutine tex_cc generates the cooccurrence matrix of an image im given a

(a) French canvas (detail) (b) French canvas (c) Beach sand

FIGURE 8.4

Cooccurrence matrices of the three Brodatz textures.

4078.3 Texture description

maximum distance d and a number of directions dirs. If d and dirs are set to 1

and 4, respectively (as was used to generate the results in Figure 8.4), then the

cooccurrence will be evaluated from a point and its four nearest neighbors. First,

the cooccurrence matrix is cleared. Then, for each point in the image and for

each value of distance and relative inclination (and so long as the two points are

within the image), the element of the cooccurrence matrix indexed by the bright-

ness of the two points is incremented. There is a dummy operation after the incre-

menting process: this has been introduced for layout reasons (otherwise the

Mathcad code would stretch out sideways, too far). Finally, the completed cooc-

currence matrix is returned. Note that even though the cooccurrence matrix is

symmetric, this factor cannot be used to speed its production.

Again, we need measurements that describe these matrices. We shall use the

measures of entropy, inertia, and energy defined earlier. The results are shown in

Code 8.3. Unlike visual analysis of the cooccurrence matrices, the difference

between the measures of the three textures is less clear: classification from them

will be discussed later. Clearly, the cooccurrence matrices have been reduced to

only three different measures. In principle, these measurements are again invari-

ant to linear shift in illumination (by virtue of brightness comparison) and to rota-

tion (since order is of no consequence in their description and rotation only

affects cooccurrence by discretization effects). As with Fourier, scale can affect

the structure of the cooccurrence matrix, but the description can be made scale

invariant. Gray level difference statistics (a first-order measure) were later added

to improve descriptional capability (Weska et al., 1976). Other statistical

tex_cc(im,dist,dirs):= for x∈0..maxbri
for y∈0..maxbri

coccy,x←0
for x∈0..cols(im)–1
for y∈0..rows(im)–1
for r∈1..dist

for θ∈0,

xc←floor(x+r·cos(θ))
yc←floor(y+r·sin(θ))
if(0≤yc)·(yc<rows(im))·(0≤xc)·(xc<cols(im))

coccim y,x,im yc,xc
←coccim y,x,im yc,xc

+1

I←1

..2·π2·π
dirs

cocc

CODE 8.2

Cooccurrence matrix generation.

408 CHAPTER 8 Texture description, segmentation, and classification

approaches include the statistical feature matrix (Wu and Chen, 1992) with the

advantage of faster generation.

8.3.4 Combination approaches
The previous approaches have assumed that we can represent textures by purely

structural or purely statistical description combined in some appropriate manner.

Since texture is not an exact quantity, and is more a nebulous one, there are natu-

rally many alternative descriptions. One approach (Chen et al., 1995) suggested

that texture combines geometrical structures (say in patterned cloth) with statisti-

cal ones (say in carpet) and has been shown to give good performance in compar-

ison with other techniques and by using the whole Brodatz dataset. The technique

is called statistical geometric features (SGF), reflecting the basis of its texture

description. This is not a dominant texture characterization: the interest here is

that we shall now see the earlier shape measures in action, describing texture.

Essentially, geometric features are derived from images and then described by

using statistics. The geometric quantities are actually derived from NB2 1 binary

images B which are derived from the original image P (which has NB brightness

levels). These binary images are given by

BðαÞx;y 5
1; if Px;y $α
0; otherwise

’αA1;NB

���� (8.9)

Then, the points in each binary region are connected into regions of 1s and 0s.

Four geometrical measures are made on these data. First, in each binary plane, the

number of regions of 1s and 0s (the number of connected sets of 1s and 0s) is

counted to give NOC1 and NOC0. Then, in each plane, each of the connected

regions is described by its irregularity which is a local shape measure of a region R
of connected 1s giving irregularity I1 defined by

I1ðRÞ5
11

ffiffiffi
π

p
max
iAR

ffi
ðxi 2 xÞ2 1 ðyi 2 yÞ2

q
ffiffiffiffiffiffiffiffiffiffiffi
NðRÞ

p 2 1 (8.10)

where xi and yi are the coordinates of points within the region, x and y are the

region’s centroid (its mean x and y coordinates), and N is the number of points

within (i.e., the area of) the region. The irregularity of the connected 0s, I0(R) is

entropy(CCD20)=7.052·105 entropy(CCD21)=5.339·105 entropy(CCD29)=6.445·105

inertia(CCD20)=5.166·108 inertia(CCD21)=1.528·109 inertia(CCD29)=1.139·108

energy(CCD20)=5.16·108 energy(CCD21)=3.333·107 energy(CCD29)=5.315·107

(a) French canvas (detail) (b) French canvas (c) Beach sand

CODE 8.3

Measures of cooccurrence matrices of the three Brodatz textures.

4098.3 Texture description

similarly defined. When this is applied to the regions of 1s and 0s, it gives two

further geometric measures, IRGL1(i) and IRGL0(i), respectively. To balance the

contributions from different regions, the irregularity of the regions of 1s in a par-

ticular plane is formed as a weighted sum WI1(α) as

WI1ðαÞ5

X
RABðαÞ

NðRÞIðRÞ
X
RAP

NðRÞ
(8.11)

giving a single irregularity measure for each plane. Similarly, the weighted irregu-

larity of the connected 0s is WI0. Together with the two counts of connected

regions, NOC1 and NOC0, the weighted irregularities give the four geometric

measures in SGF. The statistics are derived from these four measures. The

derived statistics are the maximum value of each measure across all binary

planes, M. Using m(α) to denote any of the four measures, the maximum is

M5 max
αiA1;NB

ðmðαÞÞ (8.12)

the average m is

m5
1

255

XNB
α51

mðαÞ (8.13)

the sample mean s is

s5
1PNB

α51

mðαÞ

XNB
α51

αmðαÞ (8.14)

and the final statistic is the sample standard deviation, ssd, as

ssd5

ffi
1PNB

α51

mðαÞ

XNB
α51

ðα2 sÞ2mðαÞ

vuuuut (8.15)

The irregularity measure can be replaced by compactness (Section 7.3.1), but

compactness varies with rotation, though this was not found to influence results

much (Chen et al., 1995).

In order to implement these measures, we need to derive the sets of connected

1s and 0s in each of the binary planes. This can be achieved by using a version of

the connect routine in hysteresis thresholding (Section 4.2.1.5). The reformulation

is necessary because the connect routine just labels connected points, whereas the

irregularity measures require a list of points in the connected region so that the

410 CHAPTER 8 Texture description, segmentation, and classification

centroid (and hence the maximum distance of a point from the centroid) can be

calculated. The results for four of the measures (for the region of 1s, the maxi-

mum and average values of the number of connected regions and of the weighted

irregularity) are shown in Code 8.4. Again, the set of measures is different for

each texture. Of note the last measure, mðWI1Þ; does not appear to offer much

discriminatory capability here, whereas the measure M(WI1) appears to be a

much more potent descriptor. Classification, or discrimination, is to select which

class the measures refer to.

8.3.5 Local binary patterns
The local binary pattern (LBP) texture description is a relatively recent approach

and it has rapidly gained favor in the research community due to its attractive per-

formance capabilities. There was an early approach (Ojala et al., 1996) which

gives the concept, and this was then refined over some time to give the most

recent approach (Ojala et al., 2002). (It derives originally from the University of

Oulu which must be the closest university to the Santa theme park—but that is

mere digression.) We shall progress from where it started, the basic LBP to the

current version since the most recent approach would be rather a mind stretch

without this progression. Essentially, for a 33 3 region, the basic LBP is derived

by comparing the center point with its neighbors, to derive a code which is stored

at the center point. For points P and Px the process depends on thresholding,

which is the function

sðxÞ5 1; if Px .P

0; otherwise

���� (8.16)

The code is derived from binary weighting applied to result of thresholding

(which is equivalent to thresholding the points neighboring the center point and

then unwrapping the code as a binary code). So the code LBP for a point P with

eight neighbors x is

LBP5
X
xA1;8

sðxÞ3 2x21 (8.17)

M(NOC1)=81

M(WI1)=1.00
m(WI1)=0.37

m(NOC1)=22.14
_

M(NOC 1)=52.0

M(WI1)=1.50
m(WI1)=0.40

m(NOC1)=8.75
_

_

M(NOC1)=178

M(WI1)=1.42
m(WI1)=0.35

m(NOC1)=11.52
_

__

(a) French canvas (detail) (b) French canvas (c) Beach sand

CODE 8.4

Four of the SGF measures of the three Brodatz textures.

4118.3 Texture description

This is shown in Figure 8.5 where point LBP is the center point and the eight

values for x address its eight immediate neighbors. For the 33 3 patch in

Figure 8.5(a), the value of the center point is exceeded three times, so there are

three 1s in the resulting code in Figure 8.5(b). When this is unwrapped clockwise

from the top left point (and the top middle point is the most significant bit) the

resulting code is 101000012. When this is considered as a binary code, with weight-

ings shown in Figure 8.5(c), we arrive at a final value LBP5 161 (Figure 8.5(d)).

Naturally, the thresholding process, the unwrapping, and the weighting can be

achieved in different ways, but it is essential that it is consistent across the whole

image. The code P now encodes the local intensity structure: the local binary

pattern.

The basic LBP code was complemented by two local measures: contrast and

variance. The former of these was computed from the difference between points

encoded as a “1” and those encoded as a “0,” the variance was computed from

the four neighbor pixels aiming to reflect pattern correlation as well as contrast.

Of these two complementary measures, contrast was found to add most to dis-

criminatory capability.

The LBP approach then determines a histogram of the codes derived for an

entire image and this histogram describes the texture. The approach is inherently

translation invariant by its formulation: a texture which is shifted should achieve

the same histogram of LBP codes. By virtue of its formulation, the basic process

is not scale or rotation invariant, as in the case of rotation, a different weighting

will be applied to the point comparisons resulting in a different code value. The

histogram of LBP values for the French canvas texture Figure 8.6(a) is shown in

Figure 8.6(b). The histogram is also shown for a version of the French canvas

image which has been shifted leftward (Figure 8.6(c)) by 40 pixels (cyclic shift

and so the image wraps—as in Section 2.6.1) and the resulting histogram

(Figure 8.6(d)) appears very similar in structure, as expected. There is in fact

some difference between points on the two histograms since we are dealing with

real images—but it is at most a difference of around 20 which is very small given

that some of the histogram values are counts of over 43 103 pixels and thus can-

not be determined by visual inspection of the histograms.

(a) 3�3 image region (b) Threshold results
(code 101000012)

(c) Pixel weights (d) Code and
contributions

118

69

42

190

106 110

10631

6 1

0

0

0

1

0

1

0

1 128

8

2

4

64

32

16

1

0

0

128

161

0

0

32

0

FIGURE 8.5

Constructing a local binary pattern code.

412 CHAPTER 8 Texture description, segmentation, and classification

The next consideration is scale invariance. This requires consideration of

points at a greater distance. If the space is sampled in a circular manner, and P

points are derived at radius R, then the coordinate equations for iA(1,P) are

xðiÞ5
x0 1R cos

�
2π
P

i

�

y0 1R sin

�
2π
P

i

�
2
66664

3
77775 (8.18)

As in the Hough transform for circles (Section 5.5.3), Bresenham’s algorithm

offers a more efficacious method for generating circle. As we can now have a dif-

ferent number of points within the code, the code generation for a scale invariant

LBP LBP_S is

LBP SðP;RÞ5
X
iA1;P

sðxðiÞÞ2i21 (8.19)

The patterns for radial sampling for different values of P and R are shown in

Figure 8.7, where Figure 8.7(a) is the sampling for a circle with 8 points radius 1

and is equivalent to the earlier 33 3 patch in Figure 8.5(a), Figure 8.7(b) is for a

radius 2 also with 8 points, and Figure 8.7(c) is yet larger. All show the effect of

discretization on low-resolution generation of circular patterns and it is more

0

5000

5000

100

Bright

Bright

200

0 100 200

1 � 104

1 � 104

Hist_LBP_d20

Hist_LBP_d20_s

bright

bright

(c) Shifted French canvas

(a) French canvas

(d) Histogram of LBP codes for shifted French canvas

(b) Histogram of LBP codes for French canvas

FIGURE 8.6

Shift invariant local binary pattern histograms.

4138.3 Texture description

usual to use interpolation to determine point values rather than the nearest

pixel’s value.

The rotation-invariant arrangement then shifts the derived code so as to

achieve a minimum integer, as in the rotation-invariant chain code Section 7.2.2

(except the LBP is a pattern of 1s and 0s, not integers), and the rotation invariant

LBP LBP_R is then

LBP RðP;RÞ5min ROR
X
iA1;P

sðxðiÞÞ2i21

 !()
(8.20)

where ROR() is the (circular) rotation operator. For the sampling arrangement of

LBP_S(8,1) (Figure 8.7(a)), the approach was found to determine 36 individual

patterns for which the occurrence frequencies varied greatly and, given the coarse

angular measure used in that arrangement, the technique was found to lack dis-

criminatory ability and so a more potent approach was required.

In order to achieve better discriminatory ability, it was noted that some basic

patterns dominated discriminatory ability and the occurrence of these patterns

dominates texture description capability (Ojala et al., 2002). For the sampling

arrangement of LBP_S(8,1) (Figure 8.7(a)) and denoting the output of threshold-

ing relative to the central point as black (“0”) or white (“1”), then we achieve the

arrangements given in Figure 8.8. In these, patterns 0�8 correspond to basic fea-

tures: pattern 0 represents the thresholding for a bright spot (all surrounding

points have a lower value) and pattern 8 represents a dark spot (all points are

brighter). Patterns 1�7 represent lines of varying degrees of curvature: pattern 1

represents the end of a line (a termination), pattern 2 a sharp point, and pattern 4

represents an edge. These are called the uniform binary patterns and are charac-

terized by having at most two transitions of “1�0” (or vice versa) when progres-

sing around the circular pattern. The remaining patterns (those which have no

label) have more than two transitions of “1�0” in a circular progression and are

called nonuniform. There are more nonuniform patterns available than those

(a) c :� Circle (8,1) (b) c :� Circle (8,2) (c) c :� Circle (16,3)

0 0 0 01 1 1

0 1 1 00 0 0

1 0 0 10 0 0

1 0 0 10 0 0

1 0 0 10 0 0

0 1 1 00 0 0

0 0 0 01 1 1

c �

1 1 1

1 0 1

1 1 1

c �

0 0 1 0 0

0 1 0 1 0

1 0 0 0 1

0 1 0 1 0

0 0 1 0 0

c �

FIGURE 8.7

Sampling in a radial pattern for (P, R).

414 CHAPTER 8 Texture description, segmentation, and classification

shown in the second row of Figure 8.8. These patterns can occur at any rotation,

so the LBP can be arranged to detect them in a rotation-invariant manner.

For the uniform LBP approach, first we need to detect whether the patterns

are uniform or not, and this is achieved using an operator U which counts the

number of transitions of “1�0” (or vice versa):

UðLBP SðP;RÞÞ5 jsðxð0ÞÞ2 sðxðPÞÞj1
X

iA1;P2 1

jsðxðiÞÞ2 sðxði1 1ÞÞj (8.21)

For the arrangement LBP_S(8,1), the patterns 0�8 thus have a maximum value

of U5 2 (U5 0 for patterns 0 and 8 and for all others U5 2). We then need to

determine a code for each of the uniform patterns. Since these are rotation invari-

ant, this can be achieved simply by counting the number of bits that are set in the

pattern. These are only counted for the uniform patterns; the nonuniform patterns

are all set to the same code value (the easiest value is to exceed by one the number

of patterns to be expected for that sampling arrangement). For the patterns in

Figure 8.8 which are for the sampling arrangement LBP_S(8,1), there are codes

0�8 so we can lump together the nonuniform patterns to a code value of 9. For N

patterns ranging from 0 to N2 1, we can then define the rotation-invariant code as

LBP UðP;RÞ5

X
iA1;P

sðxðiÞÞ; if U, 3

N; otherwise

������ (8.22)

We then derive a histogram of occurrence of these basic features and we

describe a texture by the frequency of occurrence of local basic structures, and

this has proved to be a very popular way for describing texture.

Applying the uniform LBP description to the earlier texture D20 and its

shifted version, we again achieve a similar histogram of code values. In this histo-

gram, the most popular codes are those for the line structures, which is entirely

consistent with the image from which the histogram was derived. Note also that

the codes 0�8 dominate the representation, as expected. The results for a shifted

and rotated version of texture D20 are shown in Figure 8.9. Here, we see in

Figure 8.9(a) the original texture and Figure 8.9(c) its shifted and rotated version.

The description of the original texture is given in Figure 8.9(b) and its shifted and

rotated version is in Figure 8.9(d). Visually there is little difference between the

0 1 2 3 4 5 6 7 8

FIGURE 8.8

Rotation invariant binary patterns for LBP_S(8,1).

4158.3 Texture description

histograms in Figure 8.9(b) and (d) but there is actually some slight difference, of

less than 100 count values, which is considerably smaller than the count values

(104) exposed by the uniform LBP technique.

To apply the technique over different scales, the histograms obtained at each

scale can be concatenated. The LBP becomes multiscaled since it can classify

any texture pattern which is repeated within one of the neighborhoods. Two-

dimensional similarity metrics are used to classify textures using this method

because each texture class has a histogram for each scale. The preferred measure

for the dissimilarity L, between the concatenated histograms of a sample S and a

model M, is:

LðS;MÞ52
XH
h51

XNh

n51

ThsShnP
hThs

ln
ThmMhnP

hThm
(8.23)

where Shn and Mhn are the probabilities of the nth bin in the hth sample and model

histogram, respectively; Nh is the number of patterns in the H histograms; and Ths
and Thm are the total number of entries in the sample and model histograms,

respectively.

The original presentation of the uniform LBP technique (Ojala et al., 2002)

contains an extensive experimental evaluation on texture databases (including

Brodatz), considers more of the ramifications of the representation and

0

(c) Shifted and rotated French
canvas

(b) Histogram of uniform LBP codes for (a)

(d) Histogram of uniform LBP codes for (c)

(a) French canvas

Hist_LBPu_d21pattern

Hist_LBPu_d21_srpattern

Pattern

Pattern

1 � 104

5 � 103

1 � 104

5 � 103

2 4 6 8 10

0 2 4 6 8 10

FIGURE 8.9

Uniform local binary pattern histograms.

416 CHAPTER 8 Texture description, segmentation, and classification

implementation of the uniform LBP approach, and contains links to (Matlab)

code and data. There have been many extensions and applications of the local

binary pattern technique. One particular use is in biometrics, face detection, and

recognition (e.g., Ahonen et al., 2006). There is also a book by its originators

(Pietikäinen et al., 2011) giving more complete treatment of the LBP approach

and describing many of the variants now available.

8.3.6 Other approaches
There have been many approaches to texture and we have so far concentrated on

the themes of approaches. Of other themes, one early approach was to develop

(Gaussian) random field models (Cross and Jain, 1983; Chellappa and Chatterjee,

1985). In these, the approach was to determine a model to describe texture and to

use the model parameters for classification—thus affording a way of texture synthe-

sis. The approach was theoretically elegant but computationally unattractive. Julesz

introduced the term texton for elementary units of texture perception (Julesz, 1981),

analogous to a phoneme in speech recognition, and this was used to determine an

operational definition of textons and an algorithm for partitioning the image into dis-

joint regions of coherent brightness and texture (Malik et al., 2001). More recently,

techniques have been extended to dynamic textures (Szummer and Picard, 1999)

which are those textures which exhibit temporal motion such as “wavy water, rising

steam, and fire” like the random field models; these were described using a statisti-

cal model allowing for recognition and for synthesis, with impressive results. It is a

large field though and there are many derivatives of these themes and combinations.

These are ably described elsewhere (Petrou and Sevilla, 2006).

8.4 Classification
8.4.1 Distance measures
In application, usually we have a description of a texture sample and we want to

find which element of a database best matches that sample. This is classified as

to associate the appropriate class label (type of texture) with the test sample by

using the measurements that describe it. One way to make the association is by

finding the member of the class (the sample of a known texture) with measure-

ments which differ by the least amount from the test sample’s measurements. As

such, we assign class by analyzing distance.

There is a selection of formulae to measure distance. This is reflected by the

aphorism “how long is a piece of string” which in colloquial English is used to

reflect uncertainty. It is an appropriate phrase here, since the measure of distance

depends on what we want to achieve, and how we want to achieve it: there are

many ways to measure the length of a piece of string. The first measure is the

length between the endpoints, here equivalent to measuring the distance between

two points using a ruler. This is the Euclidean distance, and for sets of points, the

4178.4 Classification

difference d between the M descriptions of a sample, s, and the description of a

known texture, k, is

dE 5

ffiXM
i51

ðsi 2 kiÞ2
vuut (8.24)

which is also called the L2 norm (or L2 distance). This measures the length of a

straight line between two points as shown in Figure 8.10. In a 2D plane, for a

point p15 (p1x,p1y) and another point p25 (p2x,p2y),

dE 5

ffi
ðp1x 2 p2xÞ2 1 ðp1y 2 p2yÞ2

q
(8.25)

The distance measured rather depends on the nature of the property being

measured, so there are alternative distance metrics. These include the L1 norm

which is the sum of the modulus of the differences between the measurements:

dM 5
XM
i51

jsi 2 kij (8.26)

This is also called the Manhattan distance or taxicab measure, by virtue of the

analogy to distance in an urban neighborhood. There, the distance traveled is

along the streets since you cannot go through buildings. In a rectilinear urban sys-

tem (i.e., an arrangement of perpendicular streets), it doesn’t matter which path

you take (except in New York where you can take Broadway which cuts across

on a diagonal across the north�south and east�west street systems, and as such

is like the Euclidean distance). So for the points p1 and p2 in a 2D plane, the

Manhattan distance is the distance along the x axis, added to the distance along

the y axis, as shown in Figure 8.10. (It is also called the L1 distance or L1 norm.)

dM 5 jp1x 2 p2xj1 jp1y 2 p2yj (8.27)

These distance measures are illustrated for two points in a 2D plane in

Figure 8.10. This is rather difficult to visualize for multidimensional data, so for

(a) Two points (b) Euclidean distance = dE

30

20

10

20 40 60 80 100

30

20

10

20 40 60 80 100

(c) Manhattan distance =A+B

30

20

10

20 40 60 80

B

A

100

dE

FIGURE 8.10

Distance measures in a 2D plane.

418 CHAPTER 8 Texture description, segmentation, and classification

the multidimensional case illustrated in Code 8.5, the Euclidean distance is mea-

sured in a 4D space.

For groups of points, we need to be able to handle sets of measurements. These

can be derived, say, by applying the same texture description process to a different

image of the same cloth. We then have multiple vectors of measurements, which

we shall here store as a matrix, as given in Code 8.6. In this, there are two sets of

measured feature vectors, mat1 and mat2. Here two of the measures for mat2 appear

different from those for mat1 so these sets of measurements could be those taken

from images of different textures (different classes of texture). These both have

five sets of four different measurements. The Euclidean distance can then be the

average distance over the sets of measurements. So we work out the Euclidean dis-

tance for each row and then average over these five values.

Point 1:pv1 := (52.0 8.75 1.50 0.40)

Point 2:pv2 := (81 22.14 1.00 0.37)

Distance measure:

Euclidean distance: dvE(pv1, pv2) = 31.946

dvE(vector1, vector2):=
cols(vector1)−1

i=0
(vector10,i− vector20,i)

2∑

CODE 8.5

Illustrating the multidimensional Euclidean distance.

Data:

Operator:

Result:averaged_dvE(mat1, mat2) = 32.004

mat1 :=

52

51.9

52.2

52

51.5

8.75

8.8

8.75

8.76

8.82

1.5

1.5

1.49

1.51

1.46

0.4

0.39

0.41

0.32

0.4

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎠

mat2 :=

81

80.5

81.5

80.9

81

22.14

22.28

22.16

22.18

22.12

1.0

1.1

1.05

1.11

1.16

0.37

0.39

0.41

0.32

0.4

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎠

averaged_dvE(m1,m2) := distance ← 0

distance ← distance +
cols(m1)−1

i=0
(m1j,i − m2j,i)

2

for j∈0 .. rows(m1)−1

distance

rows(m1)

Σ

CODE 8.6

Illustrating the Euclidean distance for groups of points.

4198.4 Classification

Naturally, the Euclidean distance between one set of points and itself is zero.

The distance between set 1 and set 2 should be the same as the distance between set

2 and set 1. This is summarized as a confusion matrix, which shows the difference

between the different sets of measurements. This is shown in Code 8.7 and the con-

fusion matrix has zeros on the leading diagonal and is symmetric, as expected.

Another way to estimate the distance is by using a matrix formulation. A more

esoteric formulation is to use matrix norms. The advantages here are that there can

be fast algorithms available for matrix computation. Another way to measure the

distance would be to measure the distance between the means (the centers) of the

clusters. As with the matrix formulations, that is a rather incomplete measure since

it does not include the cluster spread. To obtain a distance measure between clus-

ters, where the measure reflects not only the cluster spacing but also the cluster

spread, we can use the Mahalanobis distance measure. This is shown in

Figure 8.11, where we have two sets of measures (points denoted by1) of vectors
p1 and p2. There are two cases of the second cluster, one which is tightly clustered

(low variance), indicated by the solid line, and one which is spread out (high vari-

ance), indicated by the dotted line (the data points are omitted for the large vari-

ance case). If the variance in the second case was sufficiently high, the cluster for

p1 would intersect with the cluster for p2 and so there would appear to be little dif-

ference between them (implying that the classes are the same). The Euclidean

Construction:

confusion (m1, m2):=

confusion (mat1, mat2)=

averaged_dvE(m1 ,m1)

averaged_dvE(m2 ,m1)

averaged_dvE(m1 ,m2)

averaged_dvE(m2 ,m2)
⎛
⎜
⎝

⎞
⎟
⎠

0

32.004

32.004

0

⎛
⎜
⎝

⎞
⎟
⎠

Result:

CODE 8.7

Construction of a confusion matrix for two classes.

+

+ ++++++ + +
+

+++
++++

+

p1

p2

p2p2 with low
 variance

dE

with high
variance

FIGURE 8.11

Illustrating the Mahalanobis distance measure.

420 CHAPTER 8 Texture description, segmentation, and classification

distance between the means will remain the same whatever the cluster spread, and

so is not affected by this; conversely, the Euclidean distance only measures where

the center of mass is, and not the spread. The Mahalanobis distance includes the

variance and so is a more perceptive measure of distance. The Mahalanobis dis-

tance between p1 and p2 would in this case chance with the variance of p2.

For sets of vector points pi5 (m1i, m2i, m3i, . . ., mNi)
T which have mean

values µ5 (μ1, μ2, μ3, . . ., μN)T and covariance matrix Σ, the Mahalanobis

distance is defined as

dMAH 5

ffi
ðp2µÞT

X21ðp2µÞ
q

(8.28)

where the covariance matrix is formed of elements which express the variance asX
ij
5E½ðpi2µiÞðpj2µjÞ� (8.29)

where E denotes the expected value. Since our main consideration is the distance

between two sets of feature vectors, we shall formulate this measure for feature

vectors which are stored as rows (each sample is a row vector, each column con-

tains the value of a particular measurement)

dMAHi;j 5
ffi
ðpi 2 pjÞP21ðpi 2 pjÞT

q
(8.30)

where the covariance matrix P is

P5
Pi 1Pj

2
(8.31)

where the individual covariance matrices Pi are

Pi 5
1

N
ðpi 2µiÞTðpi 2µiÞ (8.32)

In this way, the distance is scaled by the variance. So the distance measure

reflects the distributions of the data, which is ignored in the Euclidean distance

formulation. The formulation does rather depend on the structure used for the

data. The formulation here is consistent with the feature vectors delivered by tex-

ture extraction approaches (it can also be the same for feature vectors delivered

by other applications, such as biometrics—that is how general it is).

The calculation of the covariance matrix is illustrated for two classes (two sets

of feature vectors) in Code 8.8. Here, routine get_mean calculates the average of

each column and supplies this as a row vector of four values. The mean for each

column is then subtracted from each column element in routine subtract_mean.
The routine cov implements Eq. (8.31); the routine covariance implements

Eq. (8.32). The final row shows the calculated covariance matrix for the two sets

of measurements (mat1 and mat2) given earlier. The diagonal elements reflect the

variance in each measure; the off-diagonal measurements reflect the correlation

between the different measurements. The properties of this matrix are symmetric

and positive definite. When assessing implementation, test for symmetry when

4218.4 Classification

developing code check by subtracting the transpose (and the result should be

zero); positive semi-definiteness can be assessed by an eigenvector calculation,

but it is simpler to submit an example to a mathematical package and check that

Cholesky decomposition can be performed on it (if it cannot, then the matrix is

not positive definite).

Determining the Mahalanobis distance is illustrated in Code 8.9 for the two

classes mat1 and mat2. This is slightly different from Eq. (8.30). This is because

Eq. (8.30) is the conventional expression. Here, we are using vectors of measure-

ments and we have multiple samples of these measurements. As such, the dis-

tance measure we are interested in is the sum of the values on the leading

diagonal (the trace of the matrix, hence the use of the operator tr). The imple-

mentation is the same in all other respects.

Find mean:

Remove mean:

Evaluate covariance:

Evaluate mean covariance:

Result:

get_mean(matrix):=

subtract_mean(matrix):=

meanv0,i

rows(matrix)−1

j=0

matrixj,i∑
rows(matrix)

←

for i∈0,1.. cols(matrix)−1

meanv

means ← get_mean(matrix)

matrixj,i ← matrixj,i − means0,i

for j∈0.. rows(matrix)−1

for i∈0.. cols(matrix)−1

matrix

covariance(matrix):=
1

rows(matrix)
(subtract_mean(matrix)T⋅subtract_mean(matrix))⋅

cov(m1,m2):=
covariance(m1)+ covariance(m2)

2

cov(mat1, mat2)=

0.078

−9×10−3 −5.8×10−5

−1.28×10−3

−1.28×10−3 −1.24×10−3

−1.6×10−4

1.04×10−3

3.4×10−5

1.64×10−3

−1.64×10−41.24×10−3

−9×10−3

1.964×10−3

−5.8×10−5

3.4×10−5

⎛⎜
⎜
⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟
⎟
⎟⎠

CODE 8.8

Constructing the covariance matrix

422 CHAPTER 8 Texture description, segmentation, and classification

The confusion matrix derived by the Mahalanobis distance is little different

from that derived by Euclidean distance, the change is that the values on the off-

diagonal will be larger. To assess its effect, we need multiple samples of multiple

classes and we need to evaluate the confusion matrix over these. This is shown in

Code 8.10. Here we have five classes: mat1, mat2, mat3, mat4, and mat5. The con-

fusion matrices are now 53 5, showing the confusion between every class and

the other four. The leading diagonal is still zero, since each class is the same as

itself. The off-diagonal elements show the difference between the different clas-

ses. As the distance becomes larger, the cell becomes brighter. The confusion

matrix by the Euclidean distance has more difficulty distinguishing between clas-

ses 3, 4, and 5 than that for the Mahalanobis distance, since the lower right-hand

corner is largely dark, whereas in the Mahalanobis distance only the leading diag-

onal is dark. This is because the Mahalanobis distance uses the structure of the

data (its variance) to determine distance.

Data:diff(m1, m2):= m1−m2

Operator:

Result:dMaha(mat1,mat2)= 260.059

dMaha(m1,m2):=
trdiff(m1, m2)⋅(cov(m1,m2))−1⋅diff(m1,m2)T ⎡⎣ ⎡⎣

rows(m1)

CODE 8.9

The Mahalanobis distance between two classes.

Data samples

(a) By Mahalanobis distance (b) By Euclidean distance
Mahalanobis Euclid

0

0

1

2

3

4

0

1

2

3

4

1 2 3 4 0 1 2 3 4

CODE 8.10

Confusion matrices by different distance measures.

4238.4 Classification

There are many other distance measures. The Bhattacharyya distance

dB 52ln
XM
i51

ffiffiffiffiffiffiffiffiffiffiffiffiffi
si 3 ki

p
(8.33)

gives smaller precedence to larger distances by using the logarithm to compress

them, but this appears to be used less, like other metrics such as the Matusita dif-

ference. There is a measure which emphasizes direction rather than distance.

This is the cosine distance measure

dC 5 cosðθÞ5 p1Up2
jp1jjp2j (8.34)

where “ � ” represents the scalar product of the two vectors p1 and p2 (the inner

product) and j j denotes the length of each vector. The angle θ is that between the

two vectors to the points, as shown in Figure 8.12. Note that in this case, similar-

ity is when θ-0 (so dC-1) which is different for the other cases wherein simi-

larity is reflected by a minimum of the distance measure. Essentially, the measure

of distance depends on the technique used to make a measurement and the nature

of the data itself. As ever, try a selection and use the one best suited to a particu-

lar application.

8.4.2 The k-nearest neighbor rule
We then need to use the distance measure to determine the class to be associated

with the data points. If we have M measurements of N known samples of textures

and we have O samples of each, we have an M-dimensional feature space that

contains the N3O points. If we select the point, in the feature space, which is

closest to the current sample, then we have selected the sample’s nearest neigh-

bor. This is shown in Figure 8.13, where we have a 2D feature space produced by

the two measures made on each sample, measure 1 and measure 2. Each sample

gives different values for these measures but the samples of different classes give

rise to clusters in the feature space where each cluster is associated with a single

class. In Figure 8.13, we have seven samples of two known textures: Class A and

dE

θ

FIGURE 8.12

Cosine and Euclidean distance measures.

424 CHAPTER 8 Texture description, segmentation, and classification

Class B depicted by X and O, respectively. We want to classify a test sample,

depicted by 1, as belonging either to Class A or to Class B (i.e., we assume that

the training data contains representatives of all possible classes). Its nearest neigh-

bor, the sample with least distance, is one of the samples of Class A, so we could

then say that our test appears to be another sample of Class A (i.e., the class label

associated with it is Class A). Clearly, the clusters will be far apart for measures

that have good discriminatory ability, whereas the clusters will be overlapped for

measures that have poor discriminatory ability, i.e., how we can choose measures

for particular tasks. Before that, let us look at how best to associate a class label

with our test sample.

Classifying a test sample as the training sample it’s closest to in feature space

is actually a specific case of a general classification rule known as the k-nearest

neighbor rule. In this rule, the class selected is the mode of the sample’s nearest

k neighbors. By the k-nearest neighbor rule, for k5 3, we select the nearest three

neighbors (those three with the least distance) and their mode, the maximally

represented class, is attributed to the sample. In Figure 8.13, the three-nearest

neighbor is actually Class B since the three nearest samples contain one from

Class A (its nearest neighbor) and two from Class B. Since there are two elements

of Class B, the sample is attributed to this class by the three-nearest neighbor

rule. As such, selection from more than one point introduces a form of feature

space smoothing and allows the classification decision not to be affected by noisy

outlier points. Clearly, this smoothing has greater effect for larger values of k.

Measure 2

Measure 1

Seven samples (X)
of Class A

Nearest neighbor

Three-nearest neighbors

Seven samples (O)
of Class BTest sample

FIGURE 8.13

Feature space and classification.

4258.4 Classification

(Further details concerning a modern view of the k-nearest neighbor rule can be

found in Michie et al. (1994).)

A Mathcad implementation of the k-nearest neighbor rule is given in Code

8.11. The arguments are test (the vector of measurements of the test sample),

data (the list of vectors of measurements of all samples), size (the value of k),

and no. The final parameter no dictates the structure of the presented data and is

the number of classes within that data. The training data is presumed to have been

arranged so that samples of each class are all stored together. For two classes in

the training data, no5 2, where each occupies one half (the same situation as in

Figure 8.13). If no5 3, then there are three classes, each occupying one-third of

the complete dataset and the first third contains the first class, the second third

contains samples of another class, while the remaining third contains samples of

the final class. In application, first the distances between the current sample, test,
and all other samples are evaluated by using the function distance. Then, the
k-nearest neighbors are selected to form a vector of distances min, these are the k

neighbors which are closest (in the feature space) to the sample test. The number

of feature space splits fsp is the spacing between the classes in the data. The class
that occurs the most number of times in the set of size-nearest neighbors is then
returned as the k-nearest neighbor, by incrementing the class number to which

each of the k neighbors is associated. (If no such decision is possible, i.e., there is

no maximally represented class, the technique can be arranged to return the class

of the nearest neighbor, by default. An alternative way of stating this is that the

default class for k-NN is the 1-NN when all k classes are different.)

k_nn(test,data,size,no):=
for i∈0.. rows(data)–1

disti←0
for j∈0.. cols(data)–1

for i∈0.. size–1
disti←distance(test,data,i)

posmin←coord(min(dist),dist)
distposmin←max(dist)+1
mini←posmin

fsp←
rows(data)

no
for j∈1..no

classj←0
for i∈0..size–1
for j∈1..no

classj←classj+1 if [mini≥(j–1)·fsp]·(mini<j·fsp)
test_class←coord(max(class),class)
test_class

CODE 8.11

Implementing the k-nearest neighbor rule.

426 CHAPTER 8 Texture description, segmentation, and classification

The result of testing the k-nearest neighbor routine is illustrated on synthetic

data in Code 8.12. Here there are two different datasets. The first (Code 8.12(a))

has three classes of which there are three samples (each sample is a row of data,

so this totals nine rows) and each sample is made up of three measurements (the

three columns). As this is synthetic data, it can be seen that each class is quite

distinct: the first class is for measurements and is based on the studies of Ahonen

et al. (2006), Bishop (1996), and Bovik et al. (1990); the second class is based on

Brodatz (1968), Chen et al. (1995), and Cross and Jain (1983); and the third is

based on Cross and Jain (1983), Chen et al. (1995), and Bovik et al. (1990).

A small amount of noise has been added to the measurements. We then want to

see the class associated with a test sample with measurements (Brodatz, 1968;

Cross and Jain, 1983; Chen et al., 1995) (Code 8.12(b)). Naturally, the one-

nearest neighbor (Code 8.12(c)) associates it with the class with the closest mea-

surements which is Class 2 as the test sample’s nearest neighbor is the fourth row

of data. (The result is either Class 1, Class 2, or Class 3.) The three-nearest neigh-

bor (Code 8.12(d)) is again Class 2 as the nearest three neighbors are the fourth,

fifth, and sixth rows and each of these is from Class 2.

The second dataset (Code 8.12(e)) is two classes with three samples each

made up of four measures. The test sample (Code 8.12(f)) is actually associated

with Class 1 by the one-nearest neighbor (Code 8.12(g)) but with Class 2 for the

population1:=

1

1.1

1

4

3.9

4.1

8.8

7.8

8.8

2

2

2.1

6

6.1

5.9

6.1

5.9

6.4

3

3.1

3

8

8.1

8.2

2.8

3.3

3.1

population2:=

2

2.1

2.3

2.5

3.4

2.3

4

3.9

3.6

4.5

4.4

4.6

6

6.2

5.8

6.5

6.6

6.4

8

7.8

8.3

8.5

8.6

8.5

test_ point1:=(4 6 8) test_ point2:=(2.5 3.8 6.4 8.3)

k_nn(test_ point2,population2,1,2)=1

k_nn(test_ point2,population2,3,2)=2

k_nn(test_ point1,population1,1,3)=2

k_nn(test_ point1,population1,3,3)=2

 (h) 3-nearest neighbor (d) 3-nearest neighbor

 (c) 1-nearest neighbor

 (b) First test sample

 (a) 3 classes, 3 samples, 3 features

 (g) 1-nearest neighbor

 (f) Second test sample

 (e) 2 classes, 3 samples, 4 features

CODE 8.12

Applying the k-nearest neighbor rule to synthetic data.

4278.4 Classification

three-nearest neighbor (Code 8.12(h)). This is because the test sample is actually

closest to the sample in the third row. After the third row, the next two closest

samples are in the fourth and sixth rows. As the nearest neighbor is in a different

class (Class 1) to that of the next two nearest neighbors (Class 2); a different

result has occurred when there is more smoothing in the feature space (when the

value of k is increased).

The Brodatz database actually contains 112 textures, but few descriptions

have been evaluated on the whole database, usually concentrating on a subset. It

has been shown that the SGF description can afford better classification capability

than the cooccurrence matrix and the Fourier transform features (described by

Liu’s features) (Chen et al., 1995). For experimental procedure, the Brodatz pic-

tures were scanned into 2563 256 images which were split into 16 643 64 sub-

images. Nine of the subimages were selected at random and results were

classified using leave-one-out cross-validation (Lachenbruch and Mickey, 1968).

Leave-one-out refers to a procedure where one of the samples is selected as the

test sample, the others form the training data (this is the leave-one-out rule).

Cross validation is where the test is repeated for all samples: each sample

becomes the test data once. In the comparison, the eight optimal Fourier trans-

form features were used (Liu and Jernigan, 1990), and the five most popular mea-

sures from the cooccurrence matrix. The correct classification rate, the number of

samples attributed to the correct class, showed better performance by the combi-

nation of statistical and geometric features (86%), as opposed to use of single

measures. The enduring capability of the cooccurrence approach was reflected by

their (65%) performance in comparison with Fourier (33%—whose poor perfor-

mance is rather surprising). An independent study (Walker and Jackway, 1996)

has confirmed the experimental advantage of SGF over the cooccurrence matrix,

based on a (larger) database of 117 cervical cell specimen images. Another study

(Ohanian and Dubes, 1992) concerned the features which optimized the classifica-

tion rate and compared cooccurrence, fractal-based, Markov Random field,

and Gabor-derived features. By analysis on synthetic and real imagery, via the k-

nearest neighbor rule, the results suggested that cooccurrence offered the best

overall performance. Wavelets (Porter and Canagarajah, 1997), Gabor wavelets,

and Gaussian Markov random fields have been compared (on a limited subset of

the Brodatz database) to show that the wavelet-based approach had the best

overall classification performance (in noise as well) together with the smallest

computational demand.

8.4.3 Other classification approaches
Classification is the process by which we attribute a class label to a set of mea-

surements. Essentially, this is the heart of pattern recognition: intuitively, there

must be many approaches. These include statistical and structural approaches: a

review can be found in Shalkoff (1992) and a more modern view in Cherkassky

and Mulier (1998). There are some newer texts, such as Forsyth and Ponce

428 CHAPTER 8 Texture description, segmentation, and classification

(2002), Szeliski (2011), and Prince (2012), which specifically include learning in

computer vision and they offer much greater depth than this brief survey.

One major approach is to use a neural network which is a common alternative

to using a classification rule. Essentially, modern approaches are based on multi-

layer perceptrons with artificial neural networks in which the computing ele-

ments aim to mimic properties of neurons in the human brain. These networks

require training, typically by error back-propagation, aimed to minimize classifi-

cation error on the training data. At this point, the network should have learnt

how to recognize the test data (they aim to learn its structure): the output of a

neural network can be arranged to be class labels. Approaches using neural nets

(Muhamad and Deravi, 1994) show how texture metrics can be used with neural

nets as classifiers, another uses cascaded neural nets for texture extraction (Shang

and Brown, 1994). Neural networks are within a research field that has shown

immense growth in the past two decades, further details may be found in Michie

et al. (1994) and Bishop (1996) (often a student’s favorite), and more targeted at

vision in Zhou and Chellappa (1992). Support vector machines (SVMs) (Vapnik,

1995) are one of the most popular approaches to data modeling and classification,

more recently subsumed within Kernel methods (Shawe-Taylor and Cristianini,

2004). Their advantages include excellent generalization capability which con-

cerns the ability to classify correctly samples which are not within feature space

used for training. SVMs have naturally found application in texture classification

(Kim et al., 2002). Interest in biometrics has focused on combining different clas-

sifiers, such as face and speech, and there are promising approaches to accommo-

date this (Kittler, 1998; Kittler et al., 1998).

Also, there are methods aimed to improve classification capability by pruning

the data which does not contribute to the classification decision. Guided ways

which investigate the potency of measures for analysis are known as feature (sub-

set) selection. PCA (Chapter 12, Appendix 3) can reduce dimensionality, orthogo-

nalize, and remove redundant data. There is also linear discriminant analysis

(also called canonical analysis) to improve class separability while concurrently

reducing cluster size (it is formulated to concurrently minimize the within-class

distance and to maximize the between-class distance). There are also algorithms

aimed at choosing a reduced set of features for classification: feature selection for

improved discriminatory ability; a comparison can be found in Jain and Zongker

(1997). Alternatively, the basis functionals can be chosen in such a way as to

improve classification capability.

8.5 Segmentation
In order to segment an image according to its texture, we can measure the texture

in a chosen region and then classify it. This is equivalent to template convolution

but where the result applied to pixels is the class to which they belong, as

4298.5 Segmentation

opposed to the usual result of template convolution. Here, we shall use a 73 7

template size: the texture measures will be derived from the 49 points within the

template. First though, we need data from which we can make a classification

decision, the training data. Naturally, this depends on a chosen application. Here,

we shall consider the problem of segmenting the eye image into regions of hair
and skin.

This is a two-class problem for which we need samples of each class, samples

of skin and hair. We will take samples of each of the two classes; the classifica-

tion decision is as shown in Figure 8.13. The texture measures are the energy,

entropy, and inertia of the cooccurrence matrix of the 73 7 region, so the feature

space is 3D. The training data is derived from the regions of hair and skin, as

shown in Figure 8.14(a) and (b), respectively. The first half of this data is the

samples of hair and the other half is samples of the skin, as required for the k-

nearest neighbor classifier of Code 8.11.

We can then segment the image by classifying each pixel according to the

description obtained from its 73 7 region. Clearly, the training samples of each

class should be classified correctly. The result is shown in Figure 8.15(a). Here,

the top left corner is first (correctly) classified as hair, and the top row of the

image is classified as hair until the skin commences (note that the border inherent

in template convolution reappears). In fact, much of the image appears to be clas-

sified as expected. The eye region is classified as hair, but this is a somewhat

arbitrary decision, it is simply that hair is the closest texture feature. Also, some

of the darker regions of skin are classified as hair, perhaps the result of training

on regions of brighter skin.

Naturally, this is a computationally demanding process. An alternative

approach is to simply classify regions as opposed to pixels. This is the tiled

approach, with the result shown in Figure 8.15(b). The resolution is clearly very

(a) Hair (b) Skin

FIGURE 8.14

Training regions for classification.

430 CHAPTER 8 Texture description, segmentation, and classification

poor: the image has effectively been reduced to a set of 73 7 regions, but it is

much faster requiring only 2% of the computation of the convolution approach.

A comparison with the result achieved by uniform thresholding is given, for

comparison, in Figure 8.15(c). This is equivalent to pixel segmentation by bright-

ness alone. Clearly, there are no regions where the hair and skin are mixed and in

some ways the result appears superior. This is in part due to the simplicity in

implementation of texture segmentation. But the result of thresholding depends

on illumination level and on appropriate choice of the threshold value. The tex-

ture segmentation method is completely automatic and the measures are known

to have invariance properties to illumination, as well as other factors. Also, in

uniform thresholding there is no extension possible to separate more classes

(except perhaps to threshold at differing brightness levels).

8.6 Further reading
Clearly, there is much further reading in the area of texture description, classifica-

tion, and segmentation, as evidenced by the volume of published work in this

area. The best place to start for texture is Maria Petrou’s book (Petrou and

Sevilla, 2006). There is one fairly comprehensive—but dated—survey (Reed and

du Buf, 1993). An updated review of Tuceryan and Jain (1998) has a wide bibli-

ography. Zhang and Tan (2002) offer review of the approaches which are invari-

ant to rotation, translation, and to affine or projective transforms, but texture is a

large field of work to survey with many applications. Even though it is a large

body of work, it is still only a subset of the field of pattern recognition. In fact,

reviews of pattern recognition give many pointers to this fascinating and exten-

sive field (e.g., Jain et al., 2000).

There is also a vast body of work on pattern classification, for this is the

sphere of machine learning. Beyond the texts already cited here, have a look at

(a) Convolved (b) Tiled (c) Thresholded

FIGURE 8.15

Segmenting the eye image into two classes.

4318.6 Further reading

the Proceedings of the Neural Information Processing Conference: NIPS. This

is the top international conference in machine learning and you will find state-of-

the-art papers there. For vision-based learning approaches, many of the confer-

ences listed earlier in Section 1.6.1 will have new papers in these fields.

8.7 References
Ahonen, T., Hadid, A., Pietikäinen, M., 2006. Face description with local binary patterns:

application to face recognition. IEEE Trans. PAMI 28 (12), 2037�2041.

Bishop, C.M., 1996. Neural Networks for Pattern Recognition. Oxford University Press,

Oxford.

Bovik, A.C., Clark, M., Geisler, W.S., 1990. Multichannel texture analysis using localised

spatial filters. IEEE Trans. PAMI 12 (1), 55�73.

Brodatz, P., 1968. Textures: A Photographic Album for Artists and Designers. Reinhold,

New York, NY.

Chellappa, R., Chatterjee, S., 1985. Classification of textures using Gaussian Markov ran-

dom fields. IEEE Trans. ASSP 33 (4), 959�963.

Chen, Y.Q., Nixon, M.S., Thomas, D.W., 1995. Texture classification using statistical geo-

metric features. Pattern Recog. 28 (4), 537�552.

Cherkassky, V., Mulier, F., 1998. Learning from Data. Wiley, New York, NY.

Cross, G.R., Jain, A.K., 1983. Markov random field texture models. IEEE Trans. PAMI 5

(1), 25�39.

Daugman, J., High, G., 1993. Confidence visual recognition of persons using a test of sta-

tistical independence. IEEE Trans. PAMI 18 (8), 1148�1161.

Dunn, D., Higgins, W.E., Wakely, J., 1994. Texture segmentation using 2-D Gabor ele-

mentary functions. IEEE Trans. PAMI 16 (2), 130�149.

Efros, A., Leung, T., 1999. Texture synthesis by non-parametric sampling. Proc. ICCV,

1033�1038.

Forsyth, D., Ponce, J., 2002. Computer Vision: A Modern Approach. Prentice Hall, Upper

Saddle River, NJ.

Gimmel’farb, G.L., Jain, A.K., 1996. On retrieving textured images from an image data-

base. Pattern Recog. 28 (12), 1807�1817.

Grigorescu, S.E., Petkov, N., Kruizinga, P., 2002. Comparison of texture features based on

Gabor filters. IEEE Trans. IP 11 (10), 1160�1167.

Haralick, R.M., Shanmugam, K., Dinstein, I., 1973. Textural features for image classifica-

tion. IEEE Trans. SMC 2, 610�621.

Heckbert, P.S., 1986. Survey of texture mapping. IEEE Comput. Graphics Appl. 6, 56�67.

Jain, A.K., Farrokhnia, F., 1991. Unsupervised texture segmentation using Gabor filters.

Pattern Recog. 24 (12), 1186�1191.

Jain, A.K., Zongker, D., 1997. Feature selection: evaluation, application and small sample

performance. IEEE Trans. PAMI 19 (2), 153�158.

Jain, A.K., Duin, R.P.W., Mao, J., 2000. Statistical pattern recognition: a review. IEEE

Trans. PAMI 22 (1), 4�37.

Julesz, B., 1981. Textons the elements of texture and perception, and their interactions.

Nature 290, 91�97.

432 CHAPTER 8 Texture description, segmentation, and classification

Karru, K., Jain, A.K., Bolle, R., 1996. Is there any texture in an image? Pattern Recog. 29

(9), 1437�1446.

Kim, K.I., Jung, K., Park, S.H., Kim, H.J., 2002. Support vector machines for texture clas-

sification. IEEE Trans. PAMI 24 (11), 1542�1550.

Kittler, J., 1998. Combining classifiers: a theoretical framework. Pattern Anal. Appl. 1 (1),

18�27.

Kittler, J., Hatef, M., Duin, R.P.W., Matas, J., 1998. On combining classifiers. IEEE Trans.

PAMI 20 (3), 226�239.

Lachenbruch, P.A., Mickey, M.R., 1968. Estimation of error rates in discriminant analysis.

Technometrics 10, 1�11.

Laine, A., Fan, J., 1993. Texture classification via wavelet pattern signatures. IEEE Trans.

PAMI 15 (11), 1186�1191.

Liu, S.S., Jernigan, M.E., 1990. Texture analysis and discrimination in additive noise.

CVGIP 49, 52�67.

Lu, C.S., Chung, P.C., Chen, C.F., 1997. Unsupervised texture segmentation via wavelet

transform. Pattern Recog. 30 (5), 729�742.

Malik, J., Belongie, S., Leung, T., Shi, J., 2001. Textons, contour and texture analysis for

image segmentation. Int. J. Comput. Vision 43 (1), 7�27.

Michie, D., Spiegelhalter, D.J., Taylor, C.C. (Eds.), 1994. Machine Learning, Neural and

Statistical Classification. Ellis Horwood, Hemel Hempstead.

Muhamad, A.K., Deravi, F., 1994. Neural networks for the classification of image texture.

Eng. Appl. Artif. Intell. 7 (4), 381�393.

Ohanian, P.P., Dubes, R.C., 1992. Performance evaluation for four classes of textural fea-

tures. Pattern Recog. 25 (8), 819�833.

Ojala, T., Pietikäinen, M., Harwood, D., 1996. A comparative study of texture measures

with classification based on featured distribution. Pattern Recog. 29 (1), 51�59.

Ojala, T., Pietikäinen, M., Mäenpää, T., 2002. Multiresolution gray-scale and rotation invari-

ant texture classification with local binary patterns. IEEE Trans. PAMI 24 (7), 971�987.

Petrou, M., Sevilla, O.G., 2006. Image Processing: Dealing with Texture. Wiley.

Pichler, O., Teuner, A., Hosticka, B.J., 1996. A comparison of texture feature extraction

using adaptive Gabor filtering, pyramidal and tree structured wavelet transforms.

Pattern Recog. 29 (5), 733�742.

Pietikäinen, M., Hadid, A., Zhao, G., Ahonen, T., 2011. Computer Vision Using Local

Binary Patterns. Springer.

Porter, R., Canagarajah, N., 1997. Robust rotation-invariant texture classification: wavelet,

Gabor filter and GRMF based schemes. IEE Proc. Vision Image Signal Process. 144

(3), 180�188.

Pratt, W.K., 1992. Digital Image Processing. Wiley.

Prince, S.J.D., 2012. Computer Vision Models, Learning, and Inference. Cambridge

University Press, Cambridge.

Randen, T., Husoy, J.H., 2000. Filtering for texture classification: a comparative study.

IEEE Trans. PAMI 21 (4), 291�310.

Reed, T.R., du Buf, H., 1993. A review of recent texture segmentation and feature extrac-

tion techniques. CVGIP: Image Understand. 57 (3), 359�372.

Shalkoff, R.J., 1992. Pattern Recognition—Statistical. Structural and Neural Approaches.

Wiley, New York, NY.

Shang, C.G., Brown, K., 1994. Principal features-based texture classification with neural

networks. Pattern Recog. 27 (5), 675�687.

4338.7 References

Shawe-Taylor, J., Cristianini, N., 2004. Kernel Methods for Pattern Analysis. Cambridge

University Press.

Szeliski, R., 2011. Computer Vision: Algorithms and Applications. Springer Verlag,

London.

Szummer, M., Picard, R.W., 1999. Temporal texture modelling. Proc. ICIP 3, 823�826.

Tuceryan, M., Jain, A.K., 1998. Texture analysis. In: Chen, C.H., Pau, L.F., Wang, P.S.P.

(Eds.), The Handbook of Pattern Recognition and Computer Vision, second ed. World

Scientific Publishing, Singapore, pp. 207�248.

Vapnik, V., 1995. The Nature of Statistical Learning Theory. Springer-Verlag, New York,

NY.

Walker, R.F., Jackway, P.T., 1996. Statistical geometric features—extensions for cytologi-

cal texture analysis. Proceedings of the Thirteenth ICPR, Vienna, II (Track B), pp.

790�794.

Weska, J.S., Dyer, C.R., Rosenfeld, A., 1976. A comparative study of texture measures for

terrain classification. IEEE Trans. SMC 6 (4), 269�285.

Wu, C.M., Chen, Y.C., 1992. Statistical feature matrix for texture analysis. CVGIP:

Graphical Models Image Process. 54, 407�419.

Wu, W., Wei, S., 1996. Rotation and gray-scale transform-invariant texture classification

using spiral resampling, subband decomposition and hidden Markov model. IEEE

Trans. IP 5 (10), 1423�1434.

Zhang, J., Tan, T., 2002. Brief review of invariant texture analysis methods. Pattern Recog.

35, 735�747.

Zhou, Y-T, Chellappa, R., 1992. Artificial Neural Networks for Computer Vision.

Springer, New York, NY.

434 CHAPTER 8 Texture description, segmentation, and classification

CHAPTER

9Moving object detection
and description

CHAPTER OUTLINE HEAD

9.1 Overview ... 435

9.2 Moving object detection ... 437

9.2.1 Basic approaches ...437

9.2.1.1 Detection by subtracting the background437

9.2.1.2 Improving quality by morphology.. 440

9.2.2 Modeling and adapting to the (static) background442

9.2.3 Background segmentation by thresholding ..447

9.2.4 Problems and advances...450

9.3 Tracking moving features ... 451

9.3.1 Tracking moving objects ..451

9.3.2 Tracking by local search ..452

9.3.3 Problems in tracking...455

9.3.4 Approaches to tracking ...455

9.3.5 Meanshift and Camshift ..457

9.3.5.1 Kernel-based density estimation... 457

9.3.5.2 Meanshift tracking... 461

9.3.5.3 Camshift technique ... 467

9.3.6 Recent approaches ...472

9.4 Moving feature extraction and description ... 474

9.4.1 Moving (biological) shape analysis ...474

9.4.2 Detecting moving shapes by shape matching in image sequences476

9.4.3 Moving shape description..480

9.5 Further reading .. 483

9.6 References .. 484

9.1 Overview
This chapter is concerned with how we can find and describe moving objects.

This implies that we do not have a single image, but a sequence of images (or

video frames). The objects we seek to find and describe are those which move

Feature Extraction & Image Processing for Computer Vision.

© 2012 Mark Nixon and Alberto Aguado. Published by Elsevier Ltd. All rights reserved.
435

from place to place in one image to the next. We shall first describe methods

which extract the moving objects, separating them from their background. We

shall then consider ways to describe the trajectories made by these objects.

We shall then consider ways to analyze the trajectories, using the motion of the

shape and its trajectory for recognition purposes before moving to techniques for

describing moving objects. The Chapter is summarized in Table 9.1.

The field of moving object description and tracking is very large, and there

are many examples. Many of these images are of people since analyzing their

motion is required by many applications; beyond the general computer-vision-

based analysis of human movement (Gavrila, 1999; Wang et al., 2003a;

Moeslund et al., 2006), people are interested in computer-vision-based analysis of

sport, automated analysis of surveillance images (Hu et al., 2004), and of course

moving objects in medical image analysis. Computers now have much more

Table 9.1 Overview of Chapter 9

Main
Topic

Subtopics Main Points

Moving
object
extraction

How do we separate moving objects
from their background. Methods of
estimating the background. Methods
of adapting the background model.
Using morphology to improve
silhouette quality.

Averaging and median filter
applied estimate background
image; background separation
by subtraction; improvement
by mixture of Gaussians and
thresholding. Problems: color,
lighting, and shadows. Using
erosion and dilation; opening
and closing. Connected-
component analysis.

Tracking
moving
objects

Tracking single and multiple objects;
achieving temporal consistency in the
tracking process; modeling linear
system dynamics.

Tracking by local search; the
Lucas�Kanade approach.
Including movement in the
tracking process; Kalman filter;
multiple object tracking; the
condensation algorithm; feature
point versus background
subtraction; problems and
solutions. Camshift and
Meanshift approaches. Tracking
with object detection.

Analysis Moving shape analysis and description. Describing motion and
extracting moving shapes by
evidence gathering. Adding
velocity and movement into
the shape description.
Describing the moving object
for recognition purposes.

436 CHAPTER 9 Moving object detection and description

computing power than they did when computer vision started and memory is

much cheaper, so interest has moved on to capitalize on and to exploit how we

can find and describe moving objects in sequences of images. There is also a bit

of bias here: Mark co-authored the only text on identifying people by the way

they walk (Nixon et al., 2005) since his team were among the earliest workers in

gait biometrics. We shall start with basic techniques for background estimation

since it can be used to determine the moving object in a scene, before moving on

to the more modern approaches for foreground/background separation.

9.2 Moving object detection
One of the main problems in detecting moving objects is that the insertion of a

moving object in a scene does not obey the principle of superposition. Since the

moving object obscures the background, there is no linear (filtering) approach

which can separate the moving object from its background. As such we are left

with a variety of approaches to achieve this task, as ever ranging from simple to

complex and with different performance attributes.

9.2.1 Basic approaches
9.2.1.1 Detection by subtracting the background
The basic way to separate a moving object from its background is to subtract

the background from the image, leaving just the moving object (the foreground).

This is illustrated in Figure 9.1 where we subtract an estimate of the background

(Figure 9.1(b)) from an image in a sequence (Figure 9.1(a)) to determine the mov-

ing object (Figure 9.1(c)). The basic approaches to estimating the background to

an image are actually an example of application of the statistical operators cov-

ered in Chapter 3. In principle, there are two ways to form the background image:

the most obvious is to record images which contain only the background and then

process them to reduce any variation within them. If no background images are

available, then we need to determine the background from the images containing

(a) Image from video sequence (b) Image of background (c) Moving object: (c) = (a) – (b)

FIGURE 9.1

Detecting moving objects by differencing from the background.

4379.2 Moving object detection

the moving object. We shall consider deriving an estimate of the background only

in this section, from images which contain a moving subject. The approaches cov-

ered here in this section are equally applicable to processing sequences of images

of the background (without a moving subject).

Say we have a sequence of images of a walking subject, and we want to be able

to find the background, such as the sequence of images shown in Figure 9.2(a)�(e)

where a subject is walking from left to right. These images are part of the

Southampton Gait Database (Shutler et al., 2002), which is a collection of image

sequences of subjects walking indoors and outdoors for evaluation of human gait

as a biometric. The indoor laboratory had controlled illumination; in a complemen-

tary dataset collected outdoors, the illumination was uncontrolled. One way to

determine the background is to average the images. If we form a temporal average,

an image TP where each point is the average of the points in the same position in

each of the five images, P1, P2, . . .,P5 (Eq. (9.1)), we achieve a result which shows

the background though with a faint version of the walking subject, as shown in

Figure 9.2(f). The faint version of the subject occurs since the walking subject’s

influence on image brightness is reduced by one-fifth, but it is still there. We could

of course use more images, the ones in between the ones we have already used and

then the presence of the subject will become much fainter:

TPx;y 5 P1x;y 1P2x;y 1P3x;y 1P4x;y 1P5x;y

� �
=5 (9.1)

We can also include 53 5 spatial averaging, as in Section 3.4, wherein the

average is formed from the spatially averaged images using the operator mean5()

to further reduce the presence of the walking subject (Eq. (9.2)) as shown in

Figure 9.2(g). This gives spatiotemporal averaging. For this, we have not required

(a) P1

(f) Temporal averaging TP (g) Spatiotemporal averaging
 STP

(h) Temporal median MP

(b) P2 (c) P3 (d) P4 (e) P5

FIGURE 9.2

Background estimation by sequence filtering.

438 CHAPTER 9 Moving object detection and description

any more images, but the penalty paid for the improvement in the estimate of the

background is lack of detail (and of course it took longer):

STPx;y 5 ðmean5ðP1x;y Þ1mean5ðP2x;y Þ1mean5ðP3x;y Þ
1mean5ðP4x;y Þ1mean5ðP5x;y ÞÞ=5

(9.2)

However, if we form the background image by taking the median of the five

images, as in Section 3.5.1 (i.e., the median of the values of the points at

the same position in each of the five images), a temporal median (Eq. (9.3)), then

we obtain a much better estimate of the background as shown in Figure 9.2(h).

A lot of the image detail is retained, while the walking subject disappears—all we

appear to retain is the empty laboratory. In this case, for a sequence of images

where the target walks in front of a static background, the median is the most

appropriate operator. If we did not have a sequence of images, we could just aver-

age the single image with a large operator and that could provide some estimate

(but a rather poor one) of the background:

MPx;y 5median P1x;y ;P2x;y ;P3x;y ;P4x;y ;P5x;y

� �
(9.3)

Having formed an image of the background, we now subtract the background

image from the images in the sequence, and then threshold the images, to show

the objects moving within them as shown in Figure 9.3, for the three estimates

of the background. When this is applied to these laboratory-derived images,

where the lighting was controlled, the operation can be quite successful: we find

the moving object. By these results, the median filter is best (Figure 9.3(c)) (but

requires the most computational effort), whereas the temporal average works least

best (Figure 9.3(a)) (since the moving figure forms part of the background and

appears in the final image). There are a few problems with the lighting which are

shown by the shadow detected around the feet, but that is natural since objects

will always interact with the lighting when moving (note that these effects are

reduced—between the feet—with spatiotemporal averaging). Static objects

are part of the background since they are not moving. Note that the front part of

(a) temporal averaging
(a) = Fig. 9.2(a)–Fig. 9.2(f)

(b) spatiotemporal averaging
(b) = Fig. 9.2(a)–Fig. 9.2(g)

(c) temporal median
(c) = Fig. 9.2(a)–Fig. 9.2(h)

FIGURE 9.3

Detecting moving objects by mean and median filtering.

4399.2 Moving object detection

the shirt has not been detected in any of the images (and Mark definitely has a

chest). The difference image has been thresholded, so altering the threshold will

change performance. This has been optimized here and has a different value for

each approach.

The original images are part of one of the databases freely available for evalu-

ation of gait biometrics from the University of Southampton (www.gait.ecs.soton.

ac.uk). The indoor data is derived from progressive scan digital video where sub-

jects walked in front of a chromakey background. This was designed to show

basic performance: a single subject moves in front of a static monochrome back-

ground. (The chromakey color is green unlike the blue which is often used,

largely because our students insisted on wearing blue clothes and disappeared

into a blue background. No one at Southampton wears bright green!) The outdoor

data shows the same subject walking outside where the lighting is uncontrolled:

people and vehicles move in the background, and the weather caused the foliage

to move (it even interrupted filming occasionally). This is a considerably more

challenging environment for background extraction.

The approaches start to fall apart when we consider outdoor images. The same

techniques (with the same parameter values) are now applied to a sequence of

outdoor images (Figure 9.4(a)�(e)). By Figure 9.4(i)�(k), we can see that we

have again found the moving subject—the foreground to the image. The median

approach is again the best (the averaging approaches continue to have the subject

in the background), but doh!—there’s a lot more which appears to move. This is

true for each of the ways in which the background is estimated, and that is to be

expected. Outdoors the lighting will change more than indoors (especially in

the United Kingdom where we “enjoy” winter, summer, autumn, and spring all in

the same day) and there can be shadows, as can be seen in the foreground. There

is wind too, so the bushes and the tree will be moving. And we do not live in a

vacuum, there are other objects moving in the background (there is another

pedestrian walking directly behind). So we have made a good start, but that is all

it is. We could optimize the values better (change the thresholds and extent of the

averaging and median operator) and that would improve matters a bit, but not by

much. One way to improve the quality of the extracted human silhouette is to fil-

ter the noise—all the small points. That uses morphology, which is discussed in

the following section.

9.2.1.2 Improving quality by morphology
One of the main problems observed so far is the noise points contaminating the

detected moving object and the image. Given that these points arise from motion,

it is unlikely that the image can be smoothed sufficiently to remove them without

obliterating the image detail. As such, it is common to use morphology to

remove them. This can be achieved either by removing the isolated white points

or by using erosion and dilation (opening and closing). Erosion removes noise

while preserving shape. Putatively, dilation can link the separated sections (the

head and shoulders are actually separated from the body in Figure 9.4). The effect

440 CHAPTER 9 Moving object detection and description

http://www.gait.ecs.soton.ac.uk
http://www.gait.ecs.soton.ac.uk

of these operations on the images derived by temporal median filtering on the

indoor and the outdoor imagery is shown in Figure 9.5. In Figure 9.5(b) and (e),

we can see that erosion removes some of the shadow in the indoor imagery and

most of the effects of the tree in the outdoor imagery. Dilation then returns the

silhouettes to be of the same size, as shown in Figure 9.5(c) and (e).

Naturally the result depends on the degrees of erosion and dilation and this is a

natural compromise. If too much filtering is applied, then the features will be lost

too. Here, we have applied erosion and dilation by a circular mask of radius 2.

By Figure 9.5(c), the process has improved the quality of the silhouette, but there

are still rather too many noise points in the final image in Figure 9.5(f). As such,

the last stage is to find the largest shape wherein white points are connected (the

largest connected component) and this is shown for the indoor and outdoor silhou-

ettes in Figure 9.6—this is fine for the indoor silhouette and outdoors we have most

of the body, but not the head and shoulders. We now have quite a few parameters

that can be changed to suit a particular application or a particular imaging scenario,

(a) P1

(i) Foreground by temporal
averaging

(j) Foreground by
spatiotemporal averaging

(k) Foreground by temporal
median

(g) Background by
spatiotemporal averaging

(f) Background by temporal
averaging

(h) Background by median
filter

(b) P2 (c) P3 (d) P4 (e) P5

FIGURE 9.4

Detecting moving objects in outdoor images.

4419.2 Moving object detection

but the technique is not yet as sophisticated as it can be. We can detect a moving

object and the process can be optimized for a particular scene, but the quality is

unlikely to be sufficient for general application.

9.2.2 Modeling and adapting to the (static) background
The need to achieve fast and accurate background extraction has spawned many

new approaches. We have already seen many of the problems in the previous sec-

tion—what happens when a subject’s clothing is similar to the background, the

(a) Original silhouette,
indoors (Fig. 9.3(c))

(d) Original silhouette,
outdoors (Fig. 9.4(k))

(b) After erosion

(e) After erosion

(c) After erosion + dilation
(opening)

(f) After erosion + dilation
(opening)

FIGURE 9.5

Silhouette improvement by morphology.

(a) Indoor silhouette (Fig. 9.5(c)) (b) Outdoor silhouette (Fig. 9.5(f))

FIGURE 9.6

Finding the largest connected-component shape.

442 CHAPTER 9 Moving object detection and description

effects of shadows, fragmentary shape detection, etc. The techniques so far pro-

cess a set of images so as to estimate an image of the background, and this

implies need for storage. We can, of course, have an estimate which is updated

for each new image:

NTPx;y
, i1 1. 5αNTPx;y

, i. 1 ð12αÞPix;y (9.4)

given NTP, 0. 5 0 and α is the learning rate (0,α# 1). In this way a fraction

of the new image is added to the background image and so we only need to store

a single background image. By this process, if a person is to walk into a scene

and then stop, they will be detected as they walk in and afterward will cease to be

detected (at a time dictated by the learning rate) since when stopped they will

become part of the background. As such it is indeed possible for people to blend

in with the background. In an extension, as new objects appear in the image, they

can be labeled as either background (in which case they add to the background

image) or foreground (and then not contribute to the foreground image). Further,

this can include analysis of the variance of the pixel distribution at each point,

and this leads to techniques which can accommodate changes in the background.

Our next two approaches were developed during the DARPA VSAM sponsored

project and are two of the most popular background subtraction techniques. The

first approach was developed by Stauffer and Grimson at MIT (Stauffer and

Grimson, 1999, 2000) and is now one of the most popular techniques for separat-

ing a moving object from its background.

Naturally, we can model the background as a system wherein each pixel has a

probability distribution. In the indoor images (Figure 9.2), the probability distri-

bution will peak due to the large and uniform background. A subject’s clothing

should deviate from this, and so they can be detected. Naturally, a background

model arises from more factors, so we can model it as a mixture of probability

distributions. Each pixel in the background is then described by the chance that

they are due to the uniform background, to the ceiling, or to other factors. This is

illustrated in Figure 9.7 wherein Figure 9.7(a) shows the distribution from a single

Gaussian distribution (this is probably suitable for the pixels in the large uniform

background) which is rather simple in contrast with Figure 9.7(b) which shows

three Gaussian distributions (as dotted lines) and the probability distribution aris-

ing from their addition (the solid line). Clearly, the distribution arising from mul-

tiple distributions has better capability to model more complex backgrounds: the

three distributions could be the uniform background, the track the subject is walk-

ing on and the ceiling, since there is a chance that a pixel in the background will

fall into one of these three categories.

A centered Gaussian distribution g (an extended version of Eq. (3.20)) for a

single variable x is a function of mean μ and standard deviation σ:

gðx;μ;σÞ5 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e
2ðx2μÞ2

2σ2 (9.5)

4439.2 Moving object detection

Given that we have color, we then need a multidimensional space (color mod-

els are covered in Chapter 13, Appendix 4). Here, we shall first assume that each

image in the sequence is RGB, stored in the three color planes. For d dimensions,

the multivariate Gaussian distribution G is denoted by

G x;μ;
P� �

5
1

ð2πÞd=2
��P��1=2 e

2ðx2μÞT
P21

ðx2μÞ
2σ2 (9.6)

where d is the number of variables in the multidimensional quantity x, μ is the

mean of the variables, and Σ is the d3 d covariance matrix. Given that one

assumption is that the covariance matrix reduces to a diagonal (given independent

variables wherein the off-diagonal elements—those which expose correlation—

are zero) then the multivariate Gaussian simplifies to

GSðx;μj;σjÞ5
1

ð2πσ2
j Þd=2

e

2kx2μjk2

2σ2
j (9.7)

where d5 3 for a thee axis color model (e.g., red/green/blue, RGB, noting the

color models exposed in Chapter 13, Appendix 4). The addition of k Gaussian

multivariate distributions is

pðxÞ5
Xk
j51

wjGSðx;μj;σjÞ (9.8)

where wj is the weight, or significance, of the jth distribution. We then need a

system which learns the mixture of Gaussian distributions—the differing values

for wj—which is appropriate for each pixel in the background image. Using a

Gaussian distribution is attractive since it is characterized by mean and variance

only and this reduces computational requirements. There are distributions which

are associated with the background and the foreground, where the foreground is

0.2

0.15

0.1

0 10 20

(a) Single (Gaussian) distribution (b) Multiple distributions

x
30 40

0.05

0.2

0.15

0.1

0 10 20
x

30 40

0.053

g(x, 10, 1)

g(x, 10, 1)

g(x, 14, 2)

g(x, 23, 2.4)

g(x, 10, 1) +g (x, 14, 2)+ g (x, 23, 2.4)

FIGURE 9.7

Distribution for Gaussian and for mixture of Gaussians.

444 CHAPTER 9 Moving object detection and description

the moving object. A pixel is compared with its existing k distributions. If the

value of the pixel is within 2.53 σj of the jth distribution (which makes the prob-

ability of it belonging to this distribution 99%), then it is deemed to belong to

that distribution. If the pixel matches any of the background distributions, it is

deemed to be a background pixel. The background model is formed from B distri-

butions which in rank order satisfy

XB
j51

wj . T (9.9)

where the value of the threshold T controls the number of distributions for the

background model. Reducing the value of T increases the chance that distributions

can form part of the background model. A larger value of T is more restrictive,

and hence more selective, allowing the background model to accommodate

bimodal distributions.

There is a ranking procedure with the distributions to indicate which is most

likely. This is achieved by using a ratio of weight to variance (wj/σj). By this, the

most probable distributions are those with high weight and low variance, whereas

the least probable have the lowest weight and highest variance. If the pixel matches

no distribution, then it is considered to be a new distribution, replacing the distribu-

tion with the lowest confidence (the value for wj/σj) and the mean of the new distri-

bution is set to the value of the current pixel and the variance to a high value. If

the pixel matches a foreground distribution, or none of the background ones, it is

deemed to be a foreground pixel, belonging to the moving object.

We have yet to determine how the weights are calculated. Initially, they are

set to low values, with high values for the variance of each distribution. Then a

pixel comparison is made, and at the first iteration the pixel matches no distribu-

tion and so becomes a new one. At the second and later iterations, the values of

the weights of the k distributions are updated to become wj,t (where wj,t21 is their

previous value) by

wj;t 5 ð12αÞwj;t21 1αMj;t (9.10)

where the value of α controls the learning rate, the speed at which the approach

accommodates change in the background data, and where Mj,t5 1 for a matching

distribution and Mj,t5 0 for the remaining distributions. The weights are normal-

ized after this process, to sum to unity. The values of mean μj,t and variance σ2
j;t

are then updated for the matching distribution as

μj;t 5 ð12 ρÞμj;t21 1 ρxt (9.11)

σ2
j;t 5 ð12αÞσ2

j;t21 1 ρðxt 2μj;tÞTðxt 2μj;tÞ (9.12)

where

ρ5αGSðxt;μj;t21;σj;t21Þ (9.13)

4459.2 Moving object detection

After pixels have been labeled as foreground and background, a connected-

component analysis can be used to remove noise pixels. The result of moving

object detection applied to images from an indoor and an outdoor sequence

(described in Section 9.2.1.1) is shown in Figure 9.8. Note that these images have

only had slight application of morphology, aiming to show performance (but

without the distractions of noise) and can be improved beyond the results here.

Clearly, there is improvement in segmentation of the moving object over extrac-

tions achieved by the basic approaches. What is not shown here are the images

that arise while the approach is converging to the background. When a pure back-

ground image sequence (one without moving objects) is available, then the tech-

nique can converge to the background before detecting moving objects. If one is

not available, then the quality of moving object detection is impaired while the

process adapts to the background. The technique was designed for video rate

implementation and this can be achieved, so it can be deployed and then adapt to

the background, before moving objects are detected. Given that the process adapts

the background model, moving objects which become stationary will become part

of the background model, until they move again. Note that in the outdoor image,

there is a subject walking in the background who then appears in the foreground

extraction, as do some artifacts (the wind caused the thin trees to wave). The

shadow has been handled quite nicely and does not affect the outdoor segmented

image much. This is achieved by a color space transformation (in shadow, the

color is maintained while the saturation/intensity reduces) (Kaewtrakulpong and

Bowden, 2001).

(a) Indoor data

(c) Outdoor data

(b) Extraction from indoor data

(d) Extraction from outdoor data

FIGURE 9.8

Moving object extraction by mixture of Gaussians.

446 CHAPTER 9 Moving object detection and description

Several parameters can affect performance. First, there is the learning rate α
which controls the number of iterations taken to adapt to the background. Then

there is the threshold T, 0, T# 1, and the larger values of T make it better able

to accommodate multimodal backgrounds. Then there is the number of Gaussian

distributions per mixture and the values selected for the initial variance. Naturally

a smaller number of Gaussians are attractive computationally, but complex back-

grounds will suit a larger number. If the initial variance is too large, this increases

the chance that a moving object with color similar to the background might be

labeled as background. This will be the case until the estimate of variance con-

verges, and with a large value this can require more iterations.

Given its popularity, there have naturally been approaches aimed to improve

performance. An obvious change is to use a different color space: using hue satu-

ration value/intensity HSI/HSV rather than RGB color should be less prone to the

effects of shadows (since a shaded background will retain the same color only

changing in intensity), and that is indeed the case (Harville et al., 2001). One

approach aimed to detect (adapt to and remove) shadows, while improving speed

of convergence (Kaewtrakulpong and Bowden, 2001) (as used here), and another

was directed to improving speed of convergence in particular (Lee, 2005), with

an adaptive learning rate. Another approach aimed specifically to avoid fragmen-

tation of the detected moving objects (Tian et al., 2005). As such, there are many

ways to improve the performance of the basic technique still further.

9.2.3 Background segmentation by thresholding
Horprasert et al. (1999) proposed a color model in a 3D RGB color space to sepa-

rate the brightness from the chromaticity component. In this way the background

subtraction technique can separate a moving object into a foreground image, with-

out shadows. Essentially, we form a background image and subtract the current

(new) image from it. In the background image, the expected color E at pixel i is

formed of the three color components red R, green G, and blue B as

EðiÞ5 fERðiÞ;EGðiÞ;EBðiÞg (9.14)

Throughout the presentation of this technique, the notation looks rather nasty

as we are working in 3D color space. In fact, the technique becomes a neat use of

statistics derived via distance functions and these are used to derive thresholds

by which a pixel is ascribed to be a member of the foreground or the background

image. The use of color just means that we have the three color components

(Appendix 4) instead of a scalar for brightness. The pixel’s color in the current

image is

IðiÞ5 fIRðiÞ; IGðiÞ; IBðiÞg (9.15)

and we seek to measure the difference between the values of the pixels in the cur-

rent and the background image. This is the difference between the point in the

current image and the line from the origin passing through the point E. This line

represents the brightness of the point in the background image which is its

4479.2 Moving object detection

brightness scaled by a factor α. If α exceeds 1 then the point is brighter, and if it

is less than 1 it is darker, as in Section 3.3.1, so α is a measure of the brightness

difference. The brightness distortion BD is the value of α which brings the

observed color closest to the line

BDðαðiÞÞ5minðIðiÞ2αðiÞEðiÞÞ2 (9.16)

If we measure the distance as the Euclidean distance (Section 8.4.1), then we

obtain the chrominance distortion CD as the distance of I(i) from α(i)E(i)

CDðiÞ5 kIðiÞ2αðiÞEðiÞk (9.17)

This is illustrated in RGB space in Figure 9.9 where the chrominance distor-

tion (the difference in color) is the length along the line normal to line from the

origin to E.

The algorithm initially uses N frames to form the background model. From

these frames, the mean and the standard deviation are computed for each color

band (R, G, B) in each pixel. The expected color E is then the average over these

N frames:

EðiÞ5 fμRðiÞ;μGðiÞ;μBðiÞg (9.18)

and the variance

sðiÞ5 fσRðiÞ;σGðiÞ;σBðiÞg (9.19)

The value of α is that which minimizes

min
IRðiÞ2αðiÞμRðiÞ

σRðiÞ

� �2
1

IGðiÞ2αðiÞμGðiÞ
σGðiÞ

� �2
1

IBðiÞ2αðiÞμBðiÞ
σBðiÞ

� �2 !
(9.20)

R

G

CD(i)

{0, 0, 0}

E(i)α(i)E(i)

I(i)

B

FIGURE 9.9

Difference between background and current image components.

448 CHAPTER 9 Moving object detection and description

giving

BDðiÞ5αðiÞ5
IRðiÞμRðiÞ
σ2
RðiÞ

1
IGðiÞμGðiÞ
σ2
GðiÞ

1
IBðiÞμBðiÞ
σ2
BðiÞ

μRðiÞ
σRðiÞ

� �2
1

μGðiÞ
σGðiÞ

� �2
1

μBðiÞ
σBðiÞ

� �2 5

X
CAfR;G;Bg

ICðiÞμCðiÞ
σ2
CðiÞ

� �
X

CAfR;G;Bg

μCðiÞ
σCðiÞ

� �2
(9.21)

and

CDðiÞ5
ffiX
CAfR;G;Bg

ICðiÞ2αðiÞμCðiÞ
σCðiÞ

� �2vuut (9.22)

Different pixels exhibit different distributions, of brightness and of chromi-

nance distortion, and these need to be used so that we can learn appropriate

thresholds. The variation of the brightness distortion is given by

aðiÞ5RMSðBDðiÞÞ5

ffiPN21

i50

ðαðiÞ2 1Þ2

N

vuuut
(9.23)

and the variation of the chrominance distortion as

bðiÞ5RMSðCDðiÞÞ5

ffiPN21

i50

ðCDðiÞÞ2

N

vuuut
(9.24)

The values of BD(i) and CD(i) are then normalized to be in the same range as

a(i) and b(i) as NBD(i)5 (BD(i)2 1)/a(i) and NCD(i)5CD(i)/b(i). The back-

ground image is stored as

BðiÞ5 fEðiÞ; sðiÞ; aðiÞ; bðiÞg; CAfR;G;Bg (9.25)

By analyzing the chrominance and brightness, the pixels in the current image

can be classified as one of four categories:

1. The (original) background B: if the brightness and chrominance are similar to

those of the original image.

2. The shadow S: if it has similar chrominance but lower brightness.

3. The highlighted background H: if it has similar chrominance and higher

brightness.

4. The moving (foreground) object F: if it has different chrominance.

4499.2 Moving object detection

This is achieved by using thresholds T applied to BD(i) and CD(i).Our result-

ing image is then a set of labels (which can be represented as colors or shades) as

MðiÞ5
F if NCDðiÞ. TCD or NBDðiÞ, TBDmin

B if NBDðiÞ, TBDlow and NBDðiÞ. TBDhigh
S if NBDðiÞ, 0

H otherwise

��������
(9.26)

The foreground condition F avoids misclassifying dark pixels as shadow by

including a brightness constraint. We now have a technique which splits an image

into four categories, given a current image, a set of background images, and a

few equations. As such, it is an alternative premise to the mixture of Gaussians

approach, and one which was originally designed to handle shadows. An example

of the technique’s original application is given in Figure 9.10 where the moving

person has been separated from their static background, as has their shadow

(beneath them).

9.2.4 Problems and advances
Many of the problems have been covered previously in that there are problems

with shadows, with object fragmentation and practical concerns such as speed of

operation, speed of adaption, and memory requirements. There is one survey on

background estimation (Piccardi, 2004), though it could be more comprehensive.

There again, it covers the major techniques and aspects of practical concern—the

inevitable compromise between speed and performance. Since the problem is ger-

mane to the analysis and detection of moving objects, there are many more

approaches, e.g., Ivanov et al. (2000) and Elgammal et al. (2002). The techniques

can deliver an estimate of an object’s silhouette, but problems remain which can

only be sorted at a higher level. The first of these is to determine the track of the

silhouette, the position of the object in successive image frames.

(a) Original image (b) Labeled regions M(i)

FIGURE 9.10

Finding moving objects and shadows by thresholding (Horprasert et al., 1999).

450 CHAPTER 9 Moving object detection and description

9.3 Tracking moving features
9.3.1 Tracking moving objects
So far we have extracted moving objects from their background. To analyze

movement, it is necessary to link the appearance of the object in successive

frames to determine the motion trajectory of the moving shape. This is called

object tracking. This can be used for recognizing moving objects (this can allow

automated surveillance of urban areas, e.g., to find subjects behaving suspi-

ciously, or just for traffic analysis) to enable us to interact with computers (as in

gesture recognition) and to give facility for analyzing video streams as in vehicle

navigation (and for autonomous vehicles). It is actually wider than this, since air/

ship traffic systems use radars, and moving ships and aeroplanes are tracked there

as well.

We could simply aim to derive the trajectories by determining the nearest

object in a successive frame. This assumes there has been little motion between

the successive frames and that another moving object has not appeared close to

the object of interest. It also assumes that the initial position of the object is

known. We can constrain the procedure by using texture or appearance (e.g.,

color) but this presumes in turn that the illumination does not change significantly

between image frames. Clearly, this is a complex problem, since objects move

and change in appearance and we want to determine which track was, or is being,

taken. This is illustrated in Figure 9.11 which shows the result of tracking a per-

son walking in a sequence of video images, of which four are shown here.

A black rectangle has been drawn around the walking subject in each frame and

the parameters of this rectangle are delivered by the tracking algorithm. As the

subject walks, the position of the rectangle is centered on the walking subject and

the width of the rectangle changes as the subject’s legs swing when walking.

From this, we can then analyze the person and their motion.

One strategy is to determine the moving object, by background removal, and

to then track points in the moving object. Another strategy is to determine interest

points, such as corners, and to then track the appearance of these points in

(a) Initial image P0 (b) P1 (c) P2 (d) P3

FIGURE 9.11

Tracking a walking subject (detected subject within black rectangle).

4519.3 Tracking moving features

successive frames (and there is natural debate on which features to track (Shi and

Tomasi, 1994)). There has been an enormous effort in computer vision, and

many, very sophisticated, approaches have been made (Lepetit and Fua, 2005;

Yilmaz et al., 2006). We shall start with a basic approach before moving on to

the more sophisticated approaches that are now available. We shall use the basic

approach as a vehicle to emphasize performance requirement and then concentrate

on the aspects of feature extraction and description consistent with the other

approaches, rather than detail the tracking operations themselves since this is

beyond the scope of this text and is left to the other literature in this field.

9.3.2 Tracking by local search
The Lucas�Kanade approach (Lucas and Kanade, 1981) is one of the original

approaches to tracking. It is in fact a way of determining temporal alignment: if

we can determine alignment then we can determine movement, so it is also a

method for determining optical flow. We shall follow a reflective analysis of the

Lucas�Kanade approach (Baker and Matthews, 2004) to expose its iterative

basis. Their analysis unifies the presentation of the approach and reformulates the

technique, with computational advantage (and Matlab code is available), though

we shall concentrate on the basic approach only. (One rather nice touch is the

use of an image of Takeo Kanade to illustrate the eponymous approach.) Though

a simpler solution is available for optical flow, we are concerned here with track-

ing and this implies arbitrary movement in the image. Essentially, we are con-

cerned with determining the motion of an image template, or patch, from one

frame to the next: we seek to align a template T(x) to an image P(x), where x5
[x y]T is a vector of the pixel coordinates. The aim of tracking is to determine

the motion from one image to the next. This motion is the warp (or projection)

W(x,p) which takes a template point to the image point. Different choices for the

parameters p give different warps, and the point moves to a different place in a

different way. If the position of a patch is to move within the image, a transla-

tion, then

Wðx; pÞ5 x1 p1
y1 p2

� 	
(9.27)

The warp is the mapping and the parameters p1 and p2 are the optical flow. As

such there are links between tracking and optical flow (Section 4.5): this is to

be expected since optical flow is movement and tracking concerns estimating the

position to which points have moved. The presentation here is general and maps to

more dimensions (noting the image geometry exposed in Chapter 10, Appendix 1).

The target of tracking is to minimize the error between the image and the appear-

ance of the template, and then tracking has been achieved. This is expressed as

minimizing the difference between the image when warped to the template and the

template itself. This is given as the least squared error (for more detail on least

452 CHAPTER 9 Moving object detection and description

squares analysis, see Chapter 11, Appendix 2) which is a method often chosen for

computational and theoretical reasons. We then seek to minimize

min
X
x

ðPðWðx;pÞÞ2TðxÞÞ2 (9.28)

which minimizes (for all values of the point coordinates x) the sum of the differ-

ences squared between the projection of the image and the template. This is a

new version of Eq. (4.83) which describes the error in estimating optical flow.

The projection of the image is the warping of the image P via the warp factor W

which is governed by the values for the parameters p. We then need to determine

the values of the parameters which minimize the summation. We then seek to add

a small value Δp to the parameters and we shall iteratively seek new values for

Δp, forming at each iteration i the new values for the parameters p, i11. 5
p, i. 1Δp until the changes become small, Δp-0. The first step is to perform

a Taylor expansion on the projection to the new parameter values

PðWðx;p1ΔpÞÞ5PðWðx;pÞÞ1rP @W

@p
Δp (9.29)

which ignores terms in Δp2 and higher (since Δp is small, higher order terms

become vanishingly small). This is then a different version of Eq. (4.86) used to

calculate optical flow. In this, the term rp is the gradient of the image P, rP5
(@P/@x @P/@y), computed from the image and then warped back into the tem-

plate using the current value of W. The differential term is actually called a

Jacobian since it is a differential with respect to each of the parameters and then

linearizes the expression around these values as

@W

@p
5

@Wx=@p1 @Wx=@p2 ::: @Wx=@pn

@Wy=@p1 @Wy=@p2 ::: @Wy=@pn

" #
(9.30)

We can now substitute Eq. (9.29) into Eq. (9.28) and we seek to minimize

min
Δp

X
x

PðWðx;pÞÞ1rP @W

@p
Δp2TðxÞ

� �2
(9.31)

By differentiation, the minimum is when the differential is zero, so by this

2
X
x

rP @W

@p

� �T

PðWðx;pÞÞ1rP @W

@p
Δp2TðxÞ

� �
5 0 (9.32)

which gives a solution for the parameter updates

Δp5H21
X
x

rP @W

@p

� �T

ðTðxÞ2PðWðx;pÞÞÞ (9.33)

4539.3 Tracking moving features

Where H is an approximation to the Hessian matrix

H5
X
x

rP @W

@p

� �T

rP @W

@p

� �
(9.34)

The updates are actually computed by steepest descent; we are forming the

gradient of the change in a function with respect to parameters and seeking the

minimum of the function in that way. (Imagine a concave surface—like a bowl—

and bounce a ball downward in the direction of the surface normal, the ball will

eventually locate the lowest point. With extreme luck it will get there in a single

bounce, but it usually takes more.)

The stages of the algorithm are shown in Figure 9.12. Essentially, the proce-

dure aims to calculate values for the parameter updates, which are used in

the next iteration of the algorithm, until the values for the updates are less than a

chosen threshold. As with any algorithm, the devil tends to be in the detail. In the

first stage, to project P to compute P(W(x,p)) requires interpolating the image P

at sub-pixel locations. Later, the gradient image rP is computed from the image

and then warped back into the template using the current value of W. To compute

Project P with W(x, p) to form P(W(x, p))

Evaluate difference T(x) – P(W(x, p))

Project gradient ∇P with W(x, p)

Compute Jacobian ∂W/∂p Eqn. 9.30

Compute ∇P(∂W/∂p)

Compute Δp Eqn. 9.33

Update parameters p<i+1> = p<i> + Δp

Is Δp <threshold?

Yes, finish
No, iterate

Compute H and invert it

FIGURE 9.12

Stages in Lucas�Kanade tracking.

Adapted from Baker and Matthews (2004).

454 CHAPTER 9 Moving object detection and description

the Jacobian @W/@p, the warps W need to be differentiable with respect to the

parameters. In the case of simple projections, such as translation, the Jacobians

are constant, but not for more complex cases. Further, we need to calculate the

Hessian matrix H at each iteration (since it also depends on the current value of

the parameters). The total cost of these operations is O(n2N21 n3) for n para-

meters and an N3N image P. This can be reduced by newer formulations (Baker

and Matthews, 2004), thus leading to faster execution and also to reduced track-

ing error.

9.3.3 Problems in tracking
There are of course inherent problems which will be found with many approaches

(and thence approaches which solve the problems). First there is initialization—

how do we start? After all, we are tracking from one frame to the next. Next—what

about appearance? The object might move and rotate. In the Lucas�Kanade

approach, is one template enough for the appearance change, or can the template

be modified or updated? Then there is illumination—the object will appear to

change under varying illumination conditions (as in background subtraction). In

the Lucas�Kanade approach, this means that the contribution by gradient informa-

tion will change. There might also be a difficulty with conditioning—do the

assumptions of the algorithm fit the chosen application? In Lucas�Kanade

approach, there has been a further assumption that we can ignore second-order

terms since our first approximation is quite close, and there is an assumption that

errors are of a normal distribution in the minimum least squares approach. Then—

what happens under occlusion? The object might disappear from view for a few

frames and the tracker needs either to reinitialize or to continue tracking uninter-

rupted. Finally, there might be multiple objects in the same scene, with similar

appearance properties and that can naturally confuse any tracking algorithm. These

are part of the central difficulty in computer vision: there are some jobs which

human vision can accomplish with ease but which are much more complex in an

automated analysis scenario.

9.3.4 Approaches to tracking
There is a rich selection of approaches to tracking and many depend on techni-

ques which have been presented earlier. First, there is what precisely is tracked:

this can be points or neighborhoods, kernels or shapes, or tracking can be based

on the object’s silhouette or its perimeter.

In point tracking, we represent the object to be tracked as a set of points or

neighborhoods. The earliest form of points used were low-level feature extraction

such as edges (as such were available), color, corners derived by the Harris

operator, or optical flow. Now, the selection of operators extends to localized

features. To determine an object’s track, we seek to link points in one frame to

4559.3 Tracking moving features

points in the next, based on the previous object state which can include object

position and motion. Naturally, allowing free motion makes the tracking problem

very difficult, so it is usual to impose constraints on the tracking procedure, such

as constraints on consistency (how fast can an object move), proximity (how

much change in direction is likely), and rigidity (by how much an object can

change shape), and in some formulations these are expressed as uncertainty,

whereas they can also be fixed parameters. Points are tracked by solving for the

correspondence deterministically or by using a statistical approach. One early

approach (Sethi and Jain, 1987) solved for the correspondence by using a Greedy

approach constrained by proximity and rigidity. Later, this was extended

(Veenman et al., 2001) by enforcing a consistency on points that derive from the

same object. Another of the earliest approaches (Broida and Chellappa, 1986)

used a statistical framework, the Kalman filter, to track points in noisy images.

The Kalman filter is a recursive predictor�corrector framework based on the state

space framework and which assumes that the noise is of a Gaussian distribution

and hence the least squared error criterion (as in Appendix 2, Section 11.1).

Modeling an object’s dynamics in this way can improve consistency in the track-

ing procedure. The limitation of the assumption of Gaussian noise can be allevi-

ated using a particle filter, and there is an excellent textbook available which

describes this (Blake and Isard, 1998) though it is rather dated (in mitigation, full

text can be downloaded and principles do not change). This develops the conden-

sation (conditional density propagation) algorithm (Isard and Blake, 1998) which

can track objects through highly cluttered scenes. Multiple objects can be handled

within the condensation approach and by proximity or consistency in multiple

hypothesis tracking (Reid, 1979) (which emphasizes the link to radar analysis) for

which an efficient implementation is available (Cox and Hingorani, 1996). The

results of foreground/background segmentation (specifically the approach in

Section 9.2.2) were tracked using Kalman filters (Stauffer and Grimson, 2000) for

which multiple models were available within a multiple hypotheses tracking algo-

rithm based on linear prediction to achieve a real-time system.

In kernel tracking, a template is used to determine the position to which the

object has moved. The template can be a simple shape, such as a circle, or more

complex. Then, the matching procedure can be achieved by using Eq. (5.14) for a

range of anticipated template positions (the vicinity within which the template is

expected to move. Edge information found early use (Birchfield, 1998) when

using an ellipse to model a moving subject’s head; others used “dispersedness” to

categorize objects which were tracked using templates (Lipton et al., 1998).

Naturally consideration must be made for appearance change as the object moves

within the image sequence: one approach is to adapt the template during the

sequence. In the W4 real-time approach (the name derives from Who? What?

Where? When?) (Haritaoglu et al., 2000), background detection was combined

with shape analysis and tracking to locate people and their parts and to create

models of their appearance to achieve tracking through interactions such as

456 CHAPTER 9 Moving object detection and description

occlusions (and in groups). The Meanshift tracker (Comaniciu et al., 2000;

Comaniciu et al., 2003) iteratively maximizes the appearance similarity iteratively

by comparing the histograms of the object and the window around the hypothe-

sized object location, aiming to increase (histogram) similarity. The approaches

can be used to detect and track shapes or silhouettes in multiple appearances by

adaptation or prediction.

9.3.5 Meanshift and Camshift
Camshift (continuously adaptive Meanshift) is a kernel-based technique for object

tracking (Bradski, 1998) that is widely used in applications like photography (i.e.,

face tracking), video surveillance, and modern user interfaces. It is based on the

Meanshift technique (Comaniciu et al., 2000) and uses a histogram to represent a

tracked object. The position of an object is computed by looking for the image

location that maximizes the similarity between the tracked object’s histogram and

the local image histogram. The maximization process is formulated based on non-

parametric density estimation and gradient optimization.

9.3.5.1 Kernel-based density estimation
An object in an image can be characterized by considering that pixel values

define a random variable. That is, by taking an image of an object, we obtain a

sequence of numbers that describe the probability of obtaining particular pixel

values when the object is located in an image. The characterization can use raw

pixel values that give features like gray level values or colors, but it is also poss-

ible to consider more complex characterizations of objects. In general, there is no

rule for selecting the best features, but they are dependent on the application, the

object, and the background; simple features like gray level values can be useful in

some applications, while complex features sometimes cannot disambiguate

objects in complex scenes. Thus, to determine which features are useful in an

application, it is necessary to evaluate how much they change from frame to

frame and their capability of distinguishing objects form the background. For sim-

plicity, in the examples in this section, we will illustrate the concepts by charac-

terizing objects using 2D color histograms. The presented formulation is very

general and features can describe data in any dimension.

Since pixels can have a finite number of values, they define a probability

function qs(y). In this notation, the symbol s represents the position of a fixed

size region where the probability is computed. A value of the function qs(y) will

be denoted as qs(yu) and it gives the likelihood of obtaining a pixel with value yu.

The feature obtained from a pixel xi will be denoted as yu5 b(xi). Note that yu is

a vector. For example, when using color features, yu can be a 2D or a 3D vector

containing color components. Thus, in a face tracking application, qs(yu) can rep-

resent the probability that a given color yu can be found in the pixels representing

4579.3 Tracking moving features

a face, while in a sport tracking application qs(yu) can define probabilities that

characterize the players on the pitch.

In order to define a probability function, qs(y) should be normalized. Thus, if

n denotes the number of possible features, then

Xn
u51

qsðyuÞ5 1 (9.35)

qs(y) is generally called the density function since it is considered to be an

approximation of a continuous function. However, in practice it is defined by a

discrete set of values, so it can be formulated using a probability function.

In a parametric approach, the form of qs(y) is known or assumed. Thus, pixel

values are used to estimate the parameters of the probability function. For exam-

ple, we could assume that qs(y) is approximately normal, thus an object is

described by estimating the mean and standard deviation. In a nonparametric

approach, the function is not related to a particular density form, but the estima-

tion computes probabilities for each of the values of the distribution. That is, it is

necessary to estimate each value of qs(yu). A nonparametric estimate of qs(y) is

obtained by computing a normalized histogram, i.e., by counting the value of

each feature found in an image and by dividing each entry by the total number of

features. That is,

qsðyuÞ5

X
xiARsXbðxiÞ5 yu

Kðs; xiÞ

m
(9.36)

In this equation, m is the total number of features obtained from the image

region Rs, so the histogram is normalized. The summation is evaluated for each

pixel xi in the region Rs whose feature is yu. That is, if K(s,xi)5 1, then this equa-

tion defines how many of the m features are equal to the feature yu. The function

K(s,xi) is called the kernel and Eq. (9.36) is called the kernel density estimator

(Wand and Jones, 1995).

Equation (9.36) can also be written by using the delta function. That is,

qsðyuÞ5

X
xiARs

Kðs; xiÞδðbðxiÞ2 yuÞ

m
(9.37)

Here, δ(b(xi)2 yu) will be one if b(xi)5 yu and zero otherwise. In the Meanshift

tracking technique, the kernel is selected such that it gives more importance to

points closer to the center of the region Rs than to the borders. This is convenient

since the border of the region generally contains background values that do not

belong to the object being tracked, but most importantly it makes the histogram

smooth and biased toward the center of the region. Thus, techniques based on gra-

dient maximization can effectively locate the tracked object. Two popular kernels

458 CHAPTER 9 Moving object detection and description

are defined by the Gaussian and the Epanechnikov functions. The Gaussian kernel

is defined by

Kðs; xiÞ5
1

2πh2
e
2

ks2xik2
2h2 (9.38)

The Epanechnikov kernel is defined by

Kðs; xiÞ5
3

2

�
12

 s2 xi

h

2�;
0;

ks2 xik
h

1

otherwise

8><
>: (9.39)

These kernels are defined in 2D since they depend on pixel positions.

However, they can be defined in any dimension. These equations use the same

parameter h to indicate the size of the kernel. In practice, the value of h can

be determined by empirical performance evaluations on test images. For the

Gaussian kernel, the density defined in Eq. (9.36) is given by

qsðyuÞ5
1

2mπh2
X

xiARsXbðxiÞ5 yu

e
2

ks2xik2
2h2 (9.40)

Since the kernel is applied to a limited region in an image, it actually defines

a truncated Gaussian. Thus, its area is not correctly normalized in Eq. (9.40).

However, for simplicity in the presentation, we will consider that the error is

insignificant.

For the Epanechnikov kernel, the density in Eq. (9.36) is given by

qsðyuÞ5
3

2m

X
xiARsXbðxiÞ5 yuXks2 xik# h

ð12 kðs2 xiÞ=hk2Þ (9.41)

In practice, both kernels are useful for object tracking. However, the

Epanechnikov function is sometimes preferred since it produces simpler computa-

tions during the gradient optimization (as we will see in the next section). The

Gaussian kernel is also attractive since it has well-known properties.

Code 9.1 illustrates the implementation of Eq. (9.40). The function parameters

are the image, the location of the tracking region, the region size, and the kernel

size h. The function in Code 9.2 uses as features the color components Cb and Cr

defined in Chapter 13, Appendix 4. Thus, the entries yu correspond to 2D color

features, and image regions are characterized using a 2D histogram. In the

example code, the histogram has 643 64 entries. In application, the size of the

histogram should be determined by considering factors such as quantization,

noise, computational load, and discrimination capability. In general, small histo-

grams are good to avoid sparse distributions, are smooth, and can handle changes

in features created as the object moves. However, small histograms have less fea-

tures, so have less ability to characterize or discriminate between similar objects.

4599.3 Tracking moving features

function histogram = Density(image, s, regionRadius, h)
% Implementation of density estimation for a colour image
% Parameters: Image, Position of the image region, the size of the region and kernel size
% the size is measured from the centre of the region/kernel

% Colour components
red = image(:,:,1);
green = image(:,:,2);
blue = image(:,:,3);

% Create 64x64 histogram
histSize = 64;
histogram(1:histSize,1:histSize) = 0;

% Total number of values in the histogram for normalisation
total = 0;

% Density estimation
for DeltaRow = -regionRadius : regionRadius % Rows inside the image region
 for DeltaColumn = -regionRadius : regionRadius % Columns inside the image region

 % Position of the pixel in the image
 row = s(1) + DeltaRow;
 column = s(2) + DeltaColumn;

 % Compute 2D color features (Cb,Cr) for the (x,y) pixel
 [Cb Cr] = ColourFeature(red(row,column), green(row,column), blue(row,column));

 % Gaussian kernel
 w = exp(-(DeltaRow*DeltaRow + DeltaColumn*DeltaColumn)/2*h*h);

 %increment histogram
 histogram(int8(Cb),int8(Cr)) = histogram(int8(Cb),int8(Cr))+w;
 total = total + w;
 end
end

% Normalise
histogram = histogram ./ total;

CODE 9.1

Density estimation.

function [Cb, Cr] = Colourfeature(red, green, blue)
% Compute colour feature from RGB colour components
% Parameters: Colour components

% Normalise
r = double(red) / 256;
g = double(green) / 256;
b = double(blue) / 256;

% Colour features form 1 to 64
Cb = (128 - 37.79*r - 74.203*g + 112*b)/4;
Cr = (128 + 112*r - 93.786*g - 18.214*b)/4;

CODE 9.2

Color feature computation.

460 CHAPTER 9 Moving object detection and description

Figure 9.13 shows an example of the histograms obtained by using Code 9.1.

The image in Figure 9.13(a) shows the first frame of a video sequence. The black

square indicates the region to be tracked. The detail of this region is shown in

Figure 9.13(b). Figure 9.13(c)�(e) shows the histograms obtained by considering

values of h from 0.1 to 5. As the size increases, the histograms have a smoother

appearance and are less sparse. However, the region is characterized by less col-

ors. In general, it is difficult to find an optimal value that provides a good conver-

gence for tracking and that gives a good object characterization in the feature

space (Comaniciu et al., 2003).

9.3.5.2 Meanshift tracking
Similarity function
The location of a region in an image sequence can be determined by searching

for the position that maximizes the similarity between the region’s density and

the image density. The search can be simplified by considering that the speed of

the object and the frame rate of the sequence are such that the region’s location

does not change much. Thus, a neighborhood close to the current target’s posi-

tions gives a collection of target candidates qs(y). In this section, we will use the

symbol q̂ðyÞ to indicate the density characterizing the tracking region. This den-

sity is obtained by considering the first frame of a sequence. Thus, it does not

change during the tracking and consequently it does not depend on s. As such, in

20

40

60

80

100

120

140

20
35

30

25

20

15

10

5

2 4 6 8 10 12 14 1640 60

Cr

Cb

Cr Cr

Cb Cb

80

(a) Original image

(c) Density for h = 0.1 (d) Density for h = 1.0 (e) Density for h = 5.0

(b) Tracking region

100 120 140

FIGURE 9.13

Example density estimation.

4619.3 Tracking moving features

order to determine the position of the tracked object, we can look for the position

s that maximizes the similarity between q̂ðyÞ and qs(y). The similarity between

densities can be measured by using the Bhattacharyya coefficient. According to

this coefficient, the similarity at location s is defined as

rðsÞ5
Xn
u51

ffi
q̂ðyuÞqsðyuÞ

p
(9.42)

Note that since the distributions are normalized, then this equation computes a

dot product. That is,

rðsÞ5
ffiffiffiffiffiffiffiffiffiffi
q̂ðy1Þ

p
;
ffiffiffiffiffiffiffiffiffiffi
q̂ðy2Þ

p
; . . . ;

ffiffiffiffiffiffiffiffiffiffi
q̂ðynÞ

ph i
U

ffiffiffiffiffiffiffiffiffiffiffiffi
qsðy1Þ

p
;
ffiffiffiffiffiffiffiffiffiffiffiffi
qsðy2Þ

p
; . . . ;

ffiffiffiffiffiffiffiffiffiffiffiffi
qsðynÞ

ph i
(9.43)

Since the dot product is equal to the cosine of the angle between the two vec-

tors, the coefficient will be one if the two distributions are equal and zero when

they are completely different (i.e., orthogonal). The reason of using the square

root of the values rather than the histogram entries is because the square root

defines unitary vectors. That is, since the densities are normalized, we have that

the modulus of the vectors in Eq. (9.43) is unity. For example, for qs(y), we haveffi
qsðy1Þ

p� �2
1

ffiffiffiffiffiffiffiffiffiffiffiffi
qsðy2Þ

p� �2
1?1

ffiffiffiffiffiffiffiffiffiffiffiffi
qsðynÞ

p� �2r
5 1 (9.44)

As such, a simple approach for tracking a region consists on finding the maxi-

mum by evaluating Eq. (9.42) for potential target locations. Unfortunately, this

process is too intensive to be practical in applications. Thus, a more practical

solution is to use gradient information to look for the local maximum. This can

be implemented by approximating the function by using a Taylor series. That is,

if we consider that the position of the object in the current frame defines the ori-

gin of r(s), then a close value can be approximated by

rðsÞ � rðs0Þ1
drðs0Þ
ds

Δs (9.45)

Here, s0 denotes the position in the current frame. Thus, the similarity value is

approximated as the value in the origin plus a value in the direction of gradient.

By developing Eq. (9.45), we have

rðsÞ �
Xn
u51

ffi
q̂ðyuÞqs0ðyuÞ

p
1
Xn
u51

d
ffiffiffiffiffiffiffiffiffiffi
q̂ðyuÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
qs0 ðyuÞ

p
ds

Δs (9.46)

By considering the derivate of the product in the second term,

rðsÞ �
Xn
u51

ffi
q̂ðyuÞqs0 ðyuÞ

p
1

1

2

Xn
u51

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂ðyuÞ
qs0 ðyuÞ

s
Δs

dqs0 ðyuÞ
ds

1
1

2

Xn
u51

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qs0 ðyuÞ
q̂ðyuÞ

s
Δs

dq̂ðyuÞ
ds

(9.47)

462 CHAPTER 9 Moving object detection and description

The last term evaluates the derivative of a constant. Thus,

rðsÞ �
Xn
u51

ffi
q̂ðyuÞqs0 ðyuÞ

p
1

1

2

Xn
u51

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂ðyuÞ
qs0 ðyuÞ

s
Δs

dqs0 ðyuÞ
ds

(9.48)

Since Δs is small, then the derivative can be approximated by qs2qs0 . Since

qs0 is constant, then the maximum can be found by

rðsÞ �
Xn
u51

ffi
q̂ðyuÞqs0ðyuÞ

p
1

1

2

Xn
u51

qsðyuÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂ðyuÞ
qs0ðyuÞ

s
(9.49)

The summation in the first term of this equation is independent of s, thus the

maximum can be obtained by only considering the second term. This term will be

denoted as r̂ðsÞ: Thus, the best location is obtained by finding the maximum of

r̂ðsÞ5 1

2

Xn
u51

qsðyuÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂ðyuÞ
qs0ðyuÞ

s
(9.50)

By using the definition in Eq. (9.37), this equation can be rewritten as

r̂ðsÞ5 1

2m

Xn
u51

X
xiARs

Kðs; xiÞδðbðxiÞ2 yuÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂ðyuÞ
qs0 ðyuÞ

s
(9.51)

This equation provides an estimate of the similarity of a region at position s
given the initial distribution of the region (i.e., q̂ðyuÞ) and the distribution of the

region at the current tracking position (i.e., qs0ðxÞ). Equation (9.51) can be rear-

ranged as

r̂ðsÞ5 1

2m

X
xiARs

Kðs; xiÞ
Xn
u51

δðbðxiÞ2 yuÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂ðyuÞ
qs0 ðyuÞ

s
(9.52)

That is,

r̂ðsÞ5 1

2m

X
xiARs

Ws0 ðxiÞKðs; xiÞ (9.53)

For

Ws0 ðxiÞ5
Xn
u51

δðbðxiÞ2 yuÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂ðyuÞ
qs0 ðyuÞ

s
(9.54)

As such, the problem of finding the maximum of Eq. (9.42) can be solved by

finding the maximum of Eq. (9.53). Note that the approximation assumes that r(s)

is smooth at the region close to the current solution, so the function can be

approximated by a second-order Taylor series. The maximum of Eq. (9.53) can

be found by gradient optimization that is formulated using the concepts of kernel

profiles and shadow kernels.

4639.3 Tracking moving features

Kernel profiles and shadow kernels
In gradient optimization techniques, kernels are differentiated to obtain the direc-

tion of the maxima or the minima of a function. In some cases, this process can

be simplified by a reparameterization of the kernel such that the kernel, and thus

the optimization problem, can be solved in a lower dimension. The new parame-

terization is called the profile of the kernel and for the kernels in Eqs (9.38) and

(9.39) are defined by

Kðs; xiÞ5 k

 s2 xi

h

2� �
(9.55)

Note that k and K are the same function but with a change of variable. We

will denote the new variable as

a5

 s2 xi

h

2 (9.56)

As such, for the Gaussian kernel in Eq. (9.38), we have

kðaÞ5 1

2πh2
e2

1
2
a (9.57)

For the kernel in Eq. (9.39), we have

kðaÞ5
3

2
ð12 aÞ; ffiffiffi

a
p

1

0; otherwise

8<
: (9.58)

Thus, the differential of the kernel can be expressed using the profile kernel as

dKðs; xiÞ
dx

5
dkðaÞ
da

da

dx
(9.59)

That is,

dKðs; xiÞ
dx

5
2

h
ðs2 xiÞk0

 s2xi

h

2� �
(9.60)

This equation can be rewritten as

dKðs; xiÞ
dx

5
2

h
ðxi 2 sÞg

 s2 xi

h

2� �
(9.61)

For

g

 s2 xi

h

2� �
52 k0

 s2xi

h

2� �
(9.62)

The function g is called the shadow kernel. According to this definition, the

shadow kernel for the Gaussian kernel in Eq. (9.57) is

gðaÞ5 1

4πh2
e2

1
2
a (9.63)

464 CHAPTER 9 Moving object detection and description

That is, the Gaussian kernel and its shadow kernel are the same. For the

Epanechnikov kernel in Eq. (9.58), we have

kðaÞ5 3=2;
ffiffiffi
a

p
1

0; otherwise

(9.64)

That is, the shadow kernel is defined by a flat kernel. Since the computations

of a flat kernel are simple, then the Epanechnikov kernel is very attractive for gra-

dient optimization implementations.

Gradient maximization
The maxima of Eq. (9.53) can be obtained by an iterative procedure that looks for

a path along the direction of the derivative. The direction is defined by the gradi-

ent of the function. Thus, a step ascent in the similarity function in Eq. (9.53) is

given by

s11 5 s1rr̂ðsÞΔs (9.65)

Here s11 is a new position obtained from the current position s by moving

into the direction of the gradient with a step Δs. In an iterative process, the new

position becomes the current position and Eq. (9.65) is reevaluated until the solu-

tion converges. According to Eq. (9.53), the gradient in Eq. (9.65) is given by

rr̂ðsÞ5 1

2m

X
xiARs

Ws0 ðxiÞ
dKðs; xiÞ

dx
(9.66)

By considering Eq. (9.61), we can rewrite this equation using the shadow kernel.

That is,

rr̂ðsÞ5 2

2mh

X
xiARs

ðxi 2 sÞWs0 ðxiÞg

 s2 xi

h

2� �
(9.67)

By developing the multiplication terms in this equation, we have

rr̂ðsÞ5 2

2mh

X
xiARs

xiWs0 ðxiÞg

 s2xi

h

2� �
2

2

2mh
s
X
xiARs

Ws0 ðxiÞg

 s2xi

h

2� �

(9.68)

By dividing both sides by the last summation, we have

rr̂ðsÞ
pðsÞ 5

X
xiARs

xiWs0ðxiÞg

 s2 xi

h

2� �

pðsÞ 2 s (9.69)

For

pðsÞ5 2

2mh

X
xiARs

Ws0 ðxiÞg

 s2 xi

h

2� �
(9.70)

4659.3 Tracking moving features

Equation (9.69) defines the Meanshift and it corresponds to a step in the direc-

tion of the maximum (i.e., the gradient). If we consider that rr̂ðsÞð1=pðsÞÞ5
rr̂ðsÞΔs; then the magnitude of the step is inversely proportional to the distance

to the maximum. By substituting Eq. (9.69) into Eq. (9.65), we have

s11 5 s1

X
xiARs

xiWs0 ðxiÞg

 s2 xi

h

2� �

pðsÞ 2 s (9.71)

That is, a position in the maximum direction is determined by

s11 5

X
xiARs

xiWs0ðxiÞg

 s2xi

h

2� �

pðsÞ (9.72)

This equation is simply defining the weighted mean of the positions in the

region. Thus, the position is moved toward the current local estimation of the

mean. Successive steps will lead to the local maxima of the function.

Code 9.3 illustrates an implementation of Eq. (9.72). The code computes a

new position from the original density of the region and the current region’s posi-

tion. These are the parameters q and s in the Meanshift function. Other parameters

are the size of the region being tracked and kernel size h. The code performs three

main steps. First it computes the density of the region in the image and this is

stored in the histogram qs. These values are then used to compute the weights

defined in Eq. (9.54) with result stored in the matrix w. Finally, the summations

are evaluated and the new position is estimated. The process first computes the

parameter a defined in Eq. (9.56). This parameter is used to evaluate the shadow

kernel defined in Eq. (9.57). The first summation defines a 2D position while the

second defines a scalar.

Figure 9.14 shows the results obtained by using the implementation in Code

9.3 showing the tracking region for six frames. These results were obtained by

using the position in the previous frame as starting point for the Meanshift estima-

tion in the next frame. The Meanshift iteration for the frame is finished when

there is no change in the region’s position.

function newPosition = MeanShift(image, q, s, regionRadius, h)
% Implementation of mean shift
% Parameters: Image, region density, previous position,
% the size of the region and kernel size

% Colour components
red = image(:,:,1);
green = image(:,:,2);
blue = image(:,:,3);

% Create weight matrix
wSize = 2*regionRadius+1;
w(1:wSize,1:wSize) = 0;

CODE 9.3

Meanshift.

466 CHAPTER 9 Moving object detection and description

9.3.5.3 Camshift technique
One of the problems of the Meanshift technique is that the size of region that

delineates the object depends on the distance between the object and the camera.

Thus, keeping the same region size for the gradient computations can make the

tracking fail. The Camshift technique (Bradski, 1998) is an adaptation of the

Meanshift method that recomputes the region distribution at each frame by con-

sidering changes in region size. The sizes of the regions are determined by using

moments on the back-projection image.

% Density in current frame position
qs = Density(image, s, regionRadius, h);

% Compute weights
for DeltaRow = -regionRadius : regionRadius % Rows inside the image region
 for DeltaColumn = -regionRadius : regionRadius % Columns inside the image region

 % Position of the pixel in the image
 row = s(1) + DeltaRow;
 column = s(2) + DeltaColumn;

 % Compute 2D color features (Cb,Cr) for the (x,y) pixel
 [Cb Cr] = ColourFeature(red(row,column), green(row,column), blue(row,column));

 % Weight index
 wRow = DeltaRow + regionRadius + 1;
 wColumn = DeltaColumn + regionRadius + 1;

 % Weight
 if qs(int8(Cb),int8(Cr)) > 0
 w(wRow, wColumn) = sqrt(q(int8(Cb),int8(Cr)) / qs(int8(Cb),int8(Cr)));
 end
 end
end

% Compute mean shift summations
meanSum = 0;
kernelSum = 0;
for DeltaRow = -regionRadius : regionRadius % Rows inside the image region
 for DeltaColumn = -regionRadius : regionRadius % Columns inside the image region

 % Kernel parameter
 a = (DeltaRow*DeltaRow + DeltaColumn*DeltaColumn) / h*h;

 % Gaussian kernel
 g = exp(-a/2);

 % Weight index
 wRow = DeltaRow + regionRadius + 1;
 wColumn = DeltaColumn + regionRadius + 1;

 % Position of the pixel in the image
 row = s(1) + DeltaRow;
 column = s(2) + DeltaColumn;

 % Mean sum
 meanSum = meanSum + w(wRow, wColumn) * g * [row column];

 % Kernel sum
 kernelSum = kernelSum + w(wRow, wColumn) * g;

 end
end

% Mean shift
newPosition = round(meanSum / kernelSum);

CODE 9.3

(Continued)

4679.3 Tracking moving features

The back-projection image is obtained by setting the value of each pixel to be

equal to the entry in the region’s histogram. That is, the value in a pixel xi is

given by

pðxiÞ5 qsðbðxiÞÞ (9.73)

Thus, the image value p(xi) defines the probability that the pixel xi belongs to the

image from where the histogram was computed.

Code 9.4 illustrates the implementation of the process described by Eq. (9.73).

The implementation assigns the histogram value to the pixel value. Note that in

practice, the Camshift method only requires computation of the back-projection

for pixels close to the tracking region; however, for simplicity and illustration

purposes, Code 9.4 computes the probabilities for all the image.

Figure 9.15 shows an example of a result obtained by using Code 9.4. This

image was obtained by computing a histogram from the region in Figure 9.14(a).

This histogram is then back-projected in the second frame shown in Figure 9.14(b).

The image has been inverted for printing, so dark values represent pixels that are

probably part of the tracking region. It is important to mention that in order to

reduce the influence of pixels in the background, the histogram should be computed

by using a kernel as described in Eq. (9.36). For example, for the region in

Figure 9.14(a), the green values in the background (i.e., the grass) should not have a

significant contribution in the histogram. Otherwise the back-projection image will

have probabilities that can make the tracking region increase in size at each

iteration.

20

40

60

80

100

120

140

20 40 60 80

(a) Initial frame
100 120 140

(b) Second frame

20

40

60

80

100

120

140

20 40 60 80 100 120 140

(c) Third frame

20

40

60

80

100

120

140

20 40 60 80 100 120 140

(d) Fourth frame

20

40

60

80

100

120

140

20 40 60 80 100 120 140

(e) Fifth frame

20

40

60

80

100

120

140

20 40 60 80 100 120 140

(f) Sixth frame

20

40

60

80

100

120

140

20 40 60 80 100 120 140

FIGURE 9.14

Example results of the Meanshift technique.

468 CHAPTER 9 Moving object detection and description

function projection = BackProjection(image, histogram)
% Implementation of BackProjection
% Parameters: Image, histogram and region where to perform the back projection
% the size is measured from the centre of the region

% Colour components
red = image(:,:,1);
green = image(:,:,2);
blue = image(:,:,3);

% Image Size
[imageRows imageColumns depth] = size(image);

% Create new image
projection(1:imageRows,1:imageColumns) = 0;

% Density estimation
for row = 1 : imageRows % Image rows
 for column = 1 : imageColumns % Columns inside the image region

 % Compute 2D color features (Cb,Cr) for the (x,y) pixel
 [Cb Cr] = ColourFeature(red(row,column), green(row,column), blue(row,column));

 % Back project
 projection(row,column) = histogram(int8(Cb),int8(Cr));
 end
end

CODE 9.4

Back-projection.

20 40 60 80 100 120 140

140

120

100

80

60

40

20

FIGURE 9.15

Back-projection of the first frame in the image and size calculated using moments.

4699.3 Tracking moving features

As illustrated in Figure 9.15, the back-projection image gives a hint of the

position and size of the tracked region. The Camshift technique is developed on

this observation; it determines the size of the tracking region by looking for a

rectangle that includes high values close to the current object position. The size

and position of the rectangle is computed by using image moments.

In Chapter 7, we showed how image moments can describe the shape of image

regions, and the center of the shape is determined by

xc 5
M10

M00

; yc 5
M01

M10

(9.74)

Thus, by taking the moments of p(xi), we can determine the center of the

tracked region in the next frame. Similarly the size of the region can be computed

as (Horn, 1986)

Sx 5

ffi
ða1 cÞ1

ffi
b2 1ða2 cÞ

p
2

;

s
Sy 5

ffi
ða1 cÞ2

ffi
b2 1ða2 cÞ

p
2

s
(9.75)

For

a5
M20

M00

2 x2c ; b5 2
M11

M00

2 xcyc

� �
; c5

M02

M00

2 y2c (9.76)

Code 9.5 illustrates an implementation of Eq. (9.75). The function returns the

position and size of the rectangle and it takes as parameters the image, the histo-

gram computed in the previous frame, the current position of the object, and a

region of interest. The position and the size define the region where the moments

are computed. The size parameter is generally slightly bigger than the current

tracking region and it defines how much the region can grow.

The last parameter for the function in Code 9.5 defines a scale that is applied

to the final result. To understand this parameter, we shall remember that the histo-

gram is computed using a kernel that gives strong weights to central pixels in the

region. Thus, the moments will tend to reduce the size to eliminate pixels in the

background. Accordingly, a scale is applied to compensate for the reduction

caused by the kernel.

function [Crow, Ccolumn, Srow, Scolumn] = ComputeScale(image, s, regionRadius, scaleResult)
% Estimate a scale based on moments
% Parameters: Single valued image, Position of the image region, the size of the region and a final scale
% the size is measured from the centre of the region

% Image Size
[imageRows imageColumns] = size(image);

% Momemtus
M00 = 0;
M10 = 0;
M01 = 0;

CODE 9.5

Camshift region size computation.

470 CHAPTER 9 Moving object detection and description

Figure 9.16 shows an example of the tracking obtained by using the region

estimation in Code 9.5. This example was obtained by Camshift iteration such

that a new region size is computed before starting to search for a region in a new

frame. The new size is then used as parameter for Code 9.3. In this example,

M11 = 0;
M20 = 0;
M02 = 0;
for DeltaRow = -regionRadius(1) : regionRadius(1) % Rows
 for DeltaColumn = -regionRadius(2) : regionRadius(2) % Columns

 % Position of the pixel in the image
 row = s(1) + DeltaRow;
 column = s(2) + DeltaColumn;

 if row > 0 & row < imageRows & column > 0 & column < imageColumns
 M00 = M00 + image(row,column);
 M10 = M10 + row * image(row,column);
 M01 = M01 + column * image(row,column);
 M11 = M11 + row * column * image(row,column);
 M20 = M20 + row * row * image(row,column);
 M02 = M02 + column* column * image(row,column);
 end
 end
end

Ccolumn = (M01/M00);
Crow = (M10/M00);

a = M20/M00- Crow*Crow;
b = 2*(M11/M00 - Crow *Ccolumn);
c = M02/M00- Ccolumn*Ccolumn;

Srow = round(scaleResult(1) * sqrt((a+c+sqrt(b*b+(a-c)*(a-c))/2)));
Scolumn = round(scaleResult(2) * sqrt((a+c-sqrt(b*b+(a-c)*(a-c))/2)));

Ccolumn = round(M01/M00);
Crow = round(M10/M00);

CODE 9.5

(Continued)

20

40

60

80

100

120

140

20 40 60 80

(a) Initial frame
100 120 140

(b) Second frame

20

40

60

80

100

120

140

20 40 60 80 100 120 140

(c) Third frame

20

40

60

80

100

120

140

20 40 60 80 100 120 140

(d) Fourth frame

20

40

60

80

100

120

140

20 40 60 80 100 120 140

(e) Fifth frame

20

40

60

80

100

120

140

20 40 60 80 100 120 140

(f) Sixth frame

20

40

60

80

100

120

140

20 40 60 80 100 120 140

FIGURE 9.16

Example results of the Camshift technique.

4719.3 Tracking moving features

although the tracked objects are moving without large change in the camera

and object distances, Camshift obtains regions that contain less background. This

is illustrated in Figure 9.16(c). In this figure, the white rectangle shows the

tracked region using Meanshift and the black rectangle indicates the region

tracked by Camshift. The width difference between both tracking regions is of 26

pixels.

9.3.6 Recent approaches
Tracking is attractive since it is required by many applications though it is natu-

rally a difficult task and there are problems with occlusion, especially in indoor

scenes; lighting, especially in outdoor scenes; clutter; and occlusion, by indoor or

street furniture. An allied field concerns target tracking in, say, radar imagery—as

used in air traffic control. There is a textbook now advertised (Porikli and Davis,

2012) focusing on “computational approaches for detection and tracking of

human body, road boundaries and lane markers as well as on recognition of

human activities, drowsiness, and distraction state” (one of its editors—Larry

Davis—has featured much in the discussions so far). We shall explore some of

the newer approaches and newer data, but the interested reader must note that it

is a field which continues to progress and satisfy more challenging application

requirements.

The more advanced approaches couple object detection with tracking (Leibe

et al., 2008) which can reconcile difficulty with large changes in background and

when the camera itself might be moved, unlike the classic (static) background

subtraction methods. The procedure also aims to avoid drift in the estimates of

position, which can be inherent in such scenarios. One approach (Leibe et al.,

2008) employed an object detection framework which was a probabilistic exten-

sion of the GHT, using learning (though HoG could equally have been used).

Tracking can add a temporal context to the detections and can be used to predict

future locations. The best set of trajectories were selected from those by homolo-

gizing the positions of the detected objects with the hypothetical trajectories from

a simple (first-order) dynamical model. The task is to determine the object loca-

tion given constraints that two objects can neither be in the same place at the

same time nor account for the same pixels simultaneously. The process uses auto-

matically derived scene geometry to reconcile the object detection and tracking

processes (should two objects appear in the same place in an image then the

object furthest from the camera must be occluded by the nearest object), while

implicitly handling multiple objects. This led to a system demonstrated to be able

to track cars and people, in data derived from moving cameras. Another approach

(Huang et al., 2008) considered ability to track within crowded scenes, where

objects can have similar appearances. Arguing that even recent approaches to

object detection are insufficient and lead to missed detections, false alarms, or

error, the approach used a hierarchical process from short segments to longer

472 CHAPTER 9 Moving object detection and description

tracks, including scene ingress and egress points, and shown capable of tracking

people in two popular datasets. The tracking�learning�detection (TLD) approach

(Kalal et al., 2010a,b) is an algorithm that simultaneously tracks, learns, and

detects an unknown object in a video stream. TLD makes minimal assumptions

about the object, the scene, or the camera’s motion. It requires only initialization

by a bounding box and operates in real time, as has been shown on YouTube.

Aiming to increase robustness of object detection for tracking, Stalder intro-

duced (Stalder et al., 2010) cascaded confidence filtering (CCF) which incorpo-

rates constraints on the size of the object, on the preponderance of the

background, and on the smoothness of trajectories to adapt a generic person

detector to a specific scene. The approach was demonstrated to better enable

tracking by detection on complex data derived from an industrial scene, as shown

in Figure 9.17. Here, the images are of workers assembling a car from parts, and

the detections of the workers are shown. Note the high level of occlusion and

clutter within the viewed scene, and the moving people are identified successfully

(except in one case in Figure 9.17(c)—but also note the apparent similarity

between the person and his background).

The approach achieves its success by incorporating many previously described

approaches in stages and the example results of the result of each added stage are

shown in Figure 9.18. This is an image from a sequence of images (and detections)

wherein the workers move parts to a welding station. First, the object detector is

HoG and this is reconciled with scene geometry to give a geometric filter, with

best result of detecting a single subject in Figure 9.18(a). A background filter

derived from mixture of Gaussians can increase the ability to differentiate a

subject from their background, allowing detection of the previously undetected

workers (Figure 9.18(b)). The trajectory filter allows for temporal consistency

allowing for detection of other workers who would have been visible in previous

(or successive) image frames (Figure 9.18(c)). A particle filter is used in post-

processing to enhance possible structures which might be (missed) trajectories.

(a) SCOVIS image
with three subjects

(b) Later image
with three subjects

(c) Later image with
two subjects and one
undetected person

(d) Later image with
two subjects

FIGURE 9.17

Tracking people in an industrial scene (Stalder et al., 2010) (detected subjects within

white rectangles; undetected subjects within dotted rectangle).

4739.3 Tracking moving features

9.4 Moving feature extraction and description
9.4.1 Moving (biological) shape analysis
If we are to find and recognize moving shapes, the approach depends on their

basic nature. If the shape is that of a manmade object, then we can deploy the

object detection approaches of Section 9.2 and the tracking approaches of

Section 9.3 so as to derive a trajectory from which the motion can be determined.

Certainly these techniques can operate at high speed, especially when compared

with later approaches but can lack an explicit model of the tracked object. The

tracking procedure does depend on appearance, and viewpoint invariant

approaches are those which can recognize an object irrespective of the pose of

the object relative to the direction of view of a camera. Alternatively, we may

seek to find and recognize biological shapes which deform as the subject moves.

One of the first approaches to representing movement for recognition purposes

aimed to recognize motion alone. The motion can be described by a motion

energy image (MEI) which shows where motion has occurred (over the whole

sequence) and a motion history image (MHI) which shows how recent the motion

was. The MHI values occur at the positions of points in the MHI image and the

distinction between the two was used to increase discriminatory capability. The

MEI was calculated as a function of the temporal extent of movement (τ) as

MEIðτÞtx;y 5 ,τ21

t50
Pt21x;y (9.77)

and the value of τ can be determined to optimize discriminability. This is illus-

trated in Figure 9.19 where the MEI in (d) was determined from a sequence of

images, of a subject progressing from standing to sitting, of which three images

are shown in (a)�(c).

(a) Geometric filter (b) Geometric filter +
background filter

(c) Geometric filter +
background filter +

trajectory filter

(d) Geometric filter +
background filter +
trajectory filter +

particle filter

FIGURE 9.18

Including detection approaches in tracking (Stalder et al., 2010).

474 CHAPTER 9 Moving object detection and description

The MHI, illustrated in Figure 9.20, was calculated as

MHIðτÞtx;y 5
τ; Ptx;y 5 1

maxð0;MHIðτÞt21x;y
2 1Þ; Ptx;y 6¼ 1

���� (9.78)

Hu invariant moments were used to describe the MEI and MHI images and

the Mahalanobis distance was calculated between the moment descriptions.

Thus, multiple video sequences were recorded of separate actions at different

view angles. The Hu moments were observed to smooth the description of

movement and the actions could be recognized/discriminated successfully

(Figure 9.20).

There has been considerable (and continuing) research in (human) action rec-

ognition (Poppe, 2010) and this has been accompanied by the development of

standardized datasets and evaluations. In motion analysis and recognition, the

recovery of human poses and motion from image sequences can be viewed as a

regression/tracking problem, whereas recognition of action is a classification

(a) P0 (b) P20 (c) P40 (d) MEI

FIGURE 9.19

Determining a Motion Energy Image (Bobick and Davis, 2001).

(a) Sitting (b) Sitting MHI (c) Waving (d) Waving MHI

FIGURE 9.20

Determining a Motion History Image (Bobick and Davis, 2001).

4759.4 Moving feature extraction and description

problem. In global representations of human motion, the action is described as a

whole and obtained by background subtraction/tracking approaches. An alterna-

tive is to use local features, which generally employ learning approaches. By the

data used, actions are often presegmented, though there are emergent approaches

to action detection. As such, the approaches have less focus on feature extraction

and description by computer vision which we shall move to in this section. We

shall consider approaches which aim to segment and describe moving objects in

image sequences, by extending feature extraction techniques for application to a

sequence of images (largely, thereby, accruing advantages of correlation between

successive images in the spatiotemporal domain).

9.4.2 Detecting moving shapes by shape matching
in image sequences

Section 9.2 described approaches which can extract moving objects. In general

this was achieved by modeling the background and then removing it to find the

moving shape. An alternative approach is to model the moving shape so as to

be able to separate it from the background. To extract the moving object by shape

matching, one approach is to determine the moving shape in each separate image

and then the collated results can be used to estimate the shape’s motion.

Alternatively, there is the velocity HT for detecting moving shapes (Nash et al.,

1997). This parameterizes shapes together with their motion, thus allowing a col-

lective description of the motion between frames. To deploy this, we need to

develop a model of the moving shape under consideration, as was performed in

Section 5.5 for static shapes. For a circle moving with (linear) velocity, vx and vy
along the x and y directions, respectively, we have point coordinates which are a

function of time t as

xðtÞ5 cx 1 vxt1 r cos θ

yðtÞ5 cy 1 vyt1 r sin θ
(9.79)

where cx, cy are the coordinates of the circle’s center, r is the circle’s radius, and

θ allows us to draw the locus of the circle at time t. We then construct a 5D accu-

mulator array in terms of the unknown parameters cx, cy, vx, vy, r and then vote

for each image of the sequence (after edge detection and thresholding) in this

accumulator array. By voting in a 5D space, the technique is clearly computation-

ally more demanding than other approaches, but retains the exact description of

the object under consideration. Naturally, by grouping the information across a

sequence, the technique was shown to be more reliable in occlusion than by

extracting a single circle for each frame and determining the track as the locus of

centers of the extracted circles.

The approach can be extended to determine shapes with pulsatile motion.

This requires a model of pulsation which can be achieved by changing the (fixed)

476 CHAPTER 9 Moving object detection and description

radius of the circle to that of a pulsating circle rp. This radius, subject to a pulsa-

tile motion of amplitude a, pulse width w, period T, and phase φ, is given by

rp 5 r2 a sin
t2 iT 2φ

w

� �
; i5 0; 1; . . . ; φ, t,φ1w (9.80)

Figure 9.21 shows the result of deploying the velocity HT, using the circle

generating function of Eq. (9.79) (with vx5 vy5 0) and the pulsatile radius func-

tion of Eq. (9.80), to a sequence of ultrasound images of an artery (and the

detected artery is highlighted in black). The artery pulsates as blood is pumped

around the body by the heart; the images are of the carotid artery which is in the

neck and is of prime interest in studies of atherosclerosis (stroke). Here, the noise

level is clearly very high and the motion is such that the pulsatile velocity HT is

the only conceivable approach to accurately determining the pulsating artery in

the sequence.

The velocity HT was extended to a technique for finding moving lines as in

the motion of the human thigh in the first model-based approach for recognizing

people by the way they walk (Cunado et al., 2003). It is to be noted that human

walking is periodic in that the pattern of motion exists with a period defined by

the time at which a foot makes contact with the floor and the time at which the

same foot makes contact with the floor next time. The model concentrated at the

motion of the upper parts of the human leg, the thighs. Here, the model needed to

account not only for the lateral displacement of the walking human, but also for

the change in inclination of the human thigh. The model first considered the hori-

zontal displacement of the human hips, which was derived as the motion of a cen-

ter point with coordinates (cx,cy):

cxðtÞ52
β
ω0

1 vxt1
α
ω0

sinðω0tÞ1
β
ω0

cosðω0tÞ
0
@

1
A

cyðtÞ52
β
ω0

1 vyt1
α
ω0

sinðω0tÞ1
β
ω0

cosðω0tÞ
0
@

1
A

(9.81)

(a) P1 (b) P2 (c) P3 (d) P4 (e) P5 (f) P6

FIGURE 9.21

Detecting pulsating artery (Nash et al., 1997).

4779.4 Moving feature extraction and description

where vx is the average velocity along the x axis and vy is that for the y direction,

ω0 is the angular velocity of the gait cycle, and α and β are determined by model-

ing the pelvis motion. This is used as a basis for the model of the thigh, as

rx 5 cx0 1 cxðtÞ2λ sinðφðtÞÞ
ry 5 cy0 1 cyðtÞ2λ cosðφðtÞÞ (9.82)

where cx0 and cy0 are the initial positions of the hip and λ can take any real value

representing points from the hip to the knee. For a constant walking speed, the

hip rotation φ(t) is a periodic function with period T. A Fourier series can repre-

sent any periodic signal with fundamental frequency ω05 2π/T. For a real peri-

odic signal, the Fourier series representation can have the form

xðtÞ5 a0 1
XN
k51

Rðake jω0ktÞ (9.83)

And the function φ(t) can be represented by Eq. (9.83). As such, the inclina-

tion of the thigh is represented by a series of harmonics, as consistent with obser-

vations from earlier medical studies and the earlier model-based approaches to

gait description. Essentially, by this and other techniques, the extracted sets of

numbers which describe walking gait appear to be unique to, and repeatable for,

each individual. Gait as a biometric easily precedes computer vision: in The

Tempest Shakespeare wrote (and Ceres observed) in Act 4 that “Great Juno

comes, I do know her by her gait” and some other examples confirm Shakespeare

knew (or used) this well. Detailed material on gait biometrics is not our issue

here and can be found elsewhere (Nixon et al., 2005).

The analysis by this model is illustrated in Figure 9.22 which shows frames of

a walking subject on which are superimposed a line showing the extracted posi-

tion and orientation of the (moving) human thigh.

The velocity HT was also used in a GHT for moving shapes (Grant et al.,

2002) which imposed a motion trajectory on the GHT extraction. The shape was

extracted from the image of a subject and constituted the silhouette profile of the

upper body and the head. For an arbitrary shape which simply translates, the arbi-

trary shape can be described by Fourier descriptors as in Section 7.2.3. Given a

(a) P5 (b) P6 (c) P7

FIGURE 9.22

Detecting moving lines (Cunado et al., 2003).

478 CHAPTER 9 Moving object detection and description

moving (nondeforming) shape s with initial scale and rotation as5 [lg ρg]
described by FDs FDx and FDy converted to vectors (along x- and y-axis) from

the origin to a point on the curve, the scaled and rotated shape itself can be

described (as in Eq. (5.79)) as

Rxðs; asÞ 5 lguxðs;FDxÞcosðρgÞ2 lguyðs; FDy ÞsinðρgÞ
Ryðs; asÞ 5 lguxðs;FDxÞsinðρgÞ1 lguyðs;FDy ÞcosðρgÞ

(9.84)

Then the curves w which vote for the reference point (in this case the center

of the shape) are

wðs; i; l; ρ; vx; vyÞ5Rxðs; l; ρÞUx 1Ryðs; l; ρÞUy 1 ivxUx 1 ivyUy (9.85)

where i is the image number within the sequence, vx and vy are the x center and y

center velocity parameters, respectively, and Ux and Uy are the two orthogonal

(unit) vectors defining the x- and y-axis, respectively.

Aðb; l; ρ; vx; vyÞ5
X
iADi

X
tADt

X
sADs

Mðb;λðt; iÞ2wðs; i; l; ρ; vx; vyÞÞ (9.86)

where b is the translation vector; a matching functionM(a,b)5 1 if a5 b; Di, Dt, Ds

are the domains of the sequence, the image, and the shape, respectively; and λ(t,i)
is a parametric function that defines the points in the image sequence for image i.

This expression gives an accumulation strategy for finding moving arbitrary shapes.

For each edge pixel in a frame, a locus of votes is calculated from the Fourier

description of the template shape s and entered into the accumulator A. The coordi-

nates of the loci are adjusted to allow for the predicted motion of the shape, depen-

dent on the frame index, as in the velocity HT. This gives a GHT for finding an

arbitrary shape moving with constant velocity (and acceleration could also be mod-

eled). This is illustrated in Figure 9.23 where the booster of the space shuttle is the

target shape (highlighted in white) and the above technique is used to determine its

position within a sequence of images of a shuttle’s launch.

In human motion, body parts move up and down as the legs are vertical (in

the stance phase) and when the legs are extended (at heel strike). Thus, the move-

ment of a human body requires incorporation of a motion template (Grant et al.,

(a) P0 (b) P10 (c) P18 (d) P26

FIGURE 9.23

Detecting a moving arbitrary shape (Grant et al., 2002).

4799.4 Moving feature extraction and description

2002). The expected (quasi-sinusoidal) trajectory is highlighted and the position of

the center of mass depicted in each frame. In frame 24 (Figure 9.24(a)), the template

is at its highest position and drops in the succeeding frames (Figure 9.24(b) and (c)).

The motion trajectory can then be imposed within an evidence gathering framework,

thus allowing the successful extraction of the template’s position in each frame of

the sequence.

Later a GHT was developed which can extract deforming moving shapes

(Mowbray and Nixon, 2004) (articulated ones) which have a cyclic deformation.

This used Fourier descriptors within an evidence gathering framework and suc-

cessfully extracted pedestrians in sequences of images derived outdoors (as shown

in Figure 9.8).

9.4.3 Moving shape description
Essentially, we are considering how to determine sets of numbers which can

describe uniquely moving shapes. Since we are aiming for a unique description,

we can then recognize the moving shape. When the object is biological, we can

determine numbers which represent the shape and its deformation. When the

object is a person, we can then recognize them by their body shape and their

movement; this is recognition by their gait.

The most basic description of an object is its silhouette, which is an image.

The simplest image to form from a sequence of silhouettes is the average silhou-

ette, which is the image formed by averaging the silhouette images Pi (computed

from silhouettes cropped in the manner of Figure 9.25(d�f)) within an image

sequence (Veres et al., 2004; Zongyi and Sarkar, 2004). Thus

average silhouettex;y 5
1

N

XN
i51

Pix;y (9.87)

This is illustrated in Figure 9.25(a�c) which shows three frames from a

sequence of 30 frames comprising the full period of the subject’s walking cycle

(a) P24 (b) P30 (c) P36

FIGURE 9.24

Detecting moving people by a GHT (Grant et al., 2002).

480 CHAPTER 9 Moving object detection and description

(which is from the time when one foot strikes the ground until the frame when

the same foot again strikes the ground). These silhouettes were derived from a

sequence of images recorded in the laboratory conditions of Figure 9.2. The qual-

ity is higher than the silhouettes shown earlier in Figure 9.8 reflecting use of

morphological operations and connected-component analysis (as in Figure 9.6).

The silhouettes then extracted from these images used a fixed bonding box

(Figure 9.25(d�f)). The average silhouette resulting from applying Eq. (9.87) to a

sequence of such silhouettes is shown in Figure 9.25(g) and the subject’s thorax

and its inclination can be seen very clearly; the legs and arms are quite blurred

according to the subject’s movement and the effects of the small errors/shadows

due to the subject’s interaction with the illumination have been reduced by the

averaging process. The subject in Figure 9.25(g) is clearly different to the subject

in Figure 9.25(a�f) by virtue of a different shape of head and thorax inclination

when walking. The average silhouette, also known as the gait energy image (Han

and Bhanu, 2006) (thus showing its relation with the MEI in Section 9.4.1, but

here the walking motion is periodic), can be used for recognition purposes and

has proved the most simple and a quite effective method for subject recognition

by gait. Another form of the average silhouette is the gait entropy image (Khalid

et al., 2010), again computed from silhouettes cropped in the manner of

Figure 9.25(d�f), which is

gait entropyx;y 5
1

N

XN
i51

Pix;y ln Pix;y

� �
(9.88)

and is shown in Figure 9.25(h). This shows more clearly the subject’s contour

and the points affected most by walking.

(a) P0

(d) Silhouette 1 (e) Silhouette 9 (f) Silhouette 30 (g) Average
silhouette

(h) Gait entropy
image

(b) P9 (c) P30

FIGURE 9.25

Processing a walking subject’s silhouettes.

4819.4 Moving feature extraction and description

These descriptions are images and they can be used directly or compressed

using subspace analysis such as principal components analysis to extract the most

important parts of the silhouette and to reduce the effects of noise. As such we

can use either an image of points or a compressed version as the set of numbers

used for recognition purposes. An alternative representation of the silhouette is to

use its symmetry, as in Section 6.4.2. There, an image was formed which

reflected not only the symmetry with a human’s shape, but also the symmetry of

their motion that was determined (particularly in the region between the legs).

This represents walking differently and provides a different means to describe

moving biological shapes by their shape and motion.

One approach (Wang et al., 2003b) used the perimeter of the silhouette to

reduce computational requirements. The 2D silhouettes were transformed into

a sequence of 1D signals by storing the distance from the centroid to the silhou-

ette perimeter. The silhouette was unwrapped in an anticlockwise manner

(Figure 9.26(a)) to determine a signal which changed with the position along the

perimeter of a subject’s silhouette. The vertical axis is the distance of a perimeter

point from the centroid and the horizontal axis is an index to all points in the

perimeter of the walking figure. To enable comparison between subjects, the dis-

tances were normalized for magnitude and resampled so as to become a vector of

fixed size. This is then the description of the moving subject and by its formula-

tion using perimeter, provides an alternative to the gait energy/average silhouette

approach.

As an extension of a standard approach to feature description, Shutler (Shutler

and Nixon, 2006) developed velocity moments which can be used to recognize

moving objects over a sequence of images, such as those in Figure 9.25(a�c),

applied to recognizing people by their gait. The moments are derived from a com-

plete cycle since human gait is periodic and a single cycle suffices to derive the

measures that are used for recognition.

(a) Unwrapping a silhouette (b) Silhouette description

0

50

100(sil_desc0,1)No.

150

200

500
No.

1×103

Centroid

Distance

Unwrapping

FIGURE 9.26

Analyzing the perimeter of a subject’s silhouette.

482 CHAPTER 9 Moving object detection and description

The velocity moments vm sum over a sequence of I images as

vmpqαγ 5N
XI
i52

X
xAP

X
yAP

Uði;α; γÞSði; p; qÞPix;y (9.89)

where N is a scaling coefficient, Pix;y is the ith image in the sequence, S are the

moments describing a shape’s structure (and can be Cartesian or Zernike). For

centralized moments,

Sði; p; qÞ5 ðx2 xiÞpðy2 yiÞp (9.90)

where xi is the current entry in the x direction and similarly for y. The compo-

nents U are moments which describe the movement of the shape’s center of mass

between frames:

Uði;α; γÞ5 ðxi 2 xi21Þαðyi 2 yi21Þγ (9.91)

where xi21 is the previous center of mass in the x direction and similarly for y.

Rotation was not included; the technique was shown capable of use to recognize

walking subjects, not gymnasts. For a database in which each of 10 subjects

walked in front of the camera four times, and for each a period of their silhouettes

was extracted. The moments were then calculated and three of the moments are

depicted in Figure 9.27 (the moments are the axes in 3D space).

Once the description has been achieved, then it is used for classification pur-

poses. The feature vectors can be compressed using PCA or transformed for clas-

sification purposes: the distance measures (Section 8.4.1) allow us to determine

how different the moving subjects are; classification (Section 8.4.2) concerns how

well we can discriminate between subjects, and machine learning approaches

(Section 8.4.3) can be used to better enable this task. If subjects can indeed be

discriminated/recognized by the way they walk, and the velocity moments are

sufficient to achieve this, then the measures should cluster, forming 10 groups of

clusters of four points. This is what happens in Figure 9.27 though by this view-

point, the cluster for Subject 4 appears to be close to Subject 6 (but there are

many more moments and more views of this data). This reflects not just the fact

the people can be recognized by the way they walk, but also that by moving

object extraction and description, computer vision is well up to this task.

9.5 Further reading
As has been mentioned throughout, there are many more works on moving object

detection, tracking, and description than have been cited here. As interest moves

toward analyzing sequences of images; these techniques are bound to continue to

develop.

In this text, the general paradigm is to extract features that describe the target

and then to classify it for purposes of recognition. In vision-based systems, such

approaches are used in biometrics: ways to recognize a person’s identity by some

4839.5 Further reading

innate human properties. The biometrics of major interest are fingerprint, iris, and

face, and others include hand geometry, ears, and gait. The main text on biometrics

(Jain et al., 2007) surveys all major biometric approaches, many of which use com-

puter-vision approaches. Naturally, there is much interest in automatic target recog-

nition both in military and in commercial applications (e.g., Malamas et al., 2003).

This naturally translates to medical studies (e.g., Duncan and Ayache, 2000), where

the interest is either in diagnosis or in therapy. Here, researchers seek to be able to

identify and recognize normal or abnormal features within one of the many medical

imaging modalities for surgical purposes. This is the world of image processing and

computer vision. But all these operations depend on feature extraction and that is

why this text has concentrated on these basic methods, for no practical vision-based

system yet exists without them. We finish here; we hope you enjoyed the book and

will find it useful in your career or study. Certainly have a look at our web site,

http://www.ecs.soton.ac.uk/Bmsn/book/, as you will find more material there.

Don’t hesitate to send us your comments or any suggestions. À bientôt!

9.6 References
Baker, S., Matthews, I., 2004. Lucas�Kanade 20 years on: a unifying framework. Int. J.

Comput. Vis. 56 (3), 221�255 .

0.4

0.55 0.60.65
0.70.75

0.8
A 8010

0.85
0.90.95 11.05 1

0.9
0.8

0.7
0.6

0.5
0.4

0.3

A (12)210

0.5

0.6

0.7

0.8

0.9

1

A 8210

Subject 1
Subject 2
Subject 3
Subject 4
Subject 5
Subject 6
Subject 7
Subject 8
Subject 9

Subject 10

FIGURE 9.27

Velocity moments for 10 walking subjects (Shutler and Nixon, 2006).

484 CHAPTER 9 Moving object detection and description

http://www.ecs.soton.ac.uk/∼msn/book/
http://www.ecs.soton.ac.uk/∼msn/book/

Birchfield, S., 1998. Elliptical head tracking using intensity gradients and color histograms.

Proc. IEEE Comput. Vis. Pattern Recog., 232�237.

Blake, A., Isaard, M., 1998. Active Contours. Springer-Verlag, London.

Bobick, A.F., Davis, J.W., 2001. The recognition of human movement using temporal tem-

plates. IEEE Trans. PAMI 3 (3), 257�267.

Bradski, G.R., 1998. Computer vision face tracking for use in a perceptual user interface.

Intel Technol. J. Q2.

Broida, T.J., Chellappa, R., 1986. Estimation of object motion parameters from noisy

images. IEEE Trans. PAMI 8 (1), 90�99.

Comaniciu, D., Ramesh, V., Meer, P., 2000. Real-time tracking of non-rigid objects using

mean shift. Proc. IEEE Comput. Vis. Pattern Recog. 2, 142�149.

Comaniciu, D., Ramesh, V., Meer, P., 2003. Kernel-based object tracking. IEEE Trans.

PAMI 25 (5), 564�575.

Cox, I.J., Hingorani, S.L., 1996. An efficient implementation of Reid’s multiple hypothesis

tracking algorithm and its application to visual tracking. IEEE Trans. PAMI 18 (2),

138�150.

Cunado, D., Nixon, M.S., Carter, J.N., 2003. Automatic extraction and description of

human gait models for recognition purposes. Comput. Vis. Image Understand. 90 (1),

1�41.

Duncan, J.S., Ayache, N., 2000. Medical image analysis: progress over two decades and

the challenges ahead. IEEE Trans. PAMI 22 (1), 85�106.

Elgammal, A.M., Duraiswami, R., Harwood, D., Davis, L.S., 2002. Background and fore-

ground modelling using nonparametric kernel density estimation for visual surveillance.

Proc. IEEE 90, 1151�1163.

Gavrila, D.M., 1999. The visual analysis of human movement: a survey. Comput. Vis.

Image Understand. 73 (1), 82�98.

Grant, M.G., Nixon, M.S., Lewis, P.H., 2002. Extracting moving shapes by evidence gath-

ering. Pattern Recog. 35, 1099�1114.

Han, J., Bhanu, B., 2006. Individual recognition using gait energy image. IEEE Trans.

PAMI 28 (2), 316�322.

Haritaoglu, I., Harwood, D., Davis, L.S., 2000. W4: real-time surveillance of people and

their activities. IEEE Trans. PAMI 22 (8), 809�830.

Harville, M., Gordon, G., Woodfill, J., 2001. Foreground segmentation using adaptive mix-

ture models in color and depth. Proceedings of the IEEE Workshop on Detection and

Recognition of Events in Video, pp. 3�11.

Horn, B.K.P., 1986. Robot Vision. MIT Press.

Horprasert, T., Harwood, D., Davis, L.S., 1999. A statistical approach for real-time robust

background subtraction and shadow detection. Proceedings of the IEEE ICCV’99

Frame-Rate Workshop, Corfu, Greece.

Hu, W.M., Tan, T.N., Wang, L.A., Maybank, S., 2004. A survey on visual surveillance of

object motion and behaviors. IEEE Trans. SMC(A) 34 (3), 334�352.

Huang, C., Wu, B., Nevatia, R., 2008. Robust object tracking by hierarchical association of

detection responses. Proc. ECCV, 788�801.

Isaard, M., Blake, A., 1998. CONDENSATION—conditional density propagation for visual

tracking. Int. J. Comput. Vis. 29 (1), 5�28.

Ivanov, Y., Bobick, A., Liu, J., 2000. Fast lighting independent background subtraction.

Int. J. Comput. Vis. 37 (2), 199�207.

4859.6 References

Jain, A.K., Flynn, P., Ross, A. (Eds.), 2007. Handbook of Biometrics. Springer.

Kaewtrakulpong P., Bowden, R., 2001. An improved adaptive background mixture model

for realtime tracking with shadow detection. Proceedings of the Second European

Workshop on Advanced Video Based Surveillance Systems, AVBS01.

Kalal, Z., Mikolajczyk, K., Matas, J., 2010a. Face-TLD: tracking�learning�detection

applied to faces. Proceedings of the International Conference on Image Processing.

Kalal, Z., Matas, J., Mikolajczyk, K., 2010b. P�N learning: bootstrapping binary classifiers

by structural constraints. Proceedings of the IEEE Computer Vision and Pattern

Recognition.

Khalid, K., Xiang, T., Gong, S., 2010. Gait recognition without subject cooperation.

Pattern Recog. Lett. 31 (13), 2052�2060.

Lee, D.-S., 2005. Effective Gaussian mixture learning for video background subtraction.

IEEE Trans. PAMI 27 (5), 827�832.

Leibe, B., Schindler, K., Cornelis, N., van Gool, L., 2008. Coupled object detection and

tracking from static cameras and moving vehicles. IEEE Trans. PAMI 30 (10),

1683�1698.

Lepetit, V., Fua, P., 2005. Monocular model-based 3D tracking of rigid objects: a survey.

Found. Trends Comput. Graphics Vis. 1 (1), 1�89.

Lipton, A., Fujiyoshi, H., Patil, H., 1998. Moving target detection and classification from

real-time video. Proceedings of the IEEE Workshop Applications of Computer Vision.

Lucas, B., Kanade, T., 1981. An iterative image registration technique with an application

to stereo vision. Proceedings of the International Joint Conference on Artificial

Intelligence, pp. 674�679.

Malamas, E.N., Petrakis, E.G.M., Zervakis, M., et al., 2003. A survey on industrial vision

systems, applications and tools. Image Vis. Comput. 21 (2), 171�188.

Moeslund, T.B., Hilton, A., Krüger, V., 2006. A survey of advances in vision-based human

motion capture and analysis. Comput. Vis. Image Understand. 104 (2�3), 90�126.

Mowbray, S.D., Nixon, M.S., 2004. Extraction and recognition of periodically deforming

objects by continuous, spatio-temporal shape description. Proc. IEEE Comput. Vis.

Pattern Recog. 2, 895�901.

Nash, J.M., Carter, J.N., Nixon, M.S., 1997. Dynamic feature extraction via the velocity

Hough transform. Pattern Recog. Lett. 18 (10), 1035�1047.

Nixon, M.S., Tan, T.N., Chellappa, R., 2005. In: Jain, A.K., Zhang, D. (Eds.), Human

Identification Based on Gait, Springer, International Series on Biometrics.

Piccardi, M., 2004. Background subtraction techniques: a review. Proceedings of the IEEE

SMC 2004 International Conference on Systems, Man and Cybernetics.

Poppe, R., 2010. A survey on vision-based human action recognition. Image Vis. Comput.

28, 976�990.

Porikli, F., Davis, L.S., 2012. Advanced Tracking Systems: Computational Approaches.

Springer.

Reid, D.B., 1979. An algorithm for tracking multiple targets. IEEE Trans. Autom. Control

24 (6), 843�854.

Sethi, I., Jain, R., 1987. Finding trajectories of feature points in a monocular image

sequence. IEEE Trans. PAMI 9 (1), 56�73.

Shi, J., Tomasi, C., 1994. Good features to track. Proc. IEEE Comput. Vis. Pattern Recog.,

593�600.

486 CHAPTER 9 Moving object detection and description

Shutler, J.D., Nixon, M.S., 2006. Zernike velocity moments for sequence-based description

of moving features. Image Vis. Comput. 24 (4), 343�356.

Shutler, J.D., Grant, M.G., Nixon, M.S., Carter, J.N., 2002. On a large sequence-based

human gait database. Proceedings of the fourth International Conference on Recent

Advances in Soft Computing, Nottingham, pp. 66�71.

Stalder, S., Grabner, H., Van Gool, L., 2010. Cascaded confidence filtering for improved

tracking-by-detection. Proceedings of the European Conference on Computer Vision

(ECCV).

Stauffer, C., Grimson, W.E.L., 1999. Adaptive background mixture models for real-time

tracking. Proc. IEEE Comput. Vis. Pattern Recog., 246�252.

Stauffer, C., Grimson, W.E.L., 2000. Learning patterns of activity using real-time tracking.

IEEE Trans. PAMI 22 (8), 747�757.

Tian, Y.-L., Lu, M., Hampapur, A., 2005. Robust and efficient foreground analysis for

real-time video surveillance. Proc. IEEE Comput. Vis. Pattern Recog. 1, 1182�1187.

Veenman, C., Reinders, M., Backer, E., 2001. Resolving motion correspondence for

densely moving points. IEEE Trans. PAMI 23 (1), 54�72.

Veres, G.V., Gordon, L., Carter, J.N., Nixon, M.S., 2004. What image information is impor-

tant in silhouette-based gait recognition? Proc. IEEE Comput. Vis. Pattern Recog. 2,

776�782.

Wand, M.P., Jones, M.C., 1995. Kernel Smoothing, Monographs on Statistics and Applied

Probability. Chapman & Hall.

Wang, L.A., Hu, W.M., Tan, T.N., 2003a. Recent developments in human motion analysis.

Pattern Recog. 36 (3), 585�601.

Wang, L., Tan, T., Ning, H.Z., Hu, W.M., 2003b. Silhouette analysis-based gait recognition

for human identification. IEEE Trans. PAMI 25 (12), 1505�2528.

Yilmaz, A., Javed, O., Shah, M., 2006. Object tracking: a survey. ACM Comput. Surv.

38 (4), 45.

Zongyi, L., Sarkar, S., 2004. Simplest representation yet for gait recognition: averaged sil-

houette. Proc. ICPR 4, 211�214.

4879.6 References

CHAPTER

10Appendix 1: Camera
geometry fundamentals

CHAPTER OUTLINE HEAD

10.1 Image geometry ... 489

10.2 Perspective camera ... 490

10.3 Perspective camera model.. 491

10.3.1 Homogeneous coordinates and projective geometry491

10.3.1.1 Representation of a line and duality492

10.3.1.2 Ideal points ...493

10.3.1.3 Transformations in the projective space..............................494

10.3.2 Perspective camera model analysis ..496

10.3.3 Parameters of the perspective camera model499

10.4 Affine camera .. 500

10.4.1 Affine camera model...501

10.4.2 Affine camera model and the perspective projection503

10.4.3 Parameters of the affine camera model ..504

10.5 Weak perspective model .. 505

10.6 Example of camera models ... 507

10.7 Discussion... 517

10.8 References .. 518

10.1 Image geometry
This book has focused on techniques of image processing that use intensity or

color values of pixels to enhance and analyze images. Other image techniques

include information about the geometry of image acquisition. These techniques

are studied on the computer vision area and they are mainly applied to 3D scene

analysis (Trucco and Verri, 1998; Hartley and Zisserman, 2001). This appendix

does not cover computer vision techniques but gives an introduction to the funda-

mental concepts of the geometry of computer vision. It aims to complement

the concepts in Chapter 1 by increasing the background knowledge of how cam-

era geometry is mathematically modeled.

As discussed in Chapter 1, an image is formed by a complex process involving

optics, electronics, and mechanical devices. This process maps information in a

scene into pixels in an image. A camera model uses mathematical representations

Feature Extraction & Image Processing for Computer Vision.

© 2012 Mark Nixon and Alberto Aguado. Published by Elsevier Ltd. All rights reserved.
489

to describe this process. Different models include different aspects of the image

formation and they are based on different assumptions or simplifications. This

appendix explains basic aspects of common camera geometry models.

10.2 Perspective camera
Figure 10.1 shows the model of the perspective camera. This model is also known

as the pinhole camera since it describes the image formation process of a simple

optical device with a small hole. This device is known as camera obscura, and it

was developed in the sixteenth century to aid artists. Light going through a pin-

hole projects an image of a scene onto a back screen. The pinhole is called the

center of projection. Thus, a pixel is obtained by intersecting the image plane

with the line between the 3D point and the center of projection. In the projected

image, parallel lines intersect at infinity giving a correct perspective.

Although based on an ancient device, this model represents an accurate

description of modern cameras where light is focused in a single point by using

lenses. In Figure 10.1, the center of projection corresponds to the pinhole. Light

passes through the point and it is projected in the image plane. Figure 10.2 shows

an alternative configuration where light is focused back to the image plane. The

models are equivalent: the image is formed by projecting points through a single

point; the point xp is mapped into the point xi in the image plane, and the focal

length determines the zoom distance.

Image plane Focal length

Optical or principal axis
Center of
projection

Principal point

xi

xp

FIGURE 10.1

Pinhole model of perspective camera.

490 CHAPTER 10 Appendix 1: Camera geometry fundamentals

The perspective camera model is formulated by an equation that describes how

a point in space is mapped into an image, where the center of projection is behind

image plane. This formulation can be developed using algebraic functions, never-

theless the notation is greatly simplified by using matrix representations. In matrix

form, points can be represented in Euclidian coordinates, yet a simpler notation is

developed using homogeneous coordinates. Homogeneous coordinates simplify

the formulation since translations and rotations are represented as matrix multipli-

cations. Additionally, homogeneous coordinates represent the projection of points

and planes as a simple multiplication. Thus, before formulating the model of

the perspective camera, we first review the basic concepts of homogeneous

coordinates.

10.3 Perspective camera model
10.3.1 Homogeneous coordinates and projective geometry
Euclidian geometry is algebraically represented by the Cartesian coordinate sys-

tem in which points are defined by tuples of numbers. Each number is related to

one axis and a set of axes determine the dimension. This representation is very

natural to describe our 3D world and it is very useful on image processing to

describe pixels in 2D images. Cartesian coordinates are convenient to describe

angles and lengths and they are simply transformed by matrix algebra to represent

translations, rotations, and changes of scale. However, the relationship defined by

projections cannot be described with the same algebraic simplicity.

Projective geometry is algebraically represented by the homogeneous coordi-

nate system. This representation is natural to formulate how we relate camera

Image plane

Focal length

Optical axis

Center of
projection Principal point

xp
xi

FIGURE 10.2

Perspective camera.

49110.3 Perspective camera model

coordinates to “real-world” coordinates: the relation between image and physical

space. Its major advantages are that image transformations like rotations, change

of scale, and projections become matrix multiplications. Projections provide per-

spective that corresponds to the distance of objects that affects their size in the

image.

It is possible to map points from Cartesian coordinates into the homogeneous

coordinates. The 2D point with Cartesian coordinates

xc 5 x y �T�
(10.1)

is mapped into homogeneous coordinates to the point

xh 5 wx wy w �T�
(10.2)

where w is an arbitrary scalar. Note that a point in Cartesian coordinates is

mapped into several points in homogeneous coordinates: one point for any value

of w. This is why homogeneous coordinates are also called redundant coordinates.

We can use the definition on Eq. (10.2) to obtain a mapping from homogeneous

coordinates to Cartesian coordinates, i.e.,

x5wx=w; y5wy=w (10.3)

The homogeneous representation can be extended to any dimension. For

example, a 3D point in Cartesian coordinates

xc 5 x y z �T�
(10.4)

is mapped into homogeneous form as

xh 5 wx wy wz w �T�
(10.5)

These points are mapped back to Cartesian coordinates by

x5wx=w; y5wy=w; z5wz=w (10.6)

Although it is possible to map points from Cartesian coordinates to homoge-

neous coordinates and vice versa, points in both system define different geometric

spaces. Cartesian coordinates define the Euclidian space, and the points in homo-

geneous coordinates define the projective space. The projective space distin-

guishes a particular class of points defined when the last coordinate is zero. These

are known as ideal points and to understand them, we need to understand how a

line is represented in projective space. This is related to the concept of duality.

10.3.1.1 Representation of a line and duality
The homogeneous representation of points has a very interesting connotation that

relates points and lines. Let us consider the equation of a 2D line in Cartesian

coordinates:

Ax1By1C5 0 (10.7)

492 CHAPTER 10 Appendix 1: Camera geometry fundamentals

The same equation in homogeneous coordinates becomes

Ax1By1Cz5 0 (10.8)

What is interesting is that points and lines now become indistinguishable.

Both a point x y z �T�
and a line A B C �T�

are represented by triplets and

they can be interchanged in the homogeneous equation of a line. Similarly, in the

3D projective space, points are indistinguishable to planes. This symmetry is

known as the duality of the projective space that can be combined with the con-

cept of concurrence and incidence to derivate the principle of duality (Aguado

et al., 2000). The principle of duality constitutes an important concept for under-

standing the geometric relationship in the projective space, and the definition of

the line can be used to derive the concept of ideal points.

10.3.1.2 Ideal points
We can use the algebra of homogeneous coordinates to find the intersection of

parallel lines, planes, and hyperplanes. For simplicity, let us consider lines in the

2D plane. In the Cartesian coordinates, in Eq. (10.7), two lines are parallel when

their slopes y0 52A/B are the same. Thus, in order to find the intersection

between two parallel lines in the homogeneous form in Eq. (10.8), we need to

solve the following system of equations:

A1x1B1y1C1z5 0

A2x1B2y1C2z5 0
(10.9)

for A1/B15A2/B2. By dividing the first equation by B1, the second equation by B2

and by subtracting the second equation from the first, we have

ðC2 2C1Þz5 0 (10.10)

Since we are considering different lines, C2 6¼ C1 and consequently z5 0. That

is, the intersection of parallel lines is defined by points of the form

xh 5 x y 0 �T�
(10.11)

Similarly in 3D, the intersection of parallel planes is defined by the points

given by

xh 5 x y z 0 �T�
(10.12)

Since parallel lines are assumed to intersect at infinity, the points with the last

coordinate equal to zero are called points at infinity. They are also called ideal points

and these points plus all the other homogeneous points form the projective space.

The points in the projective space can be visualized by extending the

Euclidian space as shown in Figure 10.3. This figure shows the 2D projective

space as a set of points in the 3D Euclidian space. According to Eq. (10.3), points

in the homogeneous space are mapped into the Euclidian space when z5 1. In the

figure, this plane is called the Euclidian plane. Figure 10.3 shows two points in

49310.3 Perspective camera model

the Euclidian plane. These points define a line that is shown as a dotted line and

it extends to infinity in the plane. In homogeneous coordinates, points in the

Euclidian plane become rays from the origin in the projective space. Each point

in the ray is given by a different value of z. The homogeneous coordinates of the

line in the Euclidian plane define the plane between the two rays in the projective

space. When two lines intersect in the Euclidian plane, they define a ray that

passes through the intersection point in the Euclidean plane. However, if the lines

are parallel, then they define an ideal point, i.e., a point in the plane z5 0.

Note that the origin 0 0 0 �T�
is ambiguous since it can define any point in

homogeneous coordinates or an ideal point. To avoid this ambiguity, this point is

not considered to be part of the projective space. Also remember that the concept

of point and line are indistinguishable, so it is possible to draw a dual diagram,

where points become lines and vice versa.

10.3.1.3 Transformations in the projective space
In practice, perhaps the most relevant aspect of homogeneous coordinates is the

way transformations are algebraically represented. Transformations in Cartesian

coordinates are known as similarity or rigid transformations since they do not

change angle values. They define rotations, changes in scale and translations

(position), and they can be algebraically represented by matrix multiplications

and additions. A 2D point x1 is transformed to a point x2 by a similarity transfor-

mation as

x2
y2

� �
5

cosðθÞ sinðθÞ
2 sinðθÞ cosðθÞ

� �
sx
sy

� �
x1
y1

� �
1

tx
ty

� �
(10.13)

Ideal points z = 0

Euclidian plane z = 1

Projective line

x

xc

y

z

1

0

xh

FIGURE 10.3

Model of the 2D projective space.

494 CHAPTER 10 Appendix 1: Camera geometry fundamentals

where θ is a rotation angle, S5 sx sy �T
�

defines the scale, and T5 tx ty �T
�

the

translation along each axis. This transformation can be generalized to any dimen-

sion and it is written in short form as

x2 5R S x1 1T (10.14)

Note that in these transformations R is an orthogonal matrix. That is, its trans-

pose is equal to its inverse or RT5R21.

There is a more general type of transformations known as affine transforma-

tions where the matrix R is replaced by a matrix A that is not necessarily orthog-

onal, i.e.,

x2 5A S x1 1T (10.15)

Affine transformations do not preserve the value of angles, but they preserve

parallel lines. The principles and theorems studied under similarities define

Euclidian geometry, and the principles and theorems under affine transforma-

tions define the affine geometry.

In the projective space, transformations are called homographies. They are

more general than similarity and affine transformations; they only preserve colli-

nearities and cross ratios, and they are defined in homogeneous coordinates. A 2D

point x1 is transformed to a point x2 by a homography as

x2
y2
w2

2
4

3
55

h1;1 h1;2 h1;3
h2;1 h2;2 h2;3
h3;1 h3;2 h3;3

2
4

3
5 x1

y1
w1

2
4

3
5 (10.16)

This transformation can be generalized to other dimensions and it is written in

short form as

x2 5H x1 (10.17)

Note that a similarity transformation is a special case of an affine transforma-

tion and that an affine transformation is a special case of a homography. Thus,

rigid and affine transformations can be expressed as homographies. For example,

a rigid transformation for a 2D point can be defined as

x2
y2
1

2
4

3
55

sx cosðθÞ sx sinðθÞ tx
2sy sinðθÞ sy cosðθÞ ty

0 0 1

2
4

3
5 x1

y2
1

2
4

3
5 (10.18)

or in a more general form as

x2 5
R S T

0 1

� �
x1 (10.19)

An affine transformation is defined as

x2 5
A T

0 1

� �
x1 (10.20)

49510.3 Perspective camera model

The zeros in the last row are actually defining a transformation in a plane; the

plane where z5 1. According to the discussion in Section 10.3.2, this plane defines

the Euclidian plane. Thus, these transformations are limited to Euclidian points.

10.3.2 Perspective camera model analysis
The perspective camera model uses the algebra of the projective space to describe

the way in which space points are mapped into an image plane. The mapping can

also be defined using Euclidian transformations, but the algebra becomes too

elaborated. By using homogeneous coordinates, the geometry of image formation

is simply defined by the projection of a 3D point into the plane by one special

type of homography known as a projection. In a projection, the matrix H is not

square, so a point in a higher dimension is mapped into a lower dimension. The

perspective camera model is defined by a projection transformation as

wixi
wiyi
wi

2
4

3
55

p1;1 p1;2 p1;3 p1;4
p2;1 p2;2 p2;3 p2;4
p3;1 p3;2 p3;3 p3;4

2
4

3
5

xp
yp
zp
1

2
664

3
775 (10.21)

This equation can be written in short form as

xi 5Pxp (10.22)

Here, we have changed the elements from h to p to emphasize that we are

using a projection. Also, we use xi and xp to denote the space and image points as

introduced in Figure 10.1. Note that the point in the image is in homogeneous

form, so the coordinates in the image are given by Eq. (10.3).

The matrix P models three geometric transformations, so it can be factorized

as

P5V Q M (10.23)

The matrix M transforms the 3D coordinates of xp to make them relative to

the camera system. That is, it transforms world coordinates into camera coordi-

nates. Note that the point is not transformed, but we obtain its coordinates as if

the camera were the origin of the coordinate system.

If the camera is posed in the world by a rotation R and a translation T, then

the transformation between world and camera coordinates is given by the inverse

of rotation and translation. We define this matrix as

M5 R T ��
(10.24)

or more explicitly as

M5
r1;1 r1;2 r1;3 tx
r2;1 r2;2 r2;3 ty
r3;1 r3;2 r3;3 tz

2
4

3
5 (10.25)

496 CHAPTER 10 Appendix 1: Camera geometry fundamentals

The matrix R defines a rotation matrix and T a translation vector. The rotation

matrix is composed by rotations along each axis. If α, β, and γ are the rotation

angles, then

R5
cosðαÞ 2sinðαÞ 0

sinðαÞ cosðαÞ 0

1 0 1

2
4

3
5 cosðβÞ 0 2sinðβÞ

0 1 0

sinðβÞ 0 cosðβÞ

2
4

3
5 1 0 0

0 cosðγÞ 2sinðγÞ
0 sinðγÞ cosðγÞ

2
4

3
5

(10.26)

Once the points are made relative to the camera frame, the transformation Q

obtains the coordinates of the point projected in the image. As shown in Figure 10.1,

the focal length of a camera defines the distance between the center of projection and

the image plane. If f denotes the focal length of a camera, then

Q5
f 0 0

0 f 0

0 0 1

2
4

3
5 (10.27)

To understand this projection, let us consider the way a point is mapped into

the camera frame as shown in Figure 10.4. This figure shows the side view of the

camera; to the right is the depth z axis and to the top down is the y axis.

The image plane is shown as a dotted line. The point xp is projected into xi in the

image plane. The tangent of the angle between the line from the center of projec-

tion to xp and the principal axis is given by

yi

f
5

yp

zp
(10.28)

xi

f

xp

yi

yp

zp

Center of
projection

Principal axis

Image plane

FIGURE 10.4

Projection of a point.

49710.3 Perspective camera model

i.e.,

yi 5
yp

zp
f (10.29)

Using a similar rationale we can obtain the value

xi 5
xp

zp
f (10.30)

That is, the projection is obtained by multiplying by the focal length and by

dividing by the depth of the point. Equation (10.27) multiplies each coordinate by

the focal length and copies the depth value into the last coordinate of the point.

However, since Eq. (10.21) is in homogeneous coordinates, the depth value is

actually used as divisor when obtaining coordinates of the point according to

Eq. (10.3). Thus projection can be simply defined by a matrix multiplication fac-

tor defined in Eq. (10.27).

The factors M and Q define the coordinates of a point in the image plane.

However, the coordinates in an image are given in pixels. Thus, the last factor V
is used to change from image coordinates to pixels. This transformation also

includes a skew deformation to account for misalignments that may occur in the

camera system. The transformation V is defined as

V5

ku ku cotðϕÞ u0

0 kv sinðϕÞ v0

0 0 1

2
664

3
775 (10.31)

The constants ku and kv define the number of pixels in a world unit, the angle ϕ
defines the skew angle, and (u0,v0) is the position of the principal point in the image.

Figure 10.5 shows the transformation in Eq. (10.31). The image plane is

shown as a dotted rectangle, but it actually extends to infinity. The image is delin-

eated by the axis u and v. A point (x1,y1) in the image plane has coordinates

(u1,v1) in the image frame. As discussed in Figure 10.1, the coordinates (x1,y1)

are relative to the principal point (u0,v0). As shown in Figure 10.5, the skew dis-

places the point form (u0,v0) by an amount given by

a1 5 y1 cotðϕÞ; c1 5 y1=sinðϕÞ (10.32)

Thus, the new coordinates of the point after skew are

ðx1 1 y1 cotðϕÞ; c1 5 y1=sinðϕÞÞ (10.33)

To convert these coordinates to pixels, we need to multiply by the number of

pixels that define a unit in the image plane and we also need to add the displace-

ment (u0,v0). That is

u1 5 kux1 1 kuy1 cotðϕÞ1 u0; v1 5 kvy1=sinðϕÞ1 v0 (10.34)

These algebraic equations are expressed in matrix form by Eq. (10.31).

498 CHAPTER 10 Appendix 1: Camera geometry fundamentals

10.3.3 Parameters of the perspective camera model
The perspective camera model in Eq. (10.21) has 12 elements. Thus, a particular

camera model is completely defined by giving values to 12 unknowns. These

unknowns are determined by the parameters of the transformations M, Q, and V.

The transformation M has three rotation angles (α, β, γ) and three translation

parameters (tx, ty, tz). The transformation V has a single parameter f, while the

transformation Q has the two translation parameters (u0,v0), two scale parameters

(ku,kv), and one skew parameter ϕ. Thus, we need to set up 12 parameters to

determine the elements of the projection matrix. However, one parameter can be

eliminated by combining the matrices V and Q. That is, the projection matrix in

Eq. (10.23) can be written as

P5
ku ku cotðϕÞ u0
0 kv sinðϕÞ v0
0 0 1

2
4

3
5 f 0 0

0 f 0

0 0 1

2
4

3
5 r1;1 r1;2 r1;3 tx

r2;1 r2;2 r2;3 ty
r3;1 r3;2 r3;3 tz

2
4

3
5 (10.35)

or

P5
su su cotðϕÞ u0
0 sv sinðϕÞ v0
0 0 1

2
4

3
5 r1;1 r1;2 r1;3 tx

r2;1 r2;2 r2;3 ty
r3;1 r3;2 r3;3 tz

2
4

3
5 (10.36)

Image plane

Pixels

v1

x1

a1

c1

ϕ

u1

u

(u0,v0)

(x1,y1)

v

FIGURE 10.5

Image plane to pixels transformation.

49910.3 Perspective camera model

for

su 5 fku; sv 5 fkv (10.37)

Thus, the camera model is actually defined by 11 camera parameters (α, β, γ,
tx, ty, tz, u0, v0, su, sv, ϕ).

The camera parameters are divided into two groups to indicate the parameters

that are internal or external to the camera. The intrinsic parameters are u0, v0, su,

sv, and ϕ, and the extrinsic are α, β, γ, tx, ty, and tz. Generally, the intrinsic para-

meters do not change from scene to scene, so they are inherent to the system;

they depend on the camera characteristics. The extrinsic parameters change by

moving the camera in the world.

10.4 Affine camera
Although the perspective camera model is probably the most common model

used in computer vision, there are alternative models that are useful in particular

situations. One alternative model of reduced complexity and that is useful in

many applications is the affine camera model. This model is also called the para-

perspective or linear model and it reduces the perspective model by setting the

focal length f to infinity. Figure 10.6 shows how the perspective and affine cam-

era models map points into the image plane. The figure shows the projection of

points from a side view and it projects the corner points of a pair of objects repre-

sented by two rectangles. In the projective model, the projection produces

changes of size in the objects according to their distance to the image plane; the

far object is projected into a smaller area than the close object. The size and dis-

tance relationship is determined by the focal length f. As we increase the focal

length, projection lines decrease their slope and become horizontal. As shown in

Figure 10.6, in the limit when the center of projection is infinitely far away from

the image plane, the lines do not intersect and the objects have the same projected

area in the image.

In spite of not accounting for changes in size due to distances, the affine cam-

era provides a useful model when the depth position of objects in the scene with

respect to the camera frame does not change significantly. This is the case in

many indoor scenes and in many industrial applications where objects are aligned

to a working plane. It is very useful to represent scenes on layers, i.e., planes of

objects with similar depth. Also affine models are simple and thus algorithms are

more stable, and an affine camera is linear since it does not include the projection

division as given in Eqs (10.28�10.30).

500 CHAPTER 10 Appendix 1: Camera geometry fundamentals

10.4.1 Affine camera model
For the affine camera model, Eq. (10.21) is changed to

xi
yi
1

2
4

3
55

p1;1 p1;2 p1;3 p1;4
p2;1 p2;2 p2;3 p2;4
0 0 0 1

2
4

3
5

xp
yp
zp
1

2
664

3
775 (10.38)

This equation can be written in short form as

xi 5PAxp (10.39)

Image plane

Image plane

Center of
projection

f

(a) Perspective

(b) Affine

FIGURE 10.6

Perspective and affine camera models.

50110.4 Affine camera

Here, we use the subindex A to indicate that the affine camera transformation

is given by a special form of the projection P. The last row in Eq. (10.39) can be

omitted. It is shown in the notation to emphasize that it is a special case of the

perspective model. However, at difference of the perspective camera, points in

the image plane are actually in Euclidian coordinates. That is, the affine camera

maps points from the projective space to the Euclidian plane.

Similar to the projection transformation, the transformation A can be factor-

ized in three factors that account for the camera’s rigid transformation, the projec-

tion of points from space into the image plane, and for the mapping of points on

the image plane into image pixels.

A5V QA MA (10.40)

Here, the subindex A indicates that these matrices are the affine versions of

the transformations defined in Eq. (10.23). We start by a rigid transformation as

defined in Eq. (10.25). As in the case of the perspective model, this transforma-

tion is defined by the position of the camera and makes the coordinates of a point

in 3D space relative to the camera frame:

MA 5

r1;1 r1;2 r1;3 tx

r2;1 r2;2 r2;3 ty

r3;1 r3;2 r3;3 tz

0 0 0 1

2
66664

3
77775 (10.41)

i.e.,

MA 5
R T

0 1

� �
(10.42)

The last row is added so the transformation QA can have four rows. We need

four rows in QA in order to define a parallel projection into the image plane.

Similar to the transformation Q, the transformation QA projects a point in the

camera frame into the image plane. The difference is that in the affine model,

points in space are orthographically projected into the image plane. This can be

defined by

QA 5

1 0 0 0

0 1 0 0

0 0 0 1

2
64

3
75 (10.43)

This defines a projection when the focal length is set to infinity. Intuitively,

you can see that when transforming a point xTp 5 xp yp zp 1 ��
by Eq. (10.43),

the x and y coordinates are copied and the depth zp value does not change the pro-

jection. Thus, Eqs (10.29) and (10.30) for the affine camera become

xi 5 xp; yi 5 yp (10.44)

502 CHAPTER 10 Appendix 1: Camera geometry fundamentals

That is, the points in the camera frame are projected along the line zp5 0.

This is a line parallel to the image plane. The transformation V in Eq. (10.40)

provides the pixel coordinates of points in the image plane. This process is

exactly the same in the perspective and affine models and it is defined by

Eq. (10.31).

10.4.2 Affine camera model and the perspective projection
It is possible to show that the affine model is a particular case of the perspective

model by considering the alternative camera representation shown in Figure 10.7.

This figure is similar to the figure used to explain Eq. (10.27). The difference is

that in the previous model, the center of the camera frame is in the center of pro-

jection, and in Figure 10.7 it is considered to be the principal point, i.e., on the

image plane. In general, the camera frame does not need to be located at particu-

lar position in the camera, but it can be arbitrarily set. When set in the image

plane, as shown in Figure 10.7, the z camera coordinate of a point defined their

depth in the image plane. Thus, Eq. (10.28) is replaced by

yi

f
5

h

zp
(10.45)

From Figure 10.7, we can see that yp5 yi1 h. Thus,

yp 5 yi 1 zp
yi

f
(10.46)

Solving for yi, we have

yi 5
f yp

f 1 zp
(10.47)

Center of
projection

Principal axis

xp

yi

yp

zp

f

h

xi

Image plane

FIGURE 10.7

Projection of a point.

50310.4 Affine camera

We can use a similar development to find the xi coordinate. That is,

xi 5
f xp

f 1 zp
(10.48)

Using homogeneous coordinates, Eqs (10.47) and (10.48) can be written in

matrix form as

xi
yi
zi

2
4

3
55

f 0 0 0

0 f 0 0

0 0 1 f

2
4

3
5

xp
yp
zp
1

2
664

3
775 (10.49)

This equation is an alternative to Eq. (10.27); it represents a perspective pro-

jection. The difference is that in Eq. (10.49), we assume that the camera axis is

located at the principal point of a camera. Using Eq. (10.49), it is easy to see the

projection in the affine camera model as a special case of projection in the per-

spective camera model. To show that Eq. (10.29) becomes an affine model when

f is set to be infinite, we define B5 1/f. Thus,

yi 5
yp

11B zp
; xi 5

xp

11B zp
(10.50)

or

xi
yi
zi

2
4

3
55

1 0 0 0

0 1 0 0

0 0 B 1

2
4

3
5

xp
yp
zp
1

2
664

3
775 (10.51)

When f tends to infinity, B tends to zero. Thus, the projection in Eq. (10.51)

for affine camera becomes

xi
yi
zi

2
4

3
55

1 0 0 0

0 1 0 0

0 0 0 1

2
4

3
5

xp
yp
zp
1

2
664

3
775 (10.52)

The transformation in this equation is defined in Eq. (10.43). Thus, the projec-

tion in the affine model is a special case of the projection in the perspective

model obtained by setting the focal length to infinity.

10.4.3 Parameters of the affine camera model
The affine camera model as expressed in Eq. (10.38) is composed of eight ele-

ments. Thus, a particular camera model is completely defined by giving values to

eight unknowns. These unknowns are determined by the 11 parameters (α, β, γ,
tx, ty, tz, u0, v0, ku, kv, and ϕ) defined in the matrices in Eq. (10.40). However,

504 CHAPTER 10 Appendix 1: Camera geometry fundamentals

since we are projecting points orthographically into the image plane, the transla-

tion in depth is lost. This can be seen by combining the matrices QA and MA in

Eq. (10.40), i.e.,

G5
1 0 0 0

0 1 0 0

0 0 0 1

2
4

3
5

r1;1 r1;2 r1;3 tx
r2;1 r2;2 r2;3 ty
r3;1 r3;2 r3;3 tz
0 0 0 1

2
664

3
775 (10.53)

or

GA 5
r1;1 r1;2 r1;3 tx
r2;1 r2;2 r2;3 ty
0 0 0 1

2
4

3
5 (10.54)

Thus, Eq. (10.40) becomes

A5V GA (10.55)

Similar to Eq. (10.42), the matrix GA can be written as

GA 5
RA TA

0 1

� �
(10.56)

and it defines the orthographic projection of the rigid transformation MA into the

image plane. According to Eq. (10.53),

TA 5
tx
ty
1

2
4

3
5 (10.57)

Since we do not have tz, we cannot determine if they are far away or close to

the camera. A small object does not mean it is an object far away. According to

Eq. (10.53), we also have

RA 5
cosðαÞ 2sinðαÞ 0

sinðαÞ cosðαÞ 0

0 0 0

2
4

3
5 cosðβÞ 0 2sinðβÞ

0 1 0

0 0 0

2
4

3
5 1 0 0

0 cosðγÞ 2sinðγÞ
0 0 0

2
4

3
5

(10.58)

Thus, the eight elements of the affine camera projection matrix are determined by

the intrinsic parameters (u0, v0, su, sv, ϕ) and the extrinsic parameters (α, β, γ, tx, ty).

10.5 Weak perspective model
The weak perspective model defines a geometric mapping that stands between the

perspective and the affine models. This model considers the distance between the

50510.5 Weak perspective model

points in the scene is small relative to the focal length. Thus, Eqs (10.29) and

(10.30) are approximated by

yi 5
yp

μz

f ; xi 5
xp

μz

f (10.59)

for μz is the average z coordinate of all the points in a scene.

Figure 10.8 shows two possible geometric interpretations for the relationships

defined in Eq. (10.59). Figure 10.8(a) shows a two-step process wherein first all

points are affine projected to a plane orthogonal to the image plane and at a

distance μz. Points on this plane are then mapped into the image plane by a per-

spective projection. The projection on the plane z5μz simply replaces the z co-

ordinates of the points by μz. Since points are assumed to be close, this projection

is a good approximation of the scene. Thus, the weak perspective model corre-

sponds to a perspective model for scenes approximated by planes parallel to the

image plane.

Center of
projection

(a) Special case of perspective model

(b) Special case of affine model

Image plane

Image planeScaled image

μz

f

FIGURE 10.8

Weak perspective camera model.

506 CHAPTER 10 Appendix 1: Camera geometry fundamentals

A second geometric interpretation of Eq. (10.59) is shown in Figure 10.8(b). In

Eq. (10.59), we can combine the values f and μz into a single constant. Thus,

Eq. (10.59) actually corresponds to a scaled version of Eq. (10.44). In Figure 10.8(b),

objects in the scene are first mapped into the image plane by an affine projection and

then the image is rescaled by a value f/μz. Thus, the affine model can be seen as a

particular case of the weak perspective model when f/μz5 1.

By following the two geometric interpretations discussed above, the weak per-

spective model can be formulated by changing the projection equations of the

perspective or the affine models. Additionally, it can also be formulated by con-

sidering the camera model presented in Section 10.3.2. For simplicity, we con-

sider the weak perspective model from the affine model. Thus, Eq. (10.43) should

include a change in scale, i.e.,

QA 5
f=μz 0 0 0

0 f=μz 0 0

0 0 0 1

2
4

3
5 (10.60)

By considering the definition in Eq. (10.40), we can move the scale factor in

this matrix to matrix V. Thus, the model for the weak perspective model can be

expressed as

P5
su su cotðϕÞ u0
0 sv sinðϕÞ v0
0 0 1

2
4

3
5 1 0 0 0

0 1 0 0

0 0 0 1

2
4

3
5

r1;1 r1;2 r1;3 tx
r2;1 r2;2 r2;3 ty
r3;1 r3;2 r3;3 tz
0 0 0 1

2
664

3
775 (10.61)

for

su 5 fku=μz; sv 5 fkv=μz (10.62)

Thus, the weak perspective is a scaled version of the affine model. The scale

is a function of f that defines the distance of the center of the camera to the image

plane and the average distance μz.

10.6 Example of camera models
This section explains the mapping of points into an image frame for the perspec-

tive and affine camera models. Code 10.1 contains the functions used to create

figures: DrawPoints, DrawImagePoints DrawWorldFrame, DrawImagePlane,
DrawPerspectiveProjectionLines, and DrawAffineProjectionLines.

The function DrawPoints draws a set of points given its three world coordi-

nates. In our example, it is used to draw points in the world. The function

DrawImagePoints draws points on the image plane. It uses homogeneous coordi-

nates, so it implements Eq. (10.3). The function DrawWorldFrame draws the three

axes given the location of the origin. This is used to illustrate the world frame

50710.6 Example of camera models

and the origin is always set to zero. The function DrawImagePlane draws a rectan-

gle that represents the image plane. It also draws a point to exemplify the location

of the center of the camera. In our examples, we assume the center of the camera

is at the position of the focal point, for both the perspective and affine models.

The functions DrawPerspectiveProjectionLines and DrawAffineProjection
Lines are used to explain the projection of points into the image plane for the per-

spective and affine projections, respectively. These functions take a vector of

points and trace a line to the image plane that represents the projection. For per-

spective, the lines intersect the focal point, and for affine they are projected paral-

lel to the image plane.

%***
%Draw a set of points
%---
function DrawPoints(P,colour)
%---

[r,c]=size(P);
plot3(P(1,1:c),P(2,1:c),P(3,1:c),'+','color',colour);

%***
%Draw a set of Image points
%--
function DrawImagePoints(P,C,colour)
%--

[r,c]=size(P);

for column=1:c
 P(1:r-1,column)= P(1:r-1,column)/P(3,column);
end

plot(P(1,1:c),P(2,1:c),'+','color',colour);
axis([0 C(10) 0 C(11)]);

%***
%Draw a co-ordinate frame
%---
function DrawWorldFrame(x0,x1,y0,y1,z0,z1);
%---

axis equal; %same aspect ratio
axis([x0,x1,y0,y1,z0,z1]);

xlabel('X','FontSize',14);
ylabel('Y','FontSize',14);
zlabel('Z','FontSize',14);

CODE 10.1

Drawing functions.

508 CHAPTER 10 Appendix 1: Camera geometry fundamentals

%CW: Camera to world transformation
CW=CameraToWorld(C);

%transform co-ordinates to world coordinates
P(:,1)= CW*p(:,1);
P(:,2)= CW*p(:,2);
P(:,3)= CW*p(:,3);
P(:,4)= CW*p(:,4);

%draw image plane
patch(P(1,:),P(2,:),P(3,:),[.9,.9,1]);

%***
%Draw a line between optical centre and 3D points
%
%---
function DrawPerspectiveProjectionLines (o,P,colour);
%---

[r,c]= size(P);
for i=1:c
 plot3([o(1) P(1,i)],[o(2) P(2,i)],[o(3) P(3,i)],'color',colour);
%optic centre
end;

%***
%Draw a line between image plane and 3D points
%
%---
function DrawAffineProjectionLines(z,P,colour);
%---

%co-ordinates of 4 points on the
%image plane (to draw a rectangle)
p(1,1)= -dx/2; p(2,1)= -dy/2; p(3,1)= C(7); p(4,1)= 1;
p(1,2)= -dx/2; p(2,2)= +dy/2; p(3,2)= C(7); p(4,2)= 1;
p(1,3)= +dx/2; p(2,3)= +dy/2; p(3,3)= C(7); p(4,3)= 1;
p(1,4)= +dx/2; p(2,4)= -dy/2; p(3,4)= C(7); p(4,4)= 1;

grid on;
hold on;

%***
%Draw an image plane
%---
function DrawImagePlane(C,dx,dy);
%---

%Draw camera origin
plot3(C(1),C(2),C(3),'o'); %optic centre
plot3(C(1),C(2),C(3),'+'); %optic centre

CODE 10.1

(Continued)

50910.6 Example of camera models

In the example, we group the camera parameters in the vector C5 [x0, y0, z0,

a, b, g, f, u0, v0, kx, ky]. The first six elements define the location and rotation

parameters. The value of f defines the focal length. The remaining parameters

define the location of the optical center and the pixel size. For simplicity, we

assume there is no skew. Code 10.3 contains the functions that compute camera

transformations from camera parameters. The function CameraToWorld computes

a matrix that defines the position of the camera. It poses the camera in the world.

Its inverse is computed in the function WorldToCamera and it defines the matrix

in Eq. (10.25). The inverse is simply obtained by the transpose of the rotation

and by changing the signs of the translation. The matrix obtained from

WorldToCamera can be used to obtain the coordinates of world points in the cam-

era frame.

The function ImageToCamera in Code 10.2 obtains the inverse of the transfor-

mation defined in Eq. (10.31). This is used to draw points in pixel coordinates.

The pixels coordinates are converted in world coordinates that are then drawn to

show its position.

%***
%Compute matrix that transforms co-ordinates
%in the camera frame to the world frame%
%---
function CW=CameraToWorld(C);
%---

%rotation
Rx=[cos(C(6)) sin(C(6)) 0
 -sin(C(6)) cos(C(6)) 0
 0 0 1];

Ry=[cos(C(5)) 0 sin(C(5))
 0 1 0
 -sin(C(5)) 0 cos(C(5))];

CODE 10.2

Transformation function.

[r,c]=size(P);
for column=1:c
 plot3([P(1,column) P(1,column)],[P(2,column) P(2,column)],[z(3)
P(3,column)],'color',colour); %optic centre
end;

CODE 10.1

(Continued)

510 CHAPTER 10 Appendix 1: Camera geometry fundamentals

 %***
%Convert from homegeneous co-ordinates in pixels
%to distance co-ordinates in the camera frame
%--
function p=ImageToCamera(P,C);
%--

%inverse of K
Ki=[1/C(10) 0 -C(8)/C(10)
 0 1/C(11) -C(9)/C(11)
 0 0 1];

Rz=[1 0 0
 0 cos(C(4)) sin(C(4))
 0 -sin(C(4)) cos(C(4))];

%translation
T=[C(1) C(2) C(3)]';

%transformation
CW =(Rz*Ry*Rx);
CW(:,4)= T;

Rz =[1 0 0
 0 cos(C(4)) -sin(C(4))
 0 sin(C(4)) cos(C(4))];

T=[-c(1) -c(2) -c(3)]';

%transformation
WC=(Rz*Ry*Rx); %rotation inverse
Tp=WC*T; %translation
WC(:,4)= Tp; %compose homegeneous form

%***
%Compute matrix that transforms co-ordinates
%in the world frame to the camera frame
%--
function WC=WorldToCamera(c);
%--

%translation T'=-R'T
%for R'=inverse rotation
Rx =[cos(C(6)) -sin(C(6)) 0
 sin(C(6)) cos(C(6)) 0
 0 0 1];

Ry =[cos(C(5)) 0 –sin(C(5))
 0 1 0
 sin(C(5)) 0 cos(C(5))];

CODE 10.2

(Continued)

51110.6 Example of camera models

Code 10.3 contains two functions that compute the projection matrices for the

perspective and affine camera models. Both functions start by computing the

matrix that transforms the world points into the camera frame. For the affine

model, the dimensions of the matrix transformation are augmented according to

Eq. (10.42). For the perspective model, the world-to-camera matrix multiplied by

the projection is defined in Eq. (10.27). The affine model implements the projec-

tion defined in Eq. (10.43). In the perspective and affine functions, coordinates

are transformed to pixels by the transformation defined in Eq. (10.31).

%co-ordinate in distance units
p=Ki*P;

%co-ordinates in the image plane
p(1,:)= p(1,:)./p(3,:);
p(2,:)= p(2,:)./p(3,:);
p(3,:)= p(3,:)./p(3,:);

%the third co-ordinate gives the depth
%the focal length C(7) defines depth
p(3,:)= p(3,:).*C(7);

%include homegeneous co-ordinates
p(4,:)= p(1,:)/p(1,:);

CODE 10.2

(Continued)

%***
%Obtain the projection matrix parameters
%from the camera position
%--
function M=PerspectiveProjectionMatrix(C);
%--

%World to camera
WC=WorldToCamera(C);

%Project point in the image
F =[C(7) 0 0
 0 C(7) 0
 0 0 1];

CODE 10.3

Camera models.

512 CHAPTER 10 Appendix 1: Camera geometry fundamentals

Code 10.4 uses the previous functions to generate figures that show the projec-

tion of a pair of points in the image plane for the perspective and affine models. The

camera is defined with a translation of 1 in y and the focal length is 0.5 from the

camera plane. The image is defined to be 1003 100 pixels, and the principal point

is in the middle of the image, i.e., at pixel of coordinates (50,50). After the definition

of the camera, the code defines two 3D points in homogeneous form. These points

will be used to explain how camera models map world points into images.

The example first draws a frame to represent the world frame. The parameters

are chosen to show the image plane and the world points. These are drawn using

the functions DrawWorldFrame and DrawImagePlane defined in Code 10.1. After

the drawing, the code computes the projection matrix by calling the function

PerspectiveProjectionMatrix as discussed in Code 10.3. This transformation is

used to project the 3D points into the image. In the code, the matrix UV contains

K =[C(10) 0 C(8)
 0 C(11) C(9)
 0 0 1];

%Projection matrix
M=K*F*WC;

%***
%Obtain the projection matrix parameters
%from the camera position
%---
function M=AffineProjectionMatrix(C);
%---

%world to camera
WC=WorldToCamera(C);
WC(4,1:4)=[0 0 0 1];

%project point in the image
F =[1 0 0 0
 0 1 0 0
 0 0 0 1];

%distance units to pixels
K =[C(10) 0 C(8)
 0 C(11) C(9)
 0 0 1];

%projection matrix
M=K*F*WC;

%Distance units to pixels

CODE 10.3

(Continued)

51310.6 Example of camera models

%***
%Example of the computation projection of points
%for the perspective and affine camera models
%---
 function ProjectionExample();
%---

%
%C=[x0,y0,z0,a,b,g,f,u0,v0,kx,ky]

%Camera parameters:
%x0,y0,z0: location
%a,b,g : orientation
%f : focal length
%u0,v0 : optical centre
%kx,ky : pixel size

C=[0,1,0,0,0,0,0.5,50,50,100,100];

%3D points in homogeneous form
XYZ =[0, .2 %x
 1, .6 %y

1.7 2 %z
1 1];

%Perspective example
figure(1);
clf;

%Draw world frame
DrawWorldFrame(-.5,2,-.5,2,-.5,2);

%Convert to world frame
MI=CameraToWorld(C);
PW=MI*PC;

%Draw Projected points in world frame
DrawPoints(PW,[1,0,0]);

%Draw world points
DrawPoints(XYZ,[0,0,0]);

%Perspective projection matrix
P=PerspectiveProjectionMatrix(C);

%Project into camera frame, in pixels
UV=P*XYZ;

%Convert to camera co-ordinates
PC=ImageToCamera(UV,C);

%Draw camera
DrawImagePlane(C,1,1);

CODE 10.4

Main example.

514 CHAPTER 10 Appendix 1: Camera geometry fundamentals

%draw camera
DrawImagePlane(C,1,1);

%3D points in homogeneous form
DrawPoints(XYZ,[0,1,0]);

%Affine projection matrix
P=AffineProjectionMatrix(C);

%Project into camera frame, in pixels
UV=P*XYZ;

%Convert to camara co-ordinates
PC=ImageToCamera(UV,C);

%Affine example
figure(3);
clf;

%Draw world frame
DrawWorldFrame(-.5,2,-.5,2,-.5,2);

%Draw Projected points in world frame
DrawPoints(PW,[0,0,0]);

%Draw projection lines
DrawAffineProjectionLines([C(1),C(2),C(3)],XYZ,[.3,.3,.3]);

%Draw image points
figure(4);
clf;
DrawImagePoints(UV,C,[0,0,0]);

%Convert to world frame
PW=MI*PC;

%Draw image points
figure(2);
clf;
DrawImagePoints(UV,C,[0,0,0]);

%Draw projection lines
DrawPerspectiveProjectionLines([C(1),C(2),C(3)],XYZ,[.3,.3,.3]);

CODE 10.4

(Continued)

51510.6 Example of camera models

the coordinates of the points in pixels. To draw these points in the 3D space,

first they are converted to the camera coordinates by calling ImageToCamera and

then they are converted to the world frame. The function DrawPerspective
ProjectionLines draws the lines from the world points to the center of

projection.

The result of the perspective projection example is shown in Figure 10.9. Here

we can see the projection lines pass through the points obtained by the projection

matrix. The image shown in Figure 10.9(b) was obtained by calling the function

DrawImagePoints defined in Code 10.1. This function draws the points obtained

by the projection matrix. One of the points is projected into the center of the

image. This is because its x and y coordinates are the same as the principal point.

The last two figures created in Code 10.4 show the projection for the affine

matrix. The process is similar to the perspective example, but they use the projec-

tion obtained by the function AffineProjectionMatrix defined in Code 10.3. The

resultant figures are shown in Figure 10.9. Here we can see that the projection

matrix transforms the points by following rays perpendicular to the image plane.

As such, the points in Figure 10.9(b) are further apart than the points in

Figure 10.10(b). In the perspective model, the distance between the points

depends on the distance from the image plane, while in the affine model this

information is lost.

0
0 10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

1.5

2

21.510.50–0.5

1

0.5

0

–0.5
Y

X

–0.5

(b) Image(a) 3D projection

0
0.5
1

1.5
2

80

90

100

FIGURE 10.9

Perspective camera example.

516 CHAPTER 10 Appendix 1: Camera geometry fundamentals

10.7 Discussion
In this appendix, we have formulated the most common models of camera geome-

try. However, in addition to perspective and affine camera models, there exist

other models that consider different camera properties. For example, cameras

built from a linear array of sensors can be modeled by particular versions of the

perspective and affine models obtained by considering a 1D image plane. These

1D camera models can also be used to represent stripes of pixels obtained by

cameras with 2D image planes, and they have found an important application in

mosaic construction from video images.

Besides image plane dimensionality, perhaps the most evident extension of

camera models is to consider lens distortions. Small geometric distortions are gen-

erally ignored or dealt with as noise in computer vision techniques. Strong geo-

metric distortions such as the ones produced by wide-angle or fish-eye lens can

be modeled by considering a spherical image plane or by nonlinear projections.

The model of wide-angle cameras has found applications in environment map

capture and panoramic mosaics.

The formulation of camera models is the basis of two central problems of

computer vision. The first problem is known as camera calibration and it centers

on computing the camera parameters from image data. There are many camera

calibration techniques based on the camera model and different types of data.

However, camera calibration techniques are grouped in two main classes. Strong

camera calibration assumes knowledge of the 3D coordinates of image points.

Weak calibration techniques do not know 3D coordinates, but they assume knowl-

edge of the type of motion of a camera. Also, some techniques focus on intrinsic

0
0 10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

0

–0.5

21.510.50–0.5

0.5

1

1.5

2
Y

X
2

(b) Image(a) 3D projection

1.5
1

0.5
0–0.5

80

90

100

FIGURE 10.10

Affine camera example.

51710.7 Discussion

or extrinsic parameters. The second central problem in computer vision is called

scene reconstruction and centers on recovering the coordinates of points in the

3D scene from image data. There are techniques developed for each camera

model.

10.8 References
Aguado, A.S., Montiel, E., Nixon, M.S., 2000. On the intimate relationship between the

principle of duality and the Hough transform. Proc. R. Soc. Lond. A 456, 503�526.

Hartley, R., Zisserman, A., 2001. Multiple View Geometry in Computer Vision.

Cambridge University Press, Cambridge, UK.

Trucco, E., Verri, A., 1998. Introductory Techniques for 3-D Computer Vision. Prentice

Hall, Upper Saddle River, NJ.

518 CHAPTER 10 Appendix 1: Camera geometry fundamentals

CHAPTER

11Appendix 2: Least
squares analysis

CHAPTER OUTLINE HEAD

11.1 The least squares criterion ... 519

11.2 Curve fitting by least squares .. 521

11.1 The least squares criterion
The least squares criterion is one of the foundations of estimation theory. This is

the theory that concerns extracting the true value of signals from noisy measure-

ments. Estimation theory techniques have been used to guide Exocet missiles and

astronauts on moon missions (where navigation data was derived using sextants!),

all based on techniques which employ the least squares criterion. The least

squares criterion was originally developed by Gauss when he was confronted by

the problem of measuring the six parameters of the orbits of planets, given astro-

nomical measurements. These measurements were naturally subject to error, and

Gauss realized that they could be combined together in some way in order to

reduce a best estimate of the six parameters of interest.

Gauss assumed that the noise corrupting the measurements would have a nor-

mal distribution; indeed such distributions are often now called Gaussian to honor

his great insight. As a consequence of the central limit theorem, it may be

assumed that many real random noise sources are normally distributed. In cases

where this assumption is not valid, the mathematical advantages that accrue from

its use generally offset any resulting loss of accuracy. Also, the assumption of

normality is particularly invaluable in view of the fact that the output of a system

excited by Gaussian-distributed noise is also Gaussian-distributed (as seen in

Fourier analysis, Chapter 2). A Gaussian probability distribution of a variable x is

defined by

pðxÞ5 1

σ
ffiffiffiffiffiffi
2π

p e
2ðx2xÞ2

σ2 (11.1)

where x is the mean (loosely the average) of the distribution and σ2 is the second

moment or variance of the distribution. Given many measurements of a single

unknown quantity, when that quantity is subject to errors of a zero-mean (sym-

metric) normal distribution, it is well known that the best estimate of the

Feature Extraction & Image Processing for Computer Vision.

© 2012 Mark Nixon and Alberto Aguado. Published by Elsevier Ltd. All rights reserved.
519

unknown quantity is the average of the measurements. In the case of two or more

unknown quantities, the requirement is to combine the measurements in such a

way that the error in the estimates of the unknown quantities is minimized.

Clearly, direct averaging will not suffice when measurements are a function of

two or more unknown quantities.

Consider the case where N equally precise measurements, f1, f2,. . ., fN, are
made on a linear function f(a) of a single parameter a. The measurements are sub-

ject to zero-mean additive Gaussian noise vi(t), as such the measurements are

given by

fi 5 f ðaÞ1 viðtÞ ’iA1;N (11.2)

The differences f~ between the true value of the function and the noisy mea-

surements of it are

f~i 5 f ðaÞ2 fi ’iA1;N (11.3)

By Eq. (11.1), the probability distribution of these errors is

pð f~iÞ5
1

σ
ffiffiffiffiffiffi
2π

p e
2ðf~iÞ2
σ2 ’iA1;N (11.4)

Since the errors are independent, the compound distribution of these errors is

the product of their distributions and is given by

pð f~Þ5 1

σ
ffiffiffiffiffiffi
2π

p e
2ðð f~1 Þ21ð f~2Þ21ð f~3 Þ21?1ð f~N Þ2 Þ

σ2 (11.5)

Each of the errors is a function of the unknown quantity, a, which is to be

estimated. Different estimates of a will give different values for pð f~Þ: The most

probable system of errors will be that for which pð f~Þ is a maximum and this cor-

responds to the best estimate of the unknown quantity. Thus, to maximize pð f~Þ

maxfpð f~Þg5max
1

σ
ffiffiffiffiffiffi
2π

p e
2ðð f~1Þ21ð f~2Þ21ð f~3Þ21?1ð f~N Þ2Þ

σ2

()

5max e
2ðð f~1 Þ21ð f

~
2 Þ21ð f

~
3 Þ21?1ð f~N Þ2 Þ

σ2

� �

5maxf2ðð f~1Þ2 1 ð f~2Þ2 1 ð f~3Þ2 1?1 ð f~NÞ2Þg

5minf2ðð f~1Þ2 1 ð f~2Þ2 1 ð f~3Þ2 1?1 ð f~NÞ2Þg

(11.6)

Thus, the required estimate is that which minimizes the sum of the differences

squared, and this estimate is the one that is optimal by the least squares criterion.

This criterion leads on to the method of least squares which follows in the next

section. This is a method commonly used to fit curves to measured data. This con-

cerns estimating the values of parameters from a complete set of measurements.

520 CHAPTER 11 Appendix 2: Least squares analysis

There are also techniques that provide estimate of parameters at time instants, based

on a set of previous measurements. These techniques include the Weiner filter and

the Kalman filter. The Kalman filter was the algorithm chosen for guiding Exocet

missiles and moon missions (an extended square root Kalman filter, no less).

11.2 Curve fitting by least squares
Curve fitting by the method of least squares concerns combining a set of measure-

ments to derive estimates of the parameters which specify the curve that best fits

the data. By the least squares criterion, given a set of N (noisy) measurements

fi, iA1, N, which are to be fitted to a curve f(a), where a is a vector of parameter

values, we seek to minimize the square of the difference between the measurements

and the values of the curve to give an estimate of the parameters â according to

â5min
XN
i51

ð fi 2 f ðxi; yi; aÞÞ2 (11.7)

Since we seek a minimum, by differentiation we obtain

@
PN
i51

ð fi 2 f ðxi; yi; aÞÞ2

@a
5 0 (11.8)

which implies that

2
XN
i51

ð fi 2 f ðxi; yi; aÞÞ
@f ðaÞ
@a

5 0 (11.9)

The solution is usually of the form

Ma5F (11.10)

where M is a matrix of summations of products of the index i and F is a vector

of summations of products of the measurements and i. The solution, the best esti-

mate of the values of a, is then given by

â5M21F (11.11)

For example, let us consider the problem of fitting a 2D surface to a set of

data points. The surface is given by

f ðx; y; aÞ5 a1 bx1 cy1 dxy (11.12)

where the vector of parameters a5 [a b c d]T controls the shape of the surface and

(x,y) are the coordinates of a point on the surface. Given a set of (noisy) measure-

ments of the value of the surface at points with coordinates (x,y), fi5 f(x,y)1 vi,

52111.2 Curve fitting by least squares

we seek to estimate values for the parameters using the method of least squares. By

Eq. (11.7), we seek

â5 ½â b̂ ĉ d̂�T 5min
XN
i51

ð fi 2 f ðxi; yi; aÞÞ2 (11.13)

By Eq. (11.9), we require

2
XN
i51

ð fi 2ða1 bxi 1 cyi 1 dxiyiÞÞ
@f ðxi; yi; aÞ

@a
5 0 (11.14)

By differentiating f(x, y, a) with respect to each parameter, we have

@f ðxi; yiÞ
@a

5 1 (11.15)

@f ðxi; yiÞ
@b

5 x (11.16)

@f ðxi; yiÞ
@c

5 y (11.17)

and

@f ðxi; yiÞ
@d

5 xy (11.18)

and by substituting Eqs (11.15)�(11.18) in Eq. (11.14), we obtain four simulta-

neous equations:

XN
i51

ð fi 2ða1 bxi 1 cyi 1 dxiyiÞÞ3 15 0 (11.19)

XN
i51

ð fi 2ða1 bxi 1 cyi 1 dxiyiÞÞ3 xi 5 0 (11.20)

XN
i51

ð fi 2ða1 bxi 1 cyi 1 dxiyiÞÞ3 yi 5 0 (11.21)

and

XN
i51

ð fi 2ða1 bxi 1 cyi 1 dxiyiÞÞ3 xiyi 5 0 (11.22)

Since
PN
i51

a5Na; Eq. (11.19) can be reformulated as

XN
i51

fi 2Na2 b
XN
i51

xi 2 c
XN
i51

yi 2 d
XN
i51

xiyi 5 0 (11.23)

522 CHAPTER 11 Appendix 2: Least squares analysis

and Eqs (11.20)�(11.22) can be reformulated likewise. By expressing the simul-

taneous equations in matrix form, we get

N
XN
i51

xi
XN
i51

yi
XN
i51

xiyi

XN
i51

xi
XN
i51

ðxiÞ2
XN
i51

xiyi
XN
i51

ðxiÞ2yi

XN
i51

yi
XN
i51

xiyi
XN
i51

ðyiÞ2
XN
i51

xiðyiÞ2

XN
i51

xiyi
XN
i51

ðxiÞ2yi
XN
i51

xiðyiÞ2
XN
i51

ðxiÞ2ðyiÞ2

2
66666666666666664

3
77777777777777775

a

b

c

d

2
66664

3
777755

XN
i51

fi

XN
i51

fixi

XN
i51

fiyi

XN
i51

fixiyi

2
66666666666666664

3
77777777777777775

(11.24)

and this is the same form as Eq. (11.10) and can be solved by inversion, as in

Eq. (11.11). Note that the matrix is symmetric and its inversion, or solution, does

not impose such a great computational penalty as appears. Given a set of data

points, the values need to be entered in the summations, thus completing the

matrices from which the solution is found. This technique can replace the one

used in the zero-crossing detector within the Marr�Hildreth edge detection opera-

tor (Section 4.3.3) but appeared to offer no significant advantage over the (much

simpler) function implemented there.

52311.2 Curve fitting by least squares

CHAPTER

12Appendix 3: Principal
components analysis

CHAPTER OUTLINE HEAD

12.1 Principal components analysis.. 525

12.2 Data .. 526

12.3 Covariance .. 526

12.4 Covariance matrix .. 529

12.5 Data transformation .. 530

12.6 Inverse transformation.. 531

12.7 Eigenproblem... 532

12.8 Solving the eigenproblem ... 533

12.9 PCA method summary ... 533

12.10 Example .. 534

12.11 References .. 540

12.1 Principal components analysis
This appendix introduces PCA. This technique is also known as the Karhunen

Loeve transform or as the Hotelling transform. It is based on factorization techni-

ques developed in linear algebra. Factorization is commonly used to diagonalize a

matrix, so its inverse can be easily obtained. PCA uses factorization to transform

data according to its statistical properties. The data transformation is particularly

useful for classification and compression.

Here, we will give an introduction to the mathematical concepts and give

examples and simple implementations, so you should be able to understand the

basic ideas of PCA, to develop your own implementation and to apply the tech-

nique to your own data. We use simple matrix notations to develop the main ideas

of PCA. If you want to have a more rigorous mathematical understanding of the

technique, you should review concepts of eigenvalues and eigenvectors in more

detail (Anton, 2005).

You can think of PCA as a technique that takes a collection of data and trans-

forms it such that the new data has given statistical properties. The statistical

properties are chosen such that the transformation highlights the importance of

data elements. Thus, the transformed data can be used for classification by

observing important components of the data. Also data can be reduced or com-

pressed by eliminating (filtering out) the less important elements. The data

Feature Extraction & Image Processing for Computer Vision.

© 2012 Mark Nixon and Alberto Aguado. Published by Elsevier Ltd. All rights reserved.
525

elements can be seen as features, but in mathematical sense, they define the axes

in the coordinate system.

Before defining the data transformation process defined by PCA, we need to

understand how data is represented and also have a clear understanding of the sta-

tistical measure known as the covariance.

12.2 Data
Generally, data is represented by a set of m vectors

X5 fx1; x2; . . . ; xmg (12.1)

Each vector xi has n elements or features, i.e.,

xi 5 ½xi;1; xi;2; . . . ; xi;n� (12.2)

The way you interpret each vector xi depends on your application. For exam-

ple, in pattern classification, each vector can represent a measure and each com-

ponent of the vector a feature such as color, size, or edge magnitude.

We can group features by taking the elements of each vector. That is, the fea-

ture column vector k for the set X can be defined as

cX;k 5

x1;k
x2;k
^

xm;k

2
664

3
775 (12.3)

for k ranging from 1 to n. The subindex X may seem unnecessary now; however, this

will help us to distinguish features of the original set and of the transformed data.

We can group all the features in the feature matrix by considering each vector

cX,k to be a column in a matrix, i.e.,

cX 5 cX;1 cX;2 ? cX;n �
�

(12.4)

The PCA technique transforms the feature vectors cX,k to define new vectors

defining components with better classification capabilities. Thus, the new vectors

can be grouped by clustering according to distance criteria on the more important

elements, i.e., the elements that define important variations in the data. PCA

ensures that we highlight the data that accounts for the maxima variation mea-

sured by the covariance.

12.3 Covariance
Broadly speaking, the covariance measures the linear dependence between

two random variables (DeGroot and Schervish, 2001). So by computing the

526 CHAPTER 12 Appendix 3: Principal components analysis

covariance, we can determine if there is a relationship between two sets of data.

If we consider that the data defined in the previous section has only two compo-

nents, then the covariance between features can be defined by considering the

component of each vector. That is, if xi5 {xi,1,xi,2}, then the covariance is

σX;1;2 5E½ðcX;1 2μX;1ÞðcX;2 2μX;2Þ� (12.5)

Here, the multiplication is assumed to be element by element and E[] denotes

the expectation which is loosely the average value of the elements of the vector.

We denote μX,k as a column vector obtained by multiplying the scalar value Ebcx,kc
by a unitary vector. That is, μX,k is a vector that has the mean value on each ele-

ment. Thus, according to Eq. (12.5), we first subtract the mean value for each fea-

ture and then we compute the mean of the multiplication of each element.

The definition of covariance can be expressed in matrix form as

σX;1;2 5
1

m
ððcX;1 2μX;1ÞTðcX;2 2μX;2ÞÞ (12.6)

where T denotes the matrix transpose. Sometimes, features are represented as

rows, so you can find the transpose operating on the second factor rather than on

the first. Note that the covariance is symmetric and thus σX,1,25σX,2,1.
In addition to Eqs (12.5) and (12.6), there is a third alternative definition of

covariance that is obtained by developing the products in Eq. (12.6), i.e.,

σX;1;2 5
1

m
ðcTX;1cX;2 2μT

X;1cX;2 2 cTX;1μX;2 1μT
X;1μX;2Þ (12.7)

Since

μT
X;1cX;2 5 cTX;1μX;2 5μT

X;1μX;2 (12.8)

we have

σX;1;2 5
1

m
ðcTX;1cX;2 2μT

X;1μX;2Þ (12.9)

This can be written in short form as

σX;1;2 5E½cX;1; cX;2�2E½cX;1�E½cX;2� (12.10)

for

E cX;1; cX;2
� �

5
1

m
ðcTX;1cX;2Þ (12.11)

Equations (12.5), (12.6), and (12.11) are alternative ways to compute the

covariance. They are obtained by expressing products and averages in algebraic

equivalent definitions.

As a simple example of the covariance, you can think of one variable repre-

senting the value of a spectral band of an aerial image, while the other the amount

of vegetation in the ground region covered by the pixel. If you measure the

52712.3 Covariance

covariance and get a positive value, then for new data, you should expect that an

increase in the pixel intensity means an increase in vegetation. If the covariance

value is negative, then you should expect that an increase in the pixel intensity

means a decrease in vegetation. When the values are zero or very small, then the

values are uncorrelated and the pixel intensity and vegetation are independent, and

we cannot tell, if the change in intensity is related to any change in vegetation. Let

us recall that the probability of two independent events happening together is equal

to the product of the probability of each event. Thus, E[cX,1,cX,2]5E[cX,1]E[cX,2]

is characteristic of independent events. That is, Eq. (12.10) is zero.

The covariance value ranges from zero (indicating no relationship) to large

positive and negative values that reflect strong dependencies. The maximum and

minimum values are obtained by using the Cauchy�Schwarz inequality and they

are given by

jσX;1;2j#σX;1σX;2 (12.12)

Here, j j denotes the absolute value and σ2
X;1 5E½cX;1; cX;1�2E½cX;1�E½cX;1�

defines the variance of cX,1. Remember that the variance is a measure of

dispersion; thus, this inequality indicates that the covariance will be large if the

data has large ranges. When the sets are totally dependent, then jσX,1,2j5
σX,1σX,2.

It is important to stress that the covariance measures a linear relationship. In

general, data can be related to each other in different ways. For example, the

color of a pixel can increase exponentially as heat of a surface or the area of a

region increases in square proportion to its radius. However, the covariance only

measures the degree of linear dependence. If features are related by other relation-

ship, for example quadratic, then the covariance will produce a low value, even if

there is perfect relationship. Linearity is generally considered to be the main limi-

tation of PCA; however, PCA has proved to give a simple and effective solution

in many applications; linear modeling is a very common model for many data,

and covariance is particularly good if you are using some form of linear

classification.

To understand the linearity in the covariance definition, we can consider that

features cX,2 are a linear function of cX,1, i.e., cX,25AcX,11B for A an arbitrary

constant and B an arbitrary column vector. Thus, according to Eq. (12.11)

E½cX;1; cX;2�5E½AcTX;1cX;1 1 cTX;1B� (12.13)

We also have i.e.,

E½cX;1�E½cX;2�5AE½cX;1�2 1E½B�E½cX;1� (12.14)

By substituting these equations in the definition of covariance in Eq. (12.10),

we have i.e.,

σX;1;2 5A
�
E½cTX;1cX;1�2E½cX;1�2

�
(12.15)

528 CHAPTER 12 Appendix 3: Principal components analysis

i.e.,

σX;1;2 5Aσ2
X;1 (12.16)

As such, when features are related by a linear function, the covariance is a

scaled value of the variance. We can follow a similar development to find the

covariance as a function of σ2
X;2: If we consider that cX;1 5

1
A
cX;2 2

B
A
; then

σX;1;2 5
1

A
σ2
X;2 (12.17)

Thus, we can use Eqs (12.16) and (12.17) to solve A, i.e.,

A5
σX;2

σX;1
(12.18)

By substituting in Eq. (12.16), we get

σX;1;2 5σX;1σX;2 (12.19)

That is, the covariance value takes its maximum value given in Eq. (12.12)

when the features are related by a linear relationship.

12.4 Covariance matrix
When data has more than two dimensions, the covariance can be defined by con-

sidering every pair of components. These components are generally represented

in matrix that is called the covariance matrix. This matrix is defined as

ΣX 5

σX;1;1 σX;1;2 ? σX;1;n

σX;2;1 σX;2;2 ? σX;2;n

^ ^ ? ^
σX;n;1 σX;n;2 ? σX;n;n

2
664

3
775 (12.20)

According to Eq. (12.5), the element (i,j) in the covariance matrix is given by

σX;i;j 5E½ðcX;i 2μX;iÞðcX; j 2μX; jÞ� (12.21)

By generalizing this equation to the elements of the feature matrix and by

considering the notation used in Eq. (12.6), the covariance matrix can be

expressed as

ΣX 5
1

m
ððcX 2μXÞTðcX 2μXÞÞ (12.22)

Here, μX is the matrix that has columns μX,i. If you observe the definition of

the covariance given in the previous section, you will note that the diagonal of

the covariance matrix defines the variance of a feature and that given the symme-

try in the definition of the covariance, the covariance matrix is symmetric.

52912.4 Covariance matrix

A third way of defining the covariance matrix is by using the definition in

Eq. (12.10), i.e.,

ΣX 5
1

m
ðcTXcXÞ2μT

XμX (12.23)

The covariance matrix gives important information about the data. For exam-

ple, by observing values close to zero, we can highlight independent features use-

ful for classification. Very high or low values indicate dependent features that

will not give any new information useful to distinguish groups in your data. PCA

exploits this type of observation by defining a method to transform data in a way

that the covariance matrix becomes diagonal. That is, all the values, but the diag-

onal, are zero. In this case, the data has not dependences, so features can be used

to form groups. Imagine you have a feature that is not dependent on others, then

by choosing a threshold you can clearly distinguish between two groups indepen-

dently of the values of other features. Additionally, PCA provides information

about the importance of elements in the new data. So you can distinguish between

important data for classification or for compression.

12.5 Data transformation
We are looking for a transformation W that maps each feature vector defined in

the set X into another feature vector for the set Y, such that the covariance matrix

of the elements in Y is diagonal. The transformation is linear and it is defined as

cY 5 cXW
T (12.24)

or more explicitly

y1;1 y1;2 ? y1;n
y2;1 y2;2 ? y2;n
^ ^ ? ^

ym;1 ym;2 ? ym;n

2
664

3
7755

x1;1 x1;2 ? x1;n
x2;1 x2;2 ? x2;n
^ ^ ? ^

xm;1 xm;2 ? xm;n

2
664

3
775

w1;1 w2;1 ? wn;1

w1;2 w2;2 ? wn;2

^ ^ ? ^
w1;n w2;n ? wn;n

2
664

3
775

(12.25)

Note that

cTY 5WcTX (12.26)

or more explicitly

y1;1 y2;1 ? ym;1
y1;2 y2;2 ? ym;2
^ ^ ? ^
y1;n y2;n ? ym;n

2
664

3
7755

w1;1 w1;2 ? w1;n

w2;1 w2;2 ? w2;n

^ ^ ? ^
wn;1 wn;2 ? wn;n

2
664

3
775

x1;1 x2;1 . . . xm;1
x1;2 x2;2 . . . xm;2
^ ^ . . . ^
x1;n x2;n . . . xm;n

2
664

3
775

(12.27)

530 CHAPTER 12 Appendix 3: Principal components analysis

To obtain the covariance of the features in Y based on the features in X, we

can substitute cY and cTY in the definition of the covariance matrix as

ΣY 5
1

m
ðWcTX 2E WcTX

� �Þ ðcXWT 2E cXW
T

� �Þ� �
(12.28)

By factorizing W, we get

ΣY 5
1

m
WðcX 2μXÞTðcX 2μXÞWT
� �

(12.29)

or

ΣY 5WΣxW
T (12.30)

Thus, we can use this equation to find the matrix W such that ΣY is diagonal.

This problem is known in matrix algebra as matrix diagonalization.

12.6 Inverse transformation
In the previous section, we define a transformation from the features in X into a

new set Y whose covariance matrix is diagonal. To map Y into X, we should use

the inverse of the transformation. However, this is greatly simplified since the

inverse of the transformation is equal to its transpose, i.e.,

W21 5WT (12.31)

This definition can been proven by considering that according to Eq. (12.30),

we have that

ΣX 5W21ΣYðWTÞ21 (12.32)

But since the covariance is symmetric, Σx 5ΣT
x and

W21ΣYðWTÞ21 5 ðW21ÞTΣYððWTÞ21ÞT (12.33)

which implies that

W21 5 ðW21ÞT and ðWTÞ21 5 ððWTÞ21ÞT (12.34)

These equations can only be true if the inverse of W is equal to its transpose.

Thus, Eq. (12.26) can be written as

W21cTY 5W21WcTX (12.35)

i.e.,

WTcTY 5 cTX (12.36)

53112.6 Inverse transformation

This equation is important for reconstructing data in compression applications.

In compression, the data cX is approximated by using this equation by considering

only the most important components of cY.

12.7 Eigenproblem
By considering that W215WT, we can write Eq. (12.30) as

ΣXW
T 5WTΣY (12.37)

We can write the right side in more explicit form as

WTΣY 5

w1;1 w2;1 ? wn;1

w1;2 w2;2 ? wn;2

^ ^ ? ^

w1;n w2;n ? wn;n

2
6664

3
7775

λ1 0 ? 0

0 λ2 ? 0

^ ^ ^ ^

0 0 ? λn

2
6664

3
7775

5λ1

w1;1

w1;2

^

w1;n

2
6664

3
77751λ2

w2;1

w2;2

^

w2;n

2
6664

3
77751?1λn

wn;1

wn;2

^

wn;n

2
6664

3
7775

(12.38)

Here, diagonal elements of the covariance have been named as λ using the

notation used in matrix algebra.

Similarly, for the left side we have

ΣXW
T 5ΣX

w1;1

w1;2

^
w1;n

2
664

3
7751ΣX

w2;1

w2;2

^
w2;n

2
664

3
7751?1ΣX

wn;1

wn;2

^
wn;n

2
664

3
775 (12.39)

i.e.,

ΣX

w1;1

w1;2

^

w1;n

2
6664

3
77751ΣX

w2;1

w2;2

^

w2;n

2
6664

3
77751?1ΣX

wn;1

wn;2

^

wn;n

2
6664

3
7775

5λ1

w1;1

w1;2

^

w1;n

2
6664

3
77751λ2

w2;1

w2;2

^

w2;n

2
6664

3
77751?1λn

wn;1

wn;2

^

wn;n

2
6664

3
7775

(12.40)

532 CHAPTER 12 Appendix 3: Principal components analysis

Thus, we obtain that W can be found by solving the following equation:

ΣXwi 5λiwi (12.41)

for wi is the ith row of W. λi defines the eigenvalues and wi defines the eigenvec-

tors. “Eigen” is actually a German word meaning “hidden” and there are alterna-

tive names such as characteristic values and characteristic vectors.

12.8 Solving the eigenproblem
In the eigenproblem formulated in the previous section, we know Σx, and we want

to determine wi and λi. To find them, first you should note that λi wi5λi Iwi,

where I is the identity matrix. Thus, we can write the eigenproblem as

λiIwi 2ΣXwi 5 0 (12.42)

or

ðλiI2ΣXÞwi 5 0 (12.43)

A trivial solution is obtained for wi equal to zero. Other solutions exist when

the determinant det is given by

det ðλiI2ΣXÞ5 0 (12.44)

This is known as the characteristic equation and it is used to solve the values of λi.
Once the values of λi are known, they can be used to obtain the values of wi.

According to the previous formulations, each λi is related to one in wi. However, sev-

eral λi can have the same value. Thus, when a value λi is replaced in (λiI2ΣX)

wi5 0, the solution should be determined by combining all the independent vectors

obtained for all λi. According to the formulation in the previous section, once the

eigenvectors wi are known, the transformation W is simply obtained by considering

wi as its columns.

12.9 PCA method summary
The mathematics of PCA can be summarized in the following eight steps:

1. Obtain the feature matrix cx from the data. Each column of the matrix defines

a feature vector.

2. Compute the covariance matrix ΣX. This matrix gives information about the

linear independence between the features.

3. Obtain the eigenvalues by solving the characteristic equation det(λiI2ΣX)5 0.

These values form the diagonal covariance matrixΣY. Since the matrix is

diagonal, each element is actually the variance of the transformed data.

53312.9 PCA method summary

4. Obtain the eigenvectors by solving wi in (λiI2ΣX)wi5 0 for each

eigenvalue. Eigenvectors should be normalized and linearly independent.

5. The transformation W is obtained by considering the eigenvectors as their

columns.

6. Obtain the transform features by computing cY5 cXW
T. The new features are

linearly independent.

7. For classification applications, select the features with large values of λi.
Remember that λi measures the variance, and features that have large range of

values will have large variance. For example, two classification classes can be

obtained by finding the mean value of the feature with largest λi.
8. For compression, reduce the dimensionality of the new feature vectors by

setting to zero components with low λi values. Features in the original data

space can be obtained by cTX 5WTcTY:

12.10 Example
Code 12.1 is a Matlab implementation of PCA, illustrating the method by a sim-

ple example with two features in the matrix cx.
In the example code, the covariance matrix is called CovX and it is computed

by the Matlab function cov. The code also computes the covariance by evaluating

the two alternative definitions given by Eqs (12.22) and (12.23). Note that the

implementation of these equations divides the matrix multiplication by m2 1

instead of m. In statistics, this is called an unbiased estimator and it is the estima-

tor used by Matlab in the function cov. Thus, we use m2 1 to obtain the same

covariance values than the Matlab function.

To solve the eigenproblem, we use the Matlab function eig. This function

solves the characteristic equation det(λiI2ΣX)5 0 to obtain the eigenvalues and

to find the eigenvectors. In the code, the result of this function is stored in the

matrices L and W, respectively. In general, the characteristic equation defines a

polynomial of higher degree requiring elaborate numerical methods to find its

solution. In our example, we have only two features, thus the characteristic equa-

tion defines the quadratic form

λ2
i 2 1:208λi 1 0:0395 0 (12.45)

for which the eigenvalues are λ15 0.0331 and λ15 1.175. The eigenvectors can

be obtained by substitution of these values in the eigenproblem. For example, for

the first eigenvector, we have

0:0332 0:543 20:568
20:568 0:0332 0:665

� �
w1 5 0 (12.46)

534 CHAPTER 12 Appendix 3: Principal components analysis

%PCA

%Feature Matrix cx. Each column represents a feature and
%each row a sample data
cx = [1.4000 1.55000
 3.0000 3.2000
 0.6000 0.7000
 2.2000 2.3000
 1.8000 2.1000
 2.0000 1.6000
 1.0000 1.1000
 2.5000 2.4000
 1.5000 1.6000
 1.2000 0.8000
 2.1000 2.5000];
[m,n]= size(cx);

%Data Graph
figure(1);
plot(cx(:,1),cx(:,2),'k+'); hold on; %Data
plot(([0,0]),([-1,4]),'k-'); hold on; %X axis
plot(([-1,4]),([0,0]),'k-'); %Y axis
axis([-1,4,-1,4]);
xlabel('Feature 1');
ylabel('Feature 2');
title('Original Data');

%Covariance Matrix
covX=cov(cx)

%Covariance Matrix using the matrix definition
meanX=mean(cx) %mean of all elements of each row

cx1=cx(:,1)-meanX(1); %substract mean of first row in cx
cx2=cx(:,2)-meanX(2); %substract mean of second row in cx

Mcx=[cx1 cx2];
covX =(transpose(Mcx)*(Mcx))/(m-1) %definition of covariance

%Covariance Matrix using alternative definition
meanX=mean(cx); %mean of all elements of each row

cx1=cx(:,1); %substract mean of first row in cx
cx2=cx(:,2); %substract mean of second row in cx

covX=((transpose(cx)*(cx))/(m-1))-
((transpose(meanX)*meanX)*(m/(m-1)))

[W,L]= eig(covX) %W=Eigenvalues L=Eigenvector
%Compute Eigenvalues and Eigenvector

CODE 12.1

Matlab PCA implementation.

53512.10 Example

%Eigenvector Graph
figure(2);
plot(cx(:,1),cx(:,2),'k+'); hold on;
plot(([0,W(1,1)*4]),([0,W(1,2)*4]),'k-'); hold on;
plot(([0,W(2,1)*4]),([0,W(2,2)*4]),'k-');
axis([-4,4,-4,4]);
xlabel('Feature 1');
ylabel('Feature 2');
title('Eigenvectors');

%Transform Data
cy=cx*transpose(W)

%Graph Transformed Data
figure(3);
plot(cy(:,1),cy(:,2),'k+'); hold on;
plot(([0,0]),([-1,5]),'k-'); hold on;
plot(([-1,5]),([0,0]),'k-');
axis([-1,5,-1,5]);
xlabel('Feature 1');
ylabel('Feature 2');
title('Transformed Data');

%Classification example
meanY=mean(cy);

%Graph of classification example
figure(4);
plot(([-5,5]),([meanY(2),meanY(2)]),'k:'); hold on;
plot(([0,0]),([-5,5]),'k-'); hold on;
plot(([-1,5]),([0,0]),'k-'); hold on;
plot(cy(:,1),cy(:,2),'k+'); hold on;
axis([-1,5,-1,5]);
xlabel('Feature 1');
ylabel('Feature 2');
title('Classification Example');
legend('Mean',2);

%Compression example
cy(:,1)= zeros;
xr=transpose(transpose(W)*transpose(cy));

%Graph of compression example
figure(5);
plot(xr(:,1),xr(:,2),'k+'); hold on;
plot(([0,0]),([-1,4]),'k-'); hold on;
plot(([-1,4]),([0,0]),'k-');
axis([-1,4,-1,4]);
xlabel('Feature 1');
ylabel('Feature 2');
title('Compression Example');

CODE 12.1

(Continued)

536 CHAPTER 12 Appendix 3: Principal components analysis

Thus,

w1 5
21:11s

s

� �
(12.47)

where s is an arbitrary constant. After normalizing this vector, we obtain the first

eigenvector

w1 5
20:74
0:66

� �
(12.48)

Similarly, the second eigenvector is obtained as

w2 5
0:66
0:74

� �
(12.49)

Figure 12.1 shows the original data and the eigenvectors. The eigenvector

with the largest eigenvalue defines a line that goes through the points. This is the

direction of the largest variance of the data.

Figure 12.2 shows the results obtained by transforming the features cY5 cXW
T.

Basically, the eigenvectors become our main axes. The second feature has points

more spread along the axis; this is related to a higher value in the eigenvector.

Remember that for the transformed data, the covariance matrix is diagonal, thus

there is not any linear dependence between the features.

If we want to classify our data in two classes, we should consider the variation

along the second transformed feature. Since we are using the axis with the highest

eigenvalue, the classification is performed along the axis with highest variation in

the data. In Figure 12.3, we divide the points by the line defined by the mean

value.

4
3.5

3
2.5

2
1.5

1
0.5

0
–0.5

–1
–1 –0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

Feature 1

Original data

Fe
at

ur
e

2

Feature 1

Eigenvectors

–4 –3 –2 –1 0 1 2 3 4

4

3

2

1

0

–1

–2

–3

–4

Fe
at

ur
e

2

(a) Original data (b) Eigenvectors

FIGURE 12.1

Data samples and the eigenvectors.

53712.10 Example

For compression, we want to eliminate the components that have less varia-

tion; so in our example, we eliminate the first feature. In the last part of the

Matlab implementation, data is reconstructed by setting to zero the values of the

first feature in the matrix cy. The result is shown in Figure 12.4. Note that losing

one dimension in the transformed set produces data aligned in the original space.

So some variation in the data has been lost. However, the variation along the first

eigenvector is maintained.

5

4

3

2

1

0

Feature 1

F
ea

tu
re

 2

Transformed data

–1
0 1 2 3 4 5–1

FIGURE 12.2

Transformed data.

4

3.5

3

2.5

2

1.5

1

0.5

0

–0.5

–1
–1 –0.5 0 0.5 1 1.5

Feature 1

Compression example

Fe
at

ur
e

2

2 2.5 3 3.5 4

FIGURE 12.3

Classification via PCA.

538 CHAPTER 12 Appendix 3: Principal components analysis

Data with two features, as shown in this example, may be useful in some

application such as reducing a stereo signal into a single channel. Other low-

dimensional data such as three features can be used to reduce color images to

gray level. However, in general, PCA is applied to data with many features. In

these cases, the implementation is practically the same, but it should compute the

eigenvalues by solving a characteristic equation defining a polynomial of high

degree.

Data with many features are generally used for image classification wherein

features are related to image metrics or to pixels. For example, face classification

has been done by representing pixels in an image as features. Pixels are arranged

in a vector and a set of eigenfaces is obtained by PCA. For classification, a new

face is compared to the others by computing a new image according to the trans-

formation obtained by PCA. The advantage is that PCA has independent features.

Another area that has extensively used PCA is image compression. In this

case, pixels with the same position are used for the vectors. That is the first fea-

ture vector is formed by grouping all the values of the first pixel in all the images.

Thus, when PCA is applied, the pixel value on each image can be obtained by

reconstructing data with a reduced set of eigenvalues. As the number of eigenva-

lues is reduced, most information is lost. However, if you chose low eigenvalues,

then the information lost represents low data variations.

Although classification and compression are perhaps the most important areas

of application for PCA, this technique can be used to analyze any kind of data.

You can find that PCA applications are continuously being developed in many

research. For example, you can find that PCA has been used in applications as

5

4

3

2

1

0

–1
–1

Feature 1

Classification example

Fe
at

ur
e

2

0 1 2 3 4 5

Mean

FIGURE 12.4

Compression via PCA.

53912.10 Example

diverse as to compress animation of 3D models and to analyze data in spectros-

copy. The difference in each application is how data is interpreted, but the funda-

mentals of PCA are the same.

12.11 References
Anton, H., 2005. Elementary Linear Algebra: With Applications. Wiley.

DeGroot, M.H., Schervish, M.J., 2001. Probability and Statistics, third ed. Addison

Wesley.

540 CHAPTER 12 Appendix 3: Principal components analysis

CHAPTER

13Appendix 4: Color images

13.1 Color images ... 542

13.2 Tristimulus theory .. 542

13.3 Color models ... 544

13.3.1 The colorimetric equation..544

13.3.2 Luminosity function..545

13.3.3 Perception based color models: the CIE RGB and CIE XYZ547

13.3.3.1 CIE RGB color model: Wright�Guild data...........................547

13.3.3.2 CIE RGB color matching functions548

13.3.3.3 CIE RGB chromaticity diagram and chromaticity

coordinates ...551

13.3.3.4 CIE XYZ color model ..553

13.3.3.5 CIE XYZ color matching functions559

13.3.3.6 XYZ chromaticity diagram ..561

13.3.4 Uniform color spaces: CIE LUV and CIE LAB562

13.3.5 Additive and subtractive color models: RGB and CMY....................568

13.3.5.1 RGB and CMY...568

13.3.5.2 Transformation between RGB color models570

13.3.5.3 Transformation between RGB and CMY

color models ...573

13.3.6 Luminance and chrominance color models: YUV, YIQ,

and YCbCr ...575

13.3.6.1 Luminance and gamma correction.....................................577

13.3.6.2 Chrominance...579

13.3.6.3 Transformations between YUV, YIQ, and

RGB color models ...580

13.3.6.4 Color model for component video: YPbPr581

13.3.6.5 Color model for digital video: YCbCr582

13.3.7 Perceptual color models: HSV and HLS ..583

13.3.7.1 The hexagonal model: HSV..585

13.3.7.2 The triangular model: HSI..590

13.3.8 More color models ..599

13.4 References .. 600

Feature Extraction & Image Processing for Computer Vision.

© 2012 Mark Nixon and Alberto Aguado. Published by Elsevier Ltd. All rights reserved.
541

13.1 Color images
Gray level images use a single value per pixel that is called intensity or bright-

ness, as in Chapter 2. The intensity represents the amount of light reflected or

emitted by an object and is dependent on the object’s material properties as well

as on the sensitivity of the camera sensors. By using several sensors or filters,

pixels can represent multiple values for light at different frequencies or colors. In

this appendix, we describe how this multivalue characterization is represented and

related to the human perception of color. In general, the processing of color

images is an extensive subject of study, so this appendix aimed to introduce the

fundamental ideas used to describe color in computer vision.

The representation of color is based on the relationships between colored light

and perception. Light can be understood as an electromagnetic wave and when

these waves hit an object, some light frequencies are absorbed while some others

are reflected toward our eye and thus creating what we perceive as colors.

Similarly, when the reflected light hits a camera’s sensor, it obtains a measure of

intensity by adding energy on a range of frequencies. In general, multispectral

images maintain information about the absorption characteristics of particular

materials by maintaining the energy measured over several frequencies. This can

be achieved by using filters on the top of the sensors, by using prisms to disperse

the light or by including several sensors sensitive to particular frequencies on the

electromagnetic spectrum. In any case, color images are obtained by selecting dif-

ferent frequencies. Multispectral images which cover frequencies in the visible

spectrum are called color images. Other multispectral images covering other part

of the spectrum capture the energy with wavelengths that cannot be perceived by

the human eye.

Since (color) cameras have several sensors per pixel over a specific frequency

range, color images contain information about the luminance intensities over sev-

eral frequencies. A color model gives meaning to this information by organizing

colors in a way that can be related to the colors we perceive. In color image pro-

cessing, colors are not described by a frequency signature, but they are described

and organized according to our perception. The description of how light is per-

ceived by the human eye is based on the tristimulus theory.

13.2 Tristimulus theory
Electromagnetic waves have an infinite range of frequencies, but the human eye

can only perceive the range of frequencies in the visible spectrum which ranges

from about 400 to 700 nm. Each frequency defines a different color as illustrated

in Figure 13.1. Generally, we refer to light as the electromagnetic waves that

transfer energy in this part of the spectrum. Electromagnetic waves beyond the

visual spectrum have special names like X-rays, gamma rays, microwaves, or

ultraviolet light.

542 CHAPTER 13 Appendix 4: Color images

In the visible spectrum, each wavelength is perceived as a color; the extreme

values are perceived as violet and red and between them there are greens and yel-

lows. However, not all the colors that we perceive are in the visible spectrum, but

many colors are created when light with different wavelength reaches our eye at

the same time. For example, pink or white are perceived from a mix of light at

different frequencies. In addition to new colors, mixtures of colors can produce

colors that we cannot distinguish as new colors, but they may be perceived as a

color in the visible spectrum. That is, the light created by mixing the colors of the

spectrum does not produce a stimulus that we can identify as unique. This is why

applications such as astronomy cannot identify materials from color images, but

they rely on spectrograms to measure the actual spectral content of light. Metamers

are colors that we perceive as the same but have different mix of light colors.

As explained in Section 1.3, our own representation of color is created by

three types of cell receptors in our eyes that are sensitive to a range of frequencies

near the blue, red, and green lights. Thus, instead of describing colors by fre-

quency content or radiometric properties, colors can be represented by three sti-

muli according to the way we perceive them. This way of organizing colors is

known as trichromatic or tristimulus representation. The tristimulus representation

was widely used by artists in the eighteenth century and was experimentally

developed by physicists. The theory was formally developed by Thomas Young

and Hermann von Helmholtz (Sherman, 1981) with two main principles:

1. All the colors we perceive can be represented by a mixture of three primary

colors.

2. The color space is linear. That is, the mixture is defined by summations, and

the addition of two colors is achieved by adding its primary components.

In addition to these principles, the tristimulus representation establishes how

the primaries are defined by considering the sensitivity of each cell receptor to

each frequency in the visual spectrum. Each receptor defines a tristimulus

400

1

0

S
en

si
tiv

ity

460 530
Wavelength (nm)

700650

FIGURE 13.1

Visible spectrum and tristimulus response curves. This figure is also reproduced in color

in the color plate section.

54313.2 Tristimulus theory

response curve as illustrated in Figure 13.1. That is, the blue receptor will gener-

ate a high response for energy around 430 nm, the green and the red around 550

and 560 nm, respectively. The receptors integrate the values in all frequencies

and provide a single value, thus the same response can be obtained by different

stimuli. For example, the blue receptor will provide the same response for a light

with a high value at 400 nm and for a light with less intensity at 430 nm. That is,

the response does not provide information about the frequencies that compose a

color, but just about the intensity along a frequency range.

It is important to mention that color sensitivity is not the same for all people,

so the curves only represent mean values for normal color vision. Also, it is

known that color perception is more complex than the summation of three

response curves, and the perception of a color is affected by other factors such as

the surrounding regions (i.e., context), region sizes, light conditions, as well as

more abstract concepts such as memory (temporal stimulus). In spite of this com-

plexity, the tristimulus principles are the fundamental basis of our understanding

of color. Furthermore, the tristimulus representation is not limited to the under-

standing of the perception of colors by the human eye, but the sensors in color

cameras and color reproduction systems are based on the same principles. That is,

according to the tristimulus theory, these systems only use three values to capture

and re-create all the visible colors. This does not imply that the theory describes

the nature of light composition or the true perception of the human eye, and it

only provides a mechanism to represent the perception of colors.

13.3 Color models
13.3.1 The colorimetric equation
According to the tristimulus theory, all the possible colors we perceive can be

defined in a 3D linear space. That is, if [c1 c2 c3] define color components (or

weights) and [A1 A2 A3] some base colors (or primaries), then a color is defined

by the colorimetric equation defined by

C5 c1A1 1 c2A2 1 c3A3 (13.1)

Here, superposition is expressed as an algebraic summation according to the

Grassmann’s law of linearity. This law was developed empirically and establishes

that colors are combined linearly. Thus, a colorimetric relationship of our percep-

tion is written as a linear algebraic equation. It is important to note that the equal-

ity does not mean that the algebraic summation in the right side gives a

numerical value C that can be used to represent or re-create the color. The symbol

C is not a value or a color representation, but the equation expresses the idea that

three stimuli combined by superposition of lights re-create the perception of the

color C. The actual representation of the color is given by the triplet [c1 c2 c3].

The base colors in Eq. (13.1) can be defined according to the visual system by

considering the response of the receptors in the human eye. That is, by

544 CHAPTER 13 Appendix 4: Color images

considering as primaries the colors that we perceive as red, green, and blue.

However, there are other interpretations that give particular properties to the color

space and that define different color models. For example, there are color models

that consider how colors are created on reproduction systems like printers or mod-

els that rearrange colors such that special properties correspond to color proper-

ties. In any case, all the color models follow the tristimulus principles and they

give a particular meaning to the values of [c1 c2 c3] and [A1 A2 A3] in Eq. (13.1).

A way to understand color models is to consider them as created by geometric

transformations. If you can imagine that you can arrange all the colors that you

can see in an enclosed space, then a color model will order those colors by pick-

ing up each color and give it the coordinates [c1 c2 c3] in a space delineated by

the points [A1 A2 A3]. Sometimes the transformation will be constrained to some

colors, so not all the color models contain all the visible colors. Also, although

the space is linear, the transformation can organize the colors using nonlinear

mappings. Independent of the way the space is defined, since there are three com-

ponents per color, a color space can be shown in a 3D graph. However, since the

interpretation of 3D data is difficult, sometimes the data is shown using 2D

graphs.

As such, each color model defines and represents colors that form a color

order system. Geometric properties of the space are related to color properties

making each model important for color understanding, synthesis, and processing.

Therefore, many models have been developed. Historically, the first models were

motivated by the scientific interest in color perception, the need of color represen-

tations in dye manufacture, as well as to provide practical guidance and color cre-

ation to painters. These models have created the fundamentals of color

representation (Kuehni, 2003). Some of them, like the color sphere developed by

Philipp Runge or the hexahedric model of Tobias Meyer, are close to the ideas of

modern theory of color, but perhaps the first model with strong significance in

modern theory of color is the CIE XYZ model. This model was developed from

the CIE RGB model and it has been used as basis of other modern color represen-

tations. In order to explain these color models, it is important to have an under-

standing of the luminosity function.

13.3.2 Luminosity function
The expression in Eq. (13.1) provides a framework to develop color models by add-

ing three components. However, this expression is related to the hue of a color, but

not to its brightness. This can be seen by considering what happens to a color when

its components are multiplied by the same constant. Since the intensity does not

change the color wavelength and the equation is linear, we could expect to obtain a

brighter (or darker) version of the color proportional to the constant. However,

since the human eye does not have the same sensitivity to all frequencies, the color

brightness actually depends on composition. For example, since the human eye is

more sensitive to colors whose wavelength is close to green, colors having a large

54513.3 Color models

green component will increase their intensity significantly when the components

are increased. For the same increment in the components, blue colors will show

less intensity. Colors composed of several frequencies can shift in hue according to

the sensitivity to each frequency to the human eye.

The luminosity or luminous efficiency function is denoted as Vλ and it

describes the average sensitivity of the human eye to a color’s wavelength

(Sharpe et al., 2005). This function was determined experimentally by the follow-

ing procedure. First, the frequency of a light of constant intensity was changed

until observers perceived the maximum brightness. The maximum was obtained

with a wavelength of 555 nm. Secondly, a different light’s wavelength was cho-

sen and the power was adjusted until the perceived intensity of the new wave-

length was the same as the 555 nm. Thus, the luminous efficiency for the light at

the chosen wavelength was defined as the ratio between the power at the maxi-

mum and the power at the wavelength. The experiments for several wavelengths

produce the general form illustrated in Figure 13.4. This figure represents the day-

time efficiency (i.e., photopic vision). Under low light conditions (i.e., scotopic

vision), the perception is mostly performed by the rods in the eye, so the curve is

shifted to have a maximum efficiency of around 500 nm. In intermediate light

conditions (i.e., mesopic vision), the efficiency can be expressed as a function of

photopic and scotopic functions (Sagawa and Takeichi, 1986). The luminosity

function in Figure 13.4 is normalized, thus it represents the relative intensity

rather than the actual visible energy or power perceived by the human eye. The

perceived power generally is expressed in lumen and it is proportional to this

curve. Bear in mind that the perceived intensity is related to the luminous flux of

a source while the actual physical power is related to the radiant flux and it is

generally measured in watts.

In the description of color models, the luminous efficiency is used to provide

a reference for the perceived brightness. This is achieved by relating the color

components to the luminous efficiency via the luminance coefficients [v1 v2 v3].

These coefficients define the contribution of each base color to the brightness as

V 5 v1c1 1 v2c2 1 v3c3 (13.2)

For example, the color coefficients [1 4 2] indicate that the second component

contributes four times more to the brightness than the first one. Thus, an increase

in the second component will create a color that is four times brighter than the

color created by increasing the first one the same amount. It is important to

emphasize that this function describes our perception of brightness and not the

actual radiated power.

In general, the luminance coefficients of a color model can be computed by

fitting the brightness to the luminosity function, i.e., the values that minimize the

summation X
λ

jVλ 2ðαc1;λ 1βc2;λ 1 γc3;λÞj (13.3)

546 CHAPTER 13 Appendix 4: Color images

where bc1,λ c2,λ c3,λc are the components that generate the color with a single

wavelength λ and j j defines a metric error. Colors formed by a single wavelength

are referred to as monochromatic. Since the minimization is for all wavelengths,

the best fit value only gives an approximation to our perception of brightness.

However, in general, the approximation provides a good description of the per-

ceived intensity, and luminance coefficients are commonly used to define and

study the properties of color models.

13.3.3 Perception based color models: the CIE RGB and CIE XYZ
The CIE RGB and CIE XYZ color models were defined in 1931 by the

Commission Internationale de L’Eclairage (CIE). Both models provide a

description of the colors according to human perception and they characterize

the same color’s properties, nevertheless they use different base colors. While

the CIE RGB uses visible physical colors, the XYZ uses imaginary or inexistent

colors that only provide a theoretical basis. That is, the CIE RGB is the physi-

cal model developed based on perception experiments, while the CIE XYZ is

theoretically derived from the CIE RGB. The motivation to develop the CIE

XYZ is to have a color space with better descriptive properties. However, in

order to achieve that description, the base colors are shifted out of the visible

spectrum.

13.3.3.1 CIE RGB color model: Wright�Guild data
The base of the CIE RGB color space is denoted by the triplet [R G B] and its

components are denoted as [r g b]. Thus, the definition in Eq. (13.1) for this

model is written as

C5 rR1 gG1 bB (13.4)

This model considers how colors are perceived by the human eye and it was

developed based on color matching experiments. The experiments were similar to

previous experiments developed in the nineteenth century by Helmholtz and

Maxwell that were used to organize colors according to its primary compositions

(i.e., the Maxwell triangle). In the CIE RGB color model experiments, a person

was presented with two colors: the first color defines a target color with a single

known frequency wavelength and the second is produced by combining the light

of three sources defined by the base colors. To determine the composition of the

target color, the intensity of the base colors is changed until the color produced

by the combination of lights matches the target color. The intensities of the com-

posed sources define the color components of the target color.

The experiments that defined the CIE RGB model were published by Wright

and Guild (Wright, 1929; Guild, 1932) and the results are known as the

Wright�Guild data. Wright experiments used seven observers and light colors

created by monochromatic lights at 650, 530, and 460 nm. The experiments

matched monochromatic colors from 380 to 780 nm at 5 nm intervals. Guild used

54713.3 Color models

ten observers and primaries composed of several wavelengths. In order to use

both the Guild and Wright experimental data, the CIE RGB results are expressed

in a common color base using color lights at 700, 546.1, and 435.8 nm. These

lights were the standard basis used by the National Physical Laboratory in

London and were defined since the last two are easily producible by a mercury

vapor discharge and the 700 nm wavelength has the advantage of having a small

perceptional change for different people. Therefore, small errors in the measure

of the light intensity produce only small errors on the composed color.

An important result of the color matching experiments was the observation

that many colors cannot be created by adding the primary lights, but they can

only be produced by subtracting light values. In the experiments, subtraction does

not mean using negative light intensities but to add a base color to the target

color. This process desaturates the colors and since the mix of colors is linear,

adding to the target is equal than subtracting from the light mixture that creates

the second color in the experiments. For example, to generate violet requires add-

ing a green light to the target, thus generating a negative green value. In practice,

this means that the base colors are not saturated enough (far away from white) to

generate those colors. In fact, there is no color basis that can generate all visible

colors. However, it is possible to define theoretical basis that, although are too

saturated to be visible, it can create all the colors. This is the base rationale for

creating the CIE XYZ model that is presented later.

13.3.3.2 CIE RGB color matching functions
It is impractical to perform color matching experiments to obtain the components

of all the visible colors, but the experiments should be limited to a finite set of

colors. Thus, the color description should provide a rule that can be used to infer

the components of any possible color according to the results obtained in the

matching experiments. The mechanism that permits determination of the compo-

nents of any color is based on the color matching functions.

The color matching functions are illustrated in Figure 13.2 and define the

intensity values of the base colors that produce any monochromatic color with a

normalized intensity. That is, for each color generated by a single wavelength and

with unit intensity, the functions give three values that represent the components

of that color. For example, to create the same color as a single light at 580 nm,

we combine three base colors with intensities 0.24, 0.13, and20.001.
It is important to mention that the color matching functions do not correspond

to the actual intensities measured in the color matching experiments, but the

values are manipulated to provide a normalized description that agrees with our

color perception and such that they are referenced with respect to the white color.

The definition of the color matching functions involves four steps (Broadbent,

2004). First, a different scale factor for each base color was defined such that the

color mixture agrees with our perceptions of color. That is, yellow can be

obtained by the same amount of red and green while the same amount of green

and blue matched cyan (or the monochromatic light at 494 nm). Secondly, the

548 CHAPTER 13 Appendix 4: Color images

data is normalized such that the sum of the components for any given color is

unity. That is, the color is made independent of the color luminous energy by

dividing each measure by the total energy [r1 g1 b]. Thirdly, the color is cen-

tered using as a reference for white. Finally, the color is transformed to character-

ize color using colored lights at 700, 546.1, and 435.8 nm.

The normalization of brightness and the center around the reference point of

the transformation are very important factors related to chromatic adaptation.

Chromatic adaptation is a property of the human visual system that provides con-

stant perceived colors under different illumination conditions. For example, we

perceive an object as white when we see it in direct sunlight or illuminated by an

incandescent bulb. However, since the color of an object is actually produced by

the light it reflects, the measure of the color is different when using different illu-

mination. Therefore, the normalization and the use of a reference ensure that the

measures are comparable and can be translated to different light conditions by

observing the coordinates of the white color. As such, having white as reference

can be used to describe color under different illumination.

In order to center the model based on white, observers were also presented

with a standard white color to determine its components. There were large varia-

tions in each observer’s measures, so the white color was defined by taking an

average. The white color was defined by the values 0.243, 0.410, and 0.347.

Thus, the results of the matching experiments were transformed such that the

white color has its three components equal to 0.333. The values centered on white

are finally transformed to the basis defined by 700, 546.1, and 435.8 nm.

Once the matching functions are defined, then the components for colors with

a single wavelength can be obtained by interpolating the data. Moreover, the color

matching functions can also be used to obtain the components of colors composed

by mixtures of lights by considering the components of each wavelength in the

mixture. To explain this, we consider that the components of a color Ĉλ created

400

2.0

1.5

1.0

0.5

0.0

460 530

Wavelength (nm)

(b) CIE XYZ

700650400

0.4

0.3

0.2

0.1

0.0

–0.1

460 530

Wavelength (nm)

(a) CIE RGB

700650

FIGURE 13.2

Color matching functions. This figure is also reproduced in color in the color plate section.

54913.3 Color models

by a light with a normalized intensity value of one and a single frequency with

wavelength λ is denoted as ½r̂λ ĝλ b̂λ�: That is,
Ĉλ 5 r̂λR1 ĝλG1 b̂λB (13.5)

Since colors are linear, a color with an arbitrary intensity and same single fre-

quency is

Cλ 5 rλR1 gλG1 bλB5 kðr̂λR1 ĝλG1 b̂λBÞ (13.6)

The value of the constant can be obtained by considering the difference

between the intensities of the two target colors. That is, k5 jCλ=jĈλj: Here, jCλj
denotes the intensity of the color. Since the normalized values have an intensity

of one, k5 jCλj. By using this value in Eq. (13.6), we have

Cλ 5 jCλjr̂λR1 jCλjĝλG1 jCλjb̂λB (13.7)

According to this equation, the color components can be obtained by multiply-

ing its intensity by the normalized components given by the color matching func-

tions. That is,

rλ 5 jCλjr̂λ; gλ 5 jCλjĝλ; bλ5 jCλjb̂λ (13.8)

This approach can be generalized to obtain the components of colors com-

posed of several frequencies. For example, for two colors containing two fre-

quency components λ1 and λ2, we have

Cλ1
5 rλ1

R1 gλ1
G1 bλ1

B

Cλ2
5 rλ2

R1 gλ2
G1 bλ2

B
(13.9)

Since the color space is linear, the color containing both frequencies is given by

Cλ1
1Cλ2

5 ðrλ1
1 rλ2

ÞR1ðgλ1
1 gλ2

ÞG1ðbλ1
1 bλ3

ÞB (13.10)

By using the definitions in Eq. (13.8), we have that the color components can

be obtained by adding the color matching functions of each frequency. That is,

Cλ1
1Cλ2

5 ðjCλ1
jr̂λ1

1 jCλ2
jr̂λ2

ÞR1 ðjCλ1
jĝλ1

1 jCλ2
jĝλ2

ÞG1 ðjCλ1
jb̂λ1

1 jCλ2
jb̂λ3

ÞB
(13.11)

Therefore, the color components are the sum of the color matching functions

multiplied by the intensity of each wavelength components. The summation can

be generalized to include all the frequencies by considering infinite sums of all

the wavelength components. That is,

r5
Ð jCλjr̂λ dλ

g5
Ð jCλjĝλ dλ

b5
Ð jCλjb̂λ dλ

(13.12)

As such, the color components of any color can be obtained by summing the

color matching functions weighted by its spectral power distribution. Since the

550 CHAPTER 13 Appendix 4: Color images

color matching functions are represented in a tabular form, sometimes the inte-

grals are expressed as a matrix multiplication of the form

r

g

b

2
4

3
55

r̂λ0
r̂λ1

. . . r̂λn21
r̂λn

ĝλ0
ĝλ1

. . . ĝλn21
ĝλn

b̂λ0
b̂λ1

? b̂λn21
b̂λn

2
4

3
5

jCλ0
j

jCλ1
j

^
jCλn21

j
jCλn

j

2
66664

3
77775 (13.13)

The first matrix in the right side of this equation is given by the CIE RGB

color matching functions table and it is generally given by discrete values at 5 nm

intervals from 380 to 480 nm. However, it is also common to use tables that have

been interpolated at 1 nm intervals (Wyszecki and Stiles, 2000). The second

matrix represents the power of the color in a wavelength interval.

13.3.3.3 CIE RGB chromaticity diagram and chromaticity coordinates
The CIE RGB model characterizes colors by three components, thus the graph of

the full set of colors is a 3D volume. The general shape of this volume is illus-

trated on the top left in Figure 13.3. As colors increase in distance from the

2.0

1.0 1.0

1.0

0.5

0.5 1.00.0

2.0

500 nm

g–
y–

y–

r–

x–

x–

o– 700 nm

700 nm

550 nm

Green

Blue
Red

[0,0]—rg

[0,1]—rg

[1,0]—rg

500 nm

400 nm

480 nm

1.0

1.0

1.0

1.0

–2.0 –1.0 0.0 1.0 2.0

(r,g,b)

(x,y,z)

(r–,g–)

R

B

X

Y

Z

G

(a) CIE RGB color model (b) CIE RGB chromaticity diagram

(c) XYZ color model (d) XYZ chromaticity diagram

550 nm

FIGURE 13.3

CIE RGB and XYZ color models. This figure is also reproduced in color in the color plate

section.

55113.3 Color models

origin, their brightness increases and more colors become visible forming a coni-

cal-shaped volume. In the figure, the base colors coincide with the corners of the

triangle drawn with black dashed lines. Thus, the triangular pyramid defined by

this triangle contains the colors that can be created by addition.

In general, the visualization and interpretation of colors using 3D representa-

tions is complicated, thus color properties can be better visualized using 2D

graphs. The most common way to illustrate the CIE RGB color space is to only

consider the color’s chromaticity. That is, the luminous energy is eliminated by

normalizing against the total energy. The chromaticity coordinates are defined as

r5
r

r1 g1 b
; g5

g

r1 g1 b
; b5

b

r1 g1 b
(13.14)

Only two of the three normalized colors are independent and one value can be

determined from the other two. For example, we can compute blue as

b5 12 r2 g (13.15)

As such, only two colors can be used to characterize the chromaticity of the

color model and the visible colors can be visualized using a 2D graph. The graph

created by considering the color’s chromaticity is called the chromaticity diagram.

The geometrical interpretation of the transformation in Eq. (13.14) is illus-

trated in Figure 13.3(a). Any point in the color space is mapped into the chroma-

ticity diagram by two transformations. First, the central projection in Eq. (13.14)

maps the colors into the plane that contains the colored shape in the figure. That

is, by tracing radial lines from the origin to the plane. Secondly, the points are

orthogonally projected into the plane RG. That is, the b coordinate is eliminated

or set to zero. In the figure, the border of the area resulting from the projection is

shown by the dotted curve in the RG plane.

Figure 13.3(b) shows the projected points into the RG plane and this corre-

sponds to the chromaticity diagram for the CIE RGB model. Note from the trans-

formation that any point in the same radial projection line will end up in the same

point in the chromaticity diagram. That is, points in the chromaticity diagram

characterize colors independent of their luminous energy. For example, the colors

with chromaticity coordinates [0.5 0.5 0.5] and [1 1 1] are shown as the same

point [1/3 1/3] in the diagram. This point represents both white and gray since

they have the same chromaticity, but the first one is a less bright version of the

second one. Since the chromaticity cannot show white and gray for the same

point, it is colored by the normalized color ½r; g; b�:
It is not possible to use the inverse of Eq. (13.14) to obtain the color compo-

nents from the chromaticity coordinates, but the inverse only defines a line pass-

ing through the origin and through colors with the same chromaticity. That is,

r5 kr; g5 kg; b5 kb (13.16)

The value of k in this equation defines a normalization constant that according

to Eq. (13.14) is given by k5 r1 g1 b.

552 CHAPTER 13 Appendix 4: Color images

As illustrated in Figure 13.3(b), the visible spectrum of colors outlines a

horseshoe region in the chromaticity diagram. The red and green components of

each color are determined by the position of the colors in the axes in the graph

while the amount of blue is determined according to Eq. (13.13). The top curved

rim delineating the visible colors is formed by colors with a single frequency

component. This line is called the spectral line and it represents lights from 400

to 700 nm. Single wavelength colors do not have a single component, but the dia-

gram shows the amount of each component of the basis that is necessary to create

the perception of the color. The spectral line defines the border of the horseshoe

region since these colors are the limit of the human eye’s perception. The straight

line of the horseshoe region is called the purple line and is not formed by single

wavelength colors, but each point in this line is formed by mixing the two mono-

chromatic lights at 400 and 700 nm.

In addition to identifying colors, the chromaticity diagram can be used to

develop a visual understanding of its properties and relationships. However, the

interpretation of colors using chromaticity is generally performed in the XYZ

color space, so we will consider the properties of the chromaticity diagram later.

13.3.3.4 CIE XYZ color model
The CIE RGB model has several undesirable properties. First, as illustrated in

Figure 13.2, its color matching functions contain negative values. One of the

graphs is negative at any wavelength. Negative colors do not fit well with the

concept of producing colors by adding base colors and it introduces sign compu-

tations. This is important since at the time the XYZ model was developed, the

computations were done manually. Secondly, the color components are not nor-

malized, e.g., a color created by a light with a single frequency at 410 nm are

[0.03 20.007 0.22]. A better color description should have the components

bounded to range from 0 to 1. Finally, all the base colors have a contribution to

the brightness of a color. That is, the perceived brightness is changed by modify-

ing any component. However, the distribution of cones and rods in the human eye

has a different sensitivity for perception of brightness and color. Thus, a more

useful description should concentrate the brightness on a single component such

that the perception of a color can be related to the definition of chromaticity and

brightness. The CIE XYZ model was developed to become a universal reference

system that overcomes these unwanted properties.

The basis of the CIE XYZ model is denoted by the triplet [X Y Z] and its com-

ponents are denoted as [x y z]. Thus, the definition in Eq. (13.1) for this model is

written as

C5 xX1 yY 1 zZ (13.17)

and the chromaticity coordinates are defined as

x5
x

x1 y1 z
; y5

y

x1 y1 z
; z5

z

x1 y1 z
(13.18)

55313.3 Color models

Similar to Eq. (13.13), we have

z5 12 x2 y (13.19)

Thus, according to Eq. (13.16), colors with the same chromaticity are defined

by the inverse of Eq. (13.18). That is,

x5 kx; y5 ky; z5 kz (13.20)

At difference of the CIE RGB, the color components in the XYZ color model

are not defined by matching color experiments, but they are obtained from the

components of the CIE RGB model by a linear transformation. That is,

x

y

z

2
4

3
55M

r

g

b

2
4

3
5 (13.21)

Here, M is a nonsingular 33 3 matrix. Thus, the mapping from the XYZ color

model to the CIE RGB is given by

r

g

b

2
4

3
55M21

x

y

z

2
4

3
5 (13.22)

The definition in Eq. (13.21) uses a linear transformation in order to define a

one-to-one mapping that maintains collinearity. The one-to-one property ensures

that the identity of colors is maintained, thus colors can be identified in both mod-

els without any ambiguity. Collinearity ensures that lines defined by colors with

the same chromaticity are not changed. Thus, colors are not scrambled, but the

transformation maps the colors without changing its chromaticity definition.

Additionally, the transformation does not have any translation, so it actually rear-

ranges the chromaticity lines defined from the origin by stretching the colors in

the CIE RGB model. This produces a shift that translates the base colors into the

invisible spectrum.

Equation (13.21) defines a system of three equations, thus the matrix can be

determined by defining the mapping of three no coplanar points. That is, if we

know the CIE RGB and XYZ components of three points, then we can substitute

these values in Eq. (13.21) and solve for M. As such, in order to define the XYZ

model, we just need to find three points. These points are defined by considering

the criteria necessary to achieve desired properties in the chromaticity diagram

(Fairman et al., 1997).

Since M is defined by three points, the development of the XYZ color model

can be reasoned as the mapping of a triangle. This idea is illustrated in

Figure 13.3. In this figure, the dashed triangle in the CIE RGB diagram shown in

Figure 13.3(b) is transformed into the dark dashed triangle in the XYZ diagram

shown in Figure 13.3(d). In Figure 13.3(d), the sides of the triangles coincide

with the axis of the XYZ model and the visible colors are constrained to the trian-

gle defined in the unit positive quadrant. By aligning the triangle to the XYZ axes,

554 CHAPTER 13 Appendix 4: Color images

we are ensuring that the transformation maps the color components to positive

values. That is, since the triangle is at the right and top of the axis, x. 0 and

y. 0: The definition of the diagonal side ensures that the remaining component is

positive. This can be seen by considering that according to the definition of chro-

maticity in Eq. (13.18), we have

x1 y5 12 z (13.23)

Thus, in order for z to take values from 0 to 1, it is necessary that

x1 y# 1 (13.24)

That is, the colors should be under the diagonal line. Once the triangle in the

XYZ chromaticity diagram has been defined, the problem of determining the

transformation M in Eq. (13.21) consists on finding the corresponding triangle in

the CIE RGB diagram. This can be achieved by considering the properties of the

colors on the lines ox; oy; and xy that define the triangle. In other words, we can

establish criteria to look for the corresponding lines in both diagrams. The first

criterion to be considered is to give the contribution of brightness to a single

component.

Since the human eye is more sensitive to colors whose wavelength is close to

green, the contribution of brightness in the XYZ model is given by the Y compo-

nent. That is, changes in the X and Z components of a color produce insignificant

changes of intensity, but small changes along the Y axis will produce a strong

intensity variation. For this reason, the Y component is called the color intensity.

In the CIE RGB, all components have a contribution to the intensity of the color

according to the luminance coefficients [1 4.59 0.06]. That is, the luminosity

function in Eq. (13.2) for the CIE RGB model is given by

V 5 r1 4:59g1 0:06b (13.25)

Since in the XYZ color model, the contribution to the intensity is only given

by the Y component, the colors for which y5 0 should have V5 0. That is, if

y5 0; then

r1 4:59g1 0:06b5 0 (13.26)

This equation defines a plane that passes through the origin in the 3D CIE

RGB color space. A projection into the chromaticity diagram is obtained by con-

sidering Eq. (13.13). That is,

0:17r1 0:81g1 0:015 0 (13.27)

This line goes through the points o and x shown in Figure 13.3(b) and it corre-

sponds to the line ox in Figure 13.3(d). The colors in this line are called alychne

or colors with zero luminance, and these colors are formed by negative values of

green or red. According to the definition of luminosity function, these colors do

not produce any perceived intensity to the human eye and according to the locus

of the line in the chromaticity diagram they are not visible. The closest sensation

55513.3 Color models

we can have about a color that does not create any luminance is close to deep

purple. In the XYZ chromaticity diagram, the y value defines a color from the

alychne line.

The definition of the line xy considers that the line passing through the points

[1 0] and [0 1] in the CIE RGB chromaticity diagram can be a good mapping for

the diagonal line in the XYZ chromaticity diagram. It is a good mapping since it

maximizes the coverage of the area defined by the visible colors and it delineates

the contour of the color region that is tangential to the region defining the visible

colors over a large wavelength range. However, this line does not encompass all

the visible colors. This can be seen by considering that this line is defined by

r1 g5 1 (13.28)

Thus, the points on or below the line should satisfy the constraint given by

r1 g# 1 (13.29)

The blue color can be used in this equation by considering that according to

Eq. (13.19)

r1 g5 12 b (13.30)

Thus, the constraint in Eq. (13.29) can be true only if b is positive. However,

the color matching functions define small negative values between 546 and

600 nm. Consequently, some colors are above the line. To resolve this issue, the

line that defines the XYZ model is obtained by slightly shifting the slope of

the line in Eq. (13.28). The small change in the slope was calculated such that the

line contains the color obtained by the minimum blue component. Thus, the sec-

ond line that defines the XYZ model is given by

r1 0:99g5 1 (13.31)

This line is illustrated in Figure 13.3(b) as the dotted line going through the

points x and y: The corresponding line in the XYZ chromaticity diagram can be

seen in Figure 13.3(d).

The definition of the line oy in the CIE RGB chromaticity diagram was cho-

sen to maximize the area covering the visible colors. This was achieved by defin-

ing the line tangential to the point defining the 500 nm color. The position of the

line is illustrated by the points o and y in Figure 13.3(b). This line corresponds to

the vertical axis of the XYZ diagram shown in the bottom right of the figure. The

equation of the line in the CIE RGB chromaticity diagram is defined as

2:62r1 0:99g520:81 (13.32)

Thus, the lines that define the triangle in the CIE RGB diagram are given by

Eqs (13.27), (13.31), and (13.32). The vertices of the triangle are obtained by

computing the intersection of these lines and they are given by the points

[1.27 20.27], [21.74 2.76], and [20.74 0.14]. In order to obtain the position of

these points in the CIE RGB color space, it is necessary to include the b

556 CHAPTER 13 Appendix 4: Color images

component. This is achieved by considering Eq. (13.13). Thus, the chromaticity

coordinates of the points in the CIE RGB color model are [1.27 20.27 0.002],

[21.74 2.76 20.02], and [20.74 0.14 1.6].

By using Eq. (13.16), we have that the color components defined by these

coordinates are given by the three points

α½1:27 20:27 0:002�
β½21:74 2:76 20:02�
γ½21:74 2:76 20:02�

(13.33)

The symbols α, β, and γ denote the normalization constants. In order to jus-

tify these constants, we should recall that points in the chromaticity diagram rep-

resent a line of points in the color space. That is, for any values of α, β, and γ,
we obtain the same three points of the form ½r g�: As such, for any value of the

constants, the points in Eq. (13.33) have chromaticity coordinates that satisfy the

criteria defined based on the chromaticity properties.

Since we define the triangle in the XYZ model to coincide with its axes,

Eq. (13.21) transforms the points in Eq. (13.33) to the points [1 0 0], [0 1 0], and

[0 0 1]. As such, the transformation M can be found by substitution of the three

points defined in both spaces. However, this requires solving three systems of

equations; each system gives a row of the matrix. A simpler approach consists on

using Eq. (13.22) instead of Eq. (13.21). It is simpler to use Eq. (13.22) since the

points in the XYZ system contain zeros in two of its elements. Thus, the three

systems of equations are reduced to equalities. That is, by substitution of the three

points in Eq. (13.22), we obtain the three equations

α
1:27
20:27
0:002

2
4

3
55M21

1

0

0

2
4

3
5; β

21:74
2:76
20:02

2
4

3
55M21

0

1

0

2
4

3
5; γ

20:74
0:14
1:6

2
4

3
55M21

0

0

1

2
4

3
5

(13.34)

The multiplication in the right side of the first equation gives the first column

of M21, the second equation the second column, and the third the last column.

That is,

M21 5
1:27α 21:74β 20:74γ
20:27α 2:76β 0:14γ
0:002α 20:02β 1:6γ

2
4

3
5 (13.35)

We can rewrite this matrix as a product. That is,

M21 5
1:27 21:74 20:74
20:27 2:76 0:14
0:002 20:02 1:6

2
4

3
5 α 0 0

0 β 0

0 0 γ

2
4

3
5 (13.36)

The normalization constants are determined by considering that the chromatic-

ity of the reference point (i.e., white) is the same in both models. However,

55713.3 Color models

instead of transforming the reference point by using Eq. (13.36), a simpler alge-

braic development can be obtained by considering the properties of the inverse of

the matrix product. Thus, from Eq. (13.36),

M5
1=α 0 0

0 1=β 0

0 0 1=γ

2
4

3
5 0:90 0:57 0:37

0:09 0:41 0:005
20:00002 0:006 0:62

2
4

3
5 (13.37)

In the CIE RGB, the coordinates of the reference white are [0.33 0.33 0.33].

By considering that this point is the same in the CIE RGB and in the XYZ color

models, then according to Eq. (13.21),

η
0:33
0:33
0:33

2
4

3
55

1=α 0 0

0 1=β 0

0 0 1=γ

2
4

3
5 0:90 0:57 0:37

0:09 0:41 0:005
20:00002 0:006 0:62

2
4

3
5 0:33

0:33
0:33

2
4

3
5 (13.38)

This equation introduces the normalization constant η. This is because the

constraint establishes that the chromaticity coordinates of the white point should

be the same, but not their color components; by substitution in Eq. (13.14), it is

easy to see that the colors [0.33 0.33 0.33] and η[0.33 0.33 0.33] have the same

chromaticity values.

By developing Eq. (13.38),

α
β
γ

2
4

3
55

1

η

1=0:33 0 0

0 1=0:33 0

0 0 1=0:33

2
4

3
5 0:90 0:57 0:37

0:09 0:41 0:005
20:00002 0:006 0:62

2
4

3
5 0:33

0:33
0:33

2
4

3
5

(13.39)

Thus,

α
β
γ

2
4

3
55

1

η

1:84
0:52
0:62

2
4

3
5 (13.40)

By using these values in Eqs (13.35) and (13.37),

M5
1

η

0:489 0:31 0:20
0:17 0:81 0:01
0:00 0:01 0:99

2
4

3
5; M21 5 η

2:36 20:89 20:45
20:51 1:42 20:088
20:005 20:01 1:00

2
4

3
5
(13.41)

To determine η, we consider the second row of the transformation. That is,

y5 ð0:17r1 0:81g1 0:01bÞ=η (13.42)

This value corresponds to the perceived intensity and it is given in

Eq. (13.25), so

r1 4:59g1 0:06b5 ð0:17r1 0:81g1 0:01bÞ=η (13.43)

558 CHAPTER 13 Appendix 4: Color images

Consequently,

η5
0:17r1 0:81g1 0:01b

r1 4:59g1 0:06b
5 0:17 (13.44)

and

M5
2:76 1:75 1:13
1:0 4:59 0:06
0:00 0:05 5:59

2
4

3
5; M21 5

0:41 20:15 20:08
20:09 0:25 20:016
0:0 0:0 0:17

2
4

3
5 (13.45)

The second row in the first matrix defines γ by the luminance coefficients of

the CIE RGB model. Thus the γ component actually gives the color’s perceived

brightness. Notice that since these equations were derived from the luminosity of

the photopic vision, the maximum luminance is around 555 nm. However, alter-

native equations can be developed for considering other illuminations and other

definitions of the white color.

13.3.3.5 CIE XYZ color matching functions
The transformation defined in Eq. (13.21) can be used to obtain the colors in the

XYZ model from the components of the CIE RGB model. However, a definition

of the XYZ color model cannot be given just by a transformation, but a practical

definition of the color model should provide a mechanism that permits obtaining

the representation of colors without reference to other color models. This mecha-

nism is defined by the color matching functions.

Similar to the definition of the CIE RGB, the color components in the XYZ

model can be defined by considering a sample of single colors. Subsequently, the

components of any color can be obtained by considering its spectral composition.

This process can be described in a way analogous to Eq. (13.12). That is,

x5

ð
jCλjx̂λ dλ; y5

ð
jCλjŷλ dλ; z5

ð
jCλjẑλ dλ (13.46)

Here, the components [x y z] of a color are obtained from the intensity jCλj at
wavelength λ and the color matching functions x̂λ; ŷλ; and ẑλ: These functions are

defined by the XYZ components of monochromatic lights. Thus, the definition of

the XYZ system uses the transformation in Eq. (13.21) to determine the values

for single colors that define the XYZ color matching functions. That is,

½x̂λ ŷλ ẑλ�T 5M½r̂λ ĝλ b̂λ�T (13.47)

The problem with this equation is that the ŷλ values are related to the per-

ceived intensity only in average terms. This can be seen by recalling that

Eq. (13.25) only defines the perceived intensity that minimizes the error over all

wavelengths. Thus, the value of ŷλ will not be equal to the perceived intensity,

but we can only expect that the average difference between these values for all

wavelengths is small.

55913.3 Color models

In order to make ŷλ equal to Vλ, the definition of the XYZ model considered a

different value for the constant η for every wavelength. To justify this definition,

it should be noted that the selection of the value of the constant does not change

the chromaticity properties of the model; the constant multiplies the three color

components, thus it does not change the values obtained in Eq. (13.14).

Accordingly, by changing the constant of the transformation for each wavelength,

the criteria defined in the chromaticity diagram are maintained, and just the com-

ponents (including the intensity) are rescaled. Thus, it is possible to define a scal-

ing that satisfies the criteria and that makes the intensity equal to Vλ. As such, the

scale that gives the value of the perceived intensity dependent on the wavelength

λ is given by

ηλ 5
0:17r̂λ 1 0:81ĝλ 1 0:01b̂λ

Vλ
(13.48)

Equation (13.44) is a special form of this equation, but the constant is defined

to obtain the best average intensity while this equation is defined per frequency.

By considering the constant defined in Eq. (13.48) in Eq. (13.42), we have

y5
0:17r1 0:81g1 0:01b

0:17r̂λ 1 0:81ĝλ 1 0:01b̂λ
Vλ (13.49)

Thus, if we are transforming the monochromatic color x̂λ; ŷλ; and ẑλ; the

intensity y is equal to Vλ. This implies that there is a matrix for each wavelength.

That is,

Mλ 5
1

ηλ

0:489 0:31 0:20
0:17 0:81 0:01
0:00 0:01 0:99

2
4

3
5 (13.50)

This matrix was obtained by considering Eq. (13.41) for the definition in

Eq. (13.48). Thus, the transformation in Eq. (13.47) is replaced by

x̂λ ŷλ ẑλ
� �T

5Mλ r̂λ ĝλ b̂λ
� �T

(13.51)

This transformation defines the color matching functions for the XYZ model.

The general form of the curves is shown in Figure 13.2. The ŷλ component illus-

trated as a green curve in the figure is equal to the intensity Vλ in Figure 13.4.

Thus, a single component in the XYZ model gives the maximum perceivable

brightness.

Evidently, since Eq. (13.51) defines the color matching functions, the calcula-

tions of the color components based on Eq. (13.21) are inaccurate. That is, the

CIE RGB and the XYZ models are not related by a single matrix transformation;

when computing a color by using the transformation and the color matching func-

tions, we obtain different results since the color matching functions are obtained

from several scaled matrices. Additionally, when considering colors composed of

several frequencies, the transformation will include inaccuracies given the

560 CHAPTER 13 Appendix 4: Color images

complexity of the actual intensity resulting from the mixture of wavelengths.

Nevertheless, Eq. (13.21) is approximately correct on average and in practice can

be used to transform colors. Alternatively, there are standard tables for the color

matching functions of both models, so the representation of a color can be

obtained by considering Eqs (13.12) and (13.46).

Actually there is little practical interest in transforming colors between the

CIE RGB and XYZ models. The actual importance of their relationship is to

understand the physical realization of color models and the theoretical criteria

used to develop the XYZ model. The understanding of the physical realization of

a color model describes perception or image capture. That is, how colors become

numbers and what these numbers represent to our perception. The understanding

of the XYZ criteria gives a justification to the creation of nonphysically realizable

models to satisfy properties that are useful in understanding colors. In fact, there

is always interest in using the properties of the XYZ model for other physical

models; properties and color relationships in practical models are commonly

explained by allusion to properties of the XYZ model. These properties are gener-

ally described using the XYZ chromaticity diagram.

13.3.3.6 XYZ chromaticity diagram
The visible colors of the XYZ model delineate the pyramid-like volume illus-

trated in Figure 13.3(c). Each line from the origin defines colors with the same

chromaticity. The chromaticity coordinates are defined according to Eq. (13.18)

and the chromaticity diagram shown in Figure 13.3(d) is obtained by considering

the x and y values.

1.0

0.5

400 nm 555 nm 700 nm

Wavelength

Efficiency

FIGURE 13.4

Luminous efficiency defined by the photopic luminosity function. This figure is also

reproduced in color in the color plate section.

56113.3 Color models

The chromaticity diagram provides a visual understanding of the properties of

colors. The origin of the diagram is labeled as blue and the end of the axis as red

and green. This indicates how colors change along each axis. The y value repre-

sents the perceived brightness. Similar to the CIE RGB chromaticity diagram, the

visible colors define a horseshoe-shaped region. The colors along the curved rim

of this region are colors with a single frequency component. This line is called

the spectral line. The straight line of the horseshoe region is called the purple

line. Colors in this line are created by mixing the monochromatic lights at the

extremes of the visual spectrum, at 400 and 700 nm.

In addition to showing the palette of colors in the visual spectrum, the chro-

maticity diagram is also useful to visualize hue and saturation. These properties

are defined by expressing colors relative to white using polar coordinates. By tak-

ing the white point [1/3 1/3] as reference, the hue of a color is defined as the

angular component and its saturation as the radial length. The saturation is nor-

malized such that the maximum value for a given hue is always one and it is

given for the points in the border of the horseshoe region. As such, moving

toward white on the same radial line produces colors with the same hue, but

which are more desaturated. These define the shades of the color on the border of

the horseshoe region. Any color with small saturation becomes white. Tracing

curves such that their points keep the same distance to the border of the horseshoe

region produces colors of different hue, but with constant saturation.

The chromaticity diagram is also useful to visualize relationships between

mixtures of colors. The mix of colors that are generated from any two source col-

ors is found by considering all the points in the straight line joining them. That is,

the colors obtained by linearly combining the extreme points. Similarly, we can

determine how a color can be obtained from another color by considering the line

joining the points in the diagram. Any point in a line can be obtained by a linear

combination of any other two points in the same line. Thus, the chromaticity dia-

gram can be used to show how to mix colors to create the same perceived color

(metamerism).

13.3.4 Uniform color spaces: CIE LUV and CIE LAB
The XYZ model is very useful to visualize the colors we can perceive and their

relationships. However, it lacks uniformity or perceptual linearity. That is, the

perceived difference between two colors is not directly related to the distance of

the colors as represented in the chromaticity diagram. In other words, the per-

ceived difference between points at the same distance in chromaticity can be sig-

nificantly dissimilar. In practice, uniformity and linearity are important properties

if we are using the measure of color differences as an indication of how similar

are the colors for the visual system. For example, in image classification, if we

measure a large difference between the color of two pixels, we may wrongly

assume that they form part of a different class, but in fact these can be very simi-

lar to our eye. Another example of the importance of using uniform color systems

562 CHAPTER 13 Appendix 4: Color images

is when color measures are used to determine the accuracy of color reproduction

systems. In this case, the quality of a system is given by how different the colors

are actually perceived rather than how different are in the chromaticity diagram.

Also linearity is desirable in reproduction systems since we do not want to spend

resources storing different colors that look the same to the human eye.

The nonuniformity of the XYZ system is generally illustrated by using the

MacAdam ellipses shown in Figure 13.5(a). These ellipses were obtained by

experiments using matching colors (MacAdam, 1942). In the experiments, obser-

vers were asked to adjust the color components of one color until it matches a

fixed color from the chromaticity diagram. The results showed that the accuracy

of matching depends on the test color and that the matching colors obtained from

different observers lie within ellipses with different orientations and sizes. The

original experiments derived the 25 ellipses illustrated in Figure 13.5(a). The cen-

ter of the ellipse is given by the fixed color and their area encompasses the

matching colors by the observers.

The MacAdam experiments showed that our ability to distinguish between

colors is not the same for all colors, thus distances in the chromaticity diagram

are not a good measure of color differences. Ideally, observed differences should

be delineated by circles with the same radius such that a given distance between

colors has the same meaning independent of the position in the diagram. The

study of the nonuniformity of the XYZ color model motivated several other mod-

els that look for better linearity. In 1976, the CIE provided two standards for these

uniform spaces. They are known as the CIE LUV and the CIE LAB color models.

The basic concept of these models is to transform the color components of the

XYZ colors so that perceptual differences in the chromaticity diagram are more

uniform.

0.9

0.5

0.0

(a) MacAdam ellipses for the XYZ model

0.5 0.8
x

y

(b) MacAdam ellipses for the LUV model

0.9

0.5

0.0 0.5 0.8
u

v

FIGURE 13.5

CIE LUV uniformity. This figure is also reproduced in color in the color plate section.

56313.3 Color models

The definition of the CIE LUV model is based on the following equations:

u5
4x

x1 15y1 3
; v5

9y

x1 15y1 3
(13.52)

Similar to Eq. (13.18), the overbar is used to indicate that the values represent

chromaticity coordinates. This equation can also be expressed in terms of the

color components by considering the definition in Eq. (13.18). That is,

u5
4x

x1 15y1 3z
; v5

9y

x1 15y1 3z
(13.53)

Both Eqs (13.52) and (13.53) are equivalent, but one is expressed using chro-

maticity coordinates and the other by using color components. In both cases, the

transformation distorts the coordinates to form a color space with better percep-

tual linearity than the XYZ color model. The result is not a perfect uniform space,

but the linearity between perceived differences is improved.

The transformation in Eq. (13.52) was originally used as a simple way to

improve perceptual linearity in earlier color models (Judd, 1935). Later, the trans-

formation was used in the LUV color model, but this model also includes the use

of a reference point and it separates the normalization of brightness. As men-

tioned in Section 13.3.3.1, the white reference point is used to account for varia-

tions in illumination; the human eye adapts to the definition of white depending

on the lighting conditions, thus having white as reference can be used to describe

color under different lightings. The LUV color model uses as reference the stan-

dard indirect light white; however, it can be translated to represent other lights.

The LUV model defines a reference point denoted as [un vn]. This point is

obtained by transforming the chromaticity coordinates of the white color. That is,

by considering the values xn 5 0:31; yn 5 0:33 in Eq. (13.52), we have

un 5
4xn

22xn 1 12yn 1 3
; vn 5

9yn
22xn 1 12yn 1 3

(13.54)

This equation can also be expressed in terms of the color components of the

white color by considering Eq. (13.53). In any case, the transformation of the

white color for indirect daylight gives as a result a reference point close to

[0.2 0.46]. This point is used to define the color components in the LUV model as

u� 5 13L�ðu2 unÞ; v� 5 13L�ðv2 vnÞ (13.55)

Here, [u* v*] are the color components and the lightness L* is given by

L� 5

�
29

3

�3�
y

yn

�
;

y

yn
#

�
6

29

�3

116

�
y

yn

�1=3
216; otherwise

8>>>>><
>>>>>:

(13.56)

564 CHAPTER 13 Appendix 4: Color images

Equations (13.55) and (13.56) transform color components. However, equiva-

lent equations can be developed to map chromaticity coordinates by following

Eq. (13.53) instead of Eq. (13.52).

In addition to centering the transformation on the reference point, Eq. (13.55)

introduces a brightness scale value L*. Remember that the Y axis gives the per-

ception of brightness, thus by dividing yn the color is made relative to the bright-

ness of the white color and the linearization is made dependent on the vertical

distance to the reference point. When using the white color as reference and since

XYZ is normalized, yn5 1. However, other values may be used when using a dif-

ferent reference point.

Equation (13.56) makes the perception of brightness more uniform and it has

two parts that are defined by considering small and large intensity values. In

most cases, the color is normalized by the part containing the cubic root, thus

the normalization is exponentially decreased as y increases. That is, points

closer to the ox axis in Figure 13.5(a) have a larger scale than points far away

from this axis. However, for small values, the cube root function has a very

large slope and as a consequence small differences in brightness produce very

large values. Thus, the cubic root is replaced by a line that gives better scale

values for small intensities. In addition to the cubic root, the normalization

includes constant factors that made the value to be in a range from 0 to 100.

This was arbitrarily chosen as an appropriate range for describing color

brightness.

The constant values in Eq. (13.55) are chosen so that measured distances

between systems can be compared. In particular, when the color differences are

computed by using the Euclidean distance, a distance of 13 in the XYZ model

corresponds to the distance of one in the LUV color model (Poynton, 2003). The

constants produce a range of values between2134 to 220 for u* and2140 to 122

for v*. However, these values can be normalized as illustrated in Figure 13.5(b).

This diagram is known as the uniform chromaticity scale diagram. The

figure illustrates the shape of the MacAdam ellipses in the LUV color model with

less eccentricity and more uniform size. However, they are not perfect circles. In

practice, the approximation provides a useful model to measure perceived color

differences.

The LAB color model is an alternative to the LUV model. It uses a

similar transformation for the brightness, but it changes the way colors are nor-

malized with respect to the reference point. The definition of LAB color model

is given by

L� 5 116f
y

yn

� �
216; a� 5 500 f

x

xn

� �
2 f

y

yn

� �� �
;

b� 5 200 f
y

yn

� �
2 f

z

zn

� �� � (13.57)

56513.3 Color models

for

f ðsÞ5
1

3

�
29

6

�2
s1

16

116
; s# ð6=29Þ3

s1=3; otherwise

8><
>: (13.58)

The definition of L* is very similar to the LUV model. In fact, if we substitute

Eq. (13.58) in the definition of L* in Eq. (13.57), we obtain an equation that is

almost identical to Eq. (13.56). The only difference is that the LUV model uses a

line with zero intercept to replace the cubic root for small values while the LAB

model uses a line with the same value and slope as the cubic part at the point

(6/29)3. In practice, the definition of L* in both the LUV and LAB gives very

similar values.

Although the definition of L* is practically the same, the normalization by

using the reference point in the LUV and LAB color models are different; the

LUV color model uses subtraction while the LAB divides the color coordinates

by the reference point. Additionally, in the LAB color model, the coordinates are

obtained by subtracting opposite colors. The use of opposite colors is motivated

by the observation that most of the colors we normally perceive are not created

by mixing opposites (Nida-Rümelin and Suarez, 2009). That is, there is no red-

dish-green or yellowish-blue, but combinations of opposites have a tendency

toward gray. Thus, the opposites provide natural axes for describing a color. As

such, the a* and b* values are called the red/green and the yellow/blue chromi-

nances, respectively, and they have positive and negative values. These values

do not have limits and they extend to colors not visible by the human eye;

however for digital representations, the range is limited by values between 2127
and 127.

The a*, b* and the dark-bright luminosity define the axes of a 3D diagram

referred to as the LAB chart and that is illustrated in Figure 13.6. In this figure,

L*

b*

a*

FIGURE 13.6

CIE LAB color space. This figure is also reproduced in color in the color plate section.

566 CHAPTER 13 Appendix 4: Color images

the top/bottom axis of this graph represents the lightness L* and it ranges from

black to white. The other two axes represent the red/green and yellow/blue values.

Negative values in a* indicate green while positive values indicate magenta.

Similarly, negative and positive values of b* indicate yellow and blue colors.

Since visualizing 3D data is difficult, generally the colors in the LAB model are

shown as slices parallel to the a* and b* axes. Two of these slices are illustrated

in Figure 13.6.

In order to obtain an inverse mapping that obtains the components of a color

in the XYZ color model from the LUV and LAB values, we can simply invert the

equations defining the transformations. For example, the chromatic coordinates of

a color can be obtained from the LUV coordinates by inverting Eqs (13.52) and

(13.54). That is,

x5
9u

6u1 16v1 12
; y5

4v

6u1 16v1 12
(13.59)

and

u5
u�

13L�
1 un; v5

u�

13L�
1 vn (13.60)

For the LAB color model, the coordinates in the XYZ space can be obtained

by inverting Eqs (13.57) and (13.58). That is,

y5 yn f
21 L� 1 16

116

� �
; x5 xn f

21 L� 1 16

116
1

a�

500

� �
;

y5 yn f
21 L� 1 16

116
1

b�

200

� � (13.61)

for

f21ðsÞ5
3

�
6

29

�2�
s2

16

116

�
; s# 6=29

s3; otherwise

8><
>: (13.62)

It is important to understand that the colors in the LUV, LAB, and XYZ mod-

els are the same and they represent the colors we can perceive. These transforma-

tions just define mappings between coordinates. That is, they change the way we

name or locate each color in a coordinate space. What is important is how coordi-

nates of different colors are related to each other. That is, each color model

arranges or positions the colors differently in a coordinate space, so the special

relationships between colors have specific properties.

As explained before, the XYZ provides a good understanding of color proper-

ties and it is motivated by the way we match different colors using single fre-

quency normalized components (i.e., color matching functions). The LUV and

LAB color models provide an arrangement that approximates the way we per-

ceive differences between colors. That is, they have better perceptual linearity,

56713.3 Color models

chromatic adaptation, and they match better the human perception of lightness.

This is important so, for example, to predict how observers will detect color dif-

ferences in graphic displays. Additionally, there is some experimental works in

the image processing literature that have shown that these models can also be use-

ful for tasks such as color matching, detecting shadows, texture analysis, and

edge classification. This may be related to their better perceptual linearity; how-

ever, it is important to remember that these models were not designed to provide

the best information or correlation about colors, but to model and give a special

arrangement of the human response to color data.

13.3.5 Additive and subtractive color models: RGB and CMY
13.3.5.1 RGB and CMY
The CIE RGB and XYZ models represent all the colors that can be perceived by

the human eye by combining three monochromatic lights non-visible for the XYZ

model. Thus, although it has important theoretical significance, they are not ade-

quate for modeling practical color reproduction and capture systems such as pho-

tography, printers, scanners, cameras, and displays. In the case of reproduction

systems, producing colors with a single frequency (e.g., lasers) with adequate

intensity for generating visible colors with an adequate luminosity is very expen-

sive. Similarly, sensors in cameras integrate the luminosity over a wide range of

visible colors. Consequently, the base colors in capture and reproduction systems

use visible colors composed of several electromagnetic frequencies. Thus, there is

a need of device dependent color models that are finally determined by factors

such as the amount of ink or video voltages. Fortunately, images rarely contain

saturated colors, so a no monochromatic base provides a good reproduction for

most colors without compromising intensity.

The RGB color models use base colors containing components close to the

red, green, and blue wavelengths. These models are used, for example, by CRT

(cathode ray tube) displays and photographic films. The base colors in these mod-

els are denoted as [R G B] and their components as [r g b]. Other reproduction

systems, such as inkjet and laser printers, use base colors close to the complemen-

tary of RGB, i.e., cyan, yellow, and magenta. These models are called CMY and

their base colors and components are denoted as [C M Y] and [c m y], respec-

tively. The CIE RGB is a particular RGB model; however, the term RGB models

is generally only used to refer color models developed for practical reproduction

systems. The motivation to have several RGB and CMY color models is to char-

acterize the physical properties of different reproduction systems.

The RGB and CMY color models differ in the way in which the colors are

created; RGB is an additive model while CMY is subtractive. The additive or

subtractive nature of the models is determined by the physical mechanism used in

the reproduction system. In the RGB, the base colors are generated by small light

emitting components such as fluorescent phosphors, diodes, or semiconductors.

These components are positioned very close to each other, so its light is combined

568 CHAPTER 13 Appendix 4: Color images

and perceived as a single color. Thus, the creation from colors stems from black

and it adds the intensities of the base colors. In CMY, the base colors are

colorants that are applied on a white surface. The colors act as filters between the

white surface and the eye producing a change in our perception. That is, colors

are subtracted from white. For example, to create green, we need to filter all the

colors but green, thus we should apply the complementary or opposing color to

green—magenta.

CMY has been extended to CMYK model by adding black to the base colors.

The use of black has two practical motivations. First, in a reproduction system, it

is cheaper to include a black than use CMY to generate black. Secondly, using

three different colors produces less detail and shade than using a single color.

This is particularly important if we consider that a great amount of printing mate-

rial is in black and white.

Since RGB and CMY models are relevant for reproduction systems, in addi-

tion to the additive and subtractive properties, it is very important to describe the

colors that are included in the model. This is called the gamut and it is generally

described using a triangle in the chromaticity diagram as illustrated in

Figure 13.7. In this figure, the triangles’ vertices are defined by the base colors of

typical RGB and CMY models. The triangle pointing upward illustrates a typical

RGB color model while the upside down triangle illustrates a CMY model. Since

colors are linearly combined, each triangle contains all the colors that can be

obtained by the base colors, i.e., the gamut. This can be seen by considering that

Green Spectral line (rim)

CYM

RGB

Red

700 nm

400 nm

Purple line

500 nm

550 nm

0.9

0.5

0.0 0.5 0.8

Blue
x–

y–

FIGURE 13.7

Chromaticity diagram. This figure is also reproduced in color in the color plate section.

56913.3 Color models

any point between two of the base colors can be obtained by a linear combination

between them. For example, any color that can be obtained by combining R and

G is in the line joining those points. Thus, the full trace of lines between a point

in this line and B fill in the triangle covering all the colors that can be created

with the base.

In addition to visualizing the model using the chromaticity diagram, some-

times the colors in the RGB and CMY models are shown using a 3D cube where

each axis defines one color of the base. This is called the RGB color cube and the

range of possible values is generally normalized such that all colors are encom-

passed in a unit cube. The origin of the cube has coordinates [0 0 0] and it defines

black, while the diagonal opposite corner [1 1 1] represents white. The vertices

[1 0 0], [0 1 0], and [0 0 1] represent the base colors red, green, and blue, respec-

tively, and the remaining three vertices represent the complementary colors yel-

low, cyan, and magenta. In practice, the chromaticity diagram is used to visualize

the possible range of colors of a reproduction system while the cube representa-

tion is useful to visualize the possible color values.

Reproduction systems of the same type have similar base colors, but the

exact spectral composition varies slightly. Thus, standards have been established

to characterize different color reproduction systems. For example, the

HDTV (high-definition television) uses points with chromaticity coordinates

R5 [64 0.33], G5 [0.3 0.6] and B5 [0.15 0.06], while the NTSC (National

Television System Committee) has the points R5 [0.67 0.33], G5 [0.21 0.71],

and B5 [0.14 0.08]. Other standards include the PAL (Phase Alternate Line)

and the ROMM (Reference Output Medium Metric) developed by Kodak. In

addition to standards, it is important to note that since color reproduction is gen-

erally done by using colors represented in digital form, often different color

models are also strongly related to the way the components are digitally stored.

For example, true color uses 8 bits per component while high color uses 5 bits

for red and blue and 6 bits for green. However, independent of the type of

model and storage format, the color representation uses the RGB and CMY

color models.

13.3.5.2 Transformation between RGB color models
The transformation between RGB models is important to make data available to

diverse reproduction and capture systems. Similar to Eq. (13.21), the transforma-

tion between RGB color models is defined by a linear transformation. That is,

r1
g1
b1

2
4

3
55MRGB

r2
g2
b2

2
4

3
5 (13.63)

Here, [r1 g1 b1] and [r2 g2 b2] are the color components in two different RGB

color models and MRGB is a 33 3 nonsingular matrix. The matrix is generally

derived by using the XYZ color model as a common reference. That is, MRGB is

570 CHAPTER 13 Appendix 4: Color images

obtained by concatenating two transformations. First the component [r2 g2 b2] is

mapped into the XYZ model and then it is mapped into [r1 g1 b1]. That is,

r1
g1
b1

2
4

3
55MRGB2;XYZMXYZ;RGB1

r2
g2
b2

2
4

3
5 (13.64)

The matrix MRGB2,XYZ denotes the transformation from [r2 g2 b2] to [x y z]

and MXYZ,RGB1 denotes the transformation from [x y z] to [r1 g1 b1].

In order to obtain MRGB,XYZ, we can follow a similar development to the for-

mulation presented in Section 13.3.3.4. However, in the RGB case, the coordi-

nates of the points defining the color model are known from the color model

standards. Thus, we only need to obtain the normalization constants. For example,

the definition of the NTSC RGB color model gives the base colors with XYZ

chromaticity coordinates [0.67 0.33], [0.21 0.71], and [0.14 0.08]. The definition

also gives the white reference point [0.31 0.3161]. The position of these points in

the color space is obtained by computing z according to Eq. (13.19) and by con-

sidering the mapping defined in Eq. (13.20). That is, the XYZ coordinates of the

base colors for the NTSC model are given by

α½0:67 0:33 0:0�
β½0:21 0:71 0:08�
γ½0:14 0:08 0:78�

(13.65)

This expression corresponds to Eq. (13.33) for the CIE RGB. However, in this

case, the points are coordinates in the XYZ color space. Since these points are

mapped into the points [1 0 0], [0 1 0], and [0 0 1] in the NTSC color space, we have

α

0:67

0:33

0:0

2
664

3
7755MNTSC;XYZ

1

0

0

2
664

3
775; β

0:21

0:71

0:08

2
664

3
7755MNTSC;XYZ

0

1

0

2
664

3
775;

γ

0:14

0:08

0:78

2
664

3
7755MNTSC;XYZ

0

0

1

2
664

3
775

(13.66)

That is,

MNTSC;XYZ 5
0:67α 0:21β 0:14γ
0:33α 0:71β 0:08γ
0:0α 0:08β 0:78γ

2
4

3
5 (13.67)

We can rewrite this matrix as

MNTSC;XYZ 5
0:67 0:21 0:14
0:33 0:71 0:08
0:00 0:08 0:78

2
4

3
5 α 0 0

0 β 0

0 0 γ

2
4

3
5 (13.68)

57113.3 Color models

In order to compute the normalization constants, we invert this matrix.

That is,

M21
NTSC;XYZ 5

1=α 0 0

0 1=β 0

0 0 1=γ

2
4

3
5 1:73 20:48 20:26

20:81 1:65 20:02
0:08 20:17 1:28

2
4

3
5 (13.69)

By using Eqs (13.19) and (13.20), we have that the XYZ coordinates of the

NTSC reference point are η[0.31 0.316 0.373], where η is a normalization con-

stant. By considering this point in the transformation defined in Eq. (13.69), we

have

0:31
0:31
0:31

2
4

3
55 η

1=α 0 0

0 1=β 0

0 0 1=γ

2
4

3
5 1:73 20:48 20:26

20:81 1:65 20:02
0:08 20:17 1:28

2
4

3
5 0:310

0:316
0:373

2
4

3
5 (13.70)

By rearranging the terms in this equation,

α
β
γ

2
4

3
55 η

1=0:31 0 0

0 1=0:31 0

0 0 1=0:31

2
4

3
5 1:73 20:48 20:26

20:81 1:65 20:02
0:08 20:17 1:28

2
4

3
5 0:310

0:316
0:373

2
4

3
5

(13.71)

Thus,

α
β
γ

2
4

3
55 η

0:92
0:84
1:45

2
4

3
5 (13.72)

By considering these values in Eq. (13.67),

MNTSC;XYZ 5 η
0:62 0:18 0:20
0:30 0:59 0:11
0:00 0:07 1:13

2
4

3
5 (13.73)

The constant η is determined based on the perceived intensity. The brightest

color in the NTSC model is given by the point [1 1 1]. According to Eq. (13.73),

the intensity value is 0.31 0.591 0.11. Since the maxima intensity in the XYZ

color model is one, we have

η5
1

0:31 0:591 0:11
5 0:9805 (13.74)

Thus,

M21
NTSC;XYZ 5

0:60 0:17 0:02
0:29 0:58 0:11
0:00 0:06 1:11

2
4

3
5 (13.75)

572 CHAPTER 13 Appendix 4: Color images

By considering Eqs (13.74) and (13.72) in Eq. (13.68), we have

MNTSC;XYZ 5
1:91 20:53 20:28
20:98 1:99 20:02
0:05 20:11 0:89

2
4

3
5 (13.76)

The transformation matrices for other RGB color models can be obtained by

following a similar procedure. For example, for the PAL RGB model, the chro-

maticity coordinates of the base points are [0.64 0.33], [0.29 0.60], and

[0.15 0.06]. The definition also gives the white reference point [0.3127 0.3290].

Thus,

MPAL;XYZ 5
0:43 0:34 0:17
0:22 0:70 0:07
0:02 0:13 0:93

2
4

3
5; M21

PAL;XYZ 5
3:06 21:39 20:47
20:96 1:87 0:04
0:06 20:22 1:06

2
4

3
5

(13.77)

According to Eq. (13.64), the transformation between the NTSC and PAL

model can be obtained by considering that

MPAL;NTSC 5MPAL;XYZMXYZ;NTSC 5MPAL;XYZM
21
NTSC;XYZ (13.78)

That is,

MPAL;NTSC 5
0:35 0:28 0:23
0:33 0:44 0:15
0:05 0:13 1:04

2
4

3
5 (13.79)

Thus, the transformation between different color models can be performed by

considering the transformations using as reference the XYZ color model. The

advantage of using transformations for the XYZ model is that transformations

between any color model can be computed as a simple matrix multiplication. The

transformations between different CMY models can be developed following a

similar procedure, i.e., by computing the normalization constants according to

three points and a reference white.

13.3.5.3 Transformation between RGB and CMY color models
A very simple approach to transform between RGB and CMY color models is to

compute colors using the numerical complements of the coordinates. Thus, the

transformation between RGB and CMY can be defined as

c

m

y

2
4

3
55

21 0 0 1

0 21 0 1

0 0 21 1

2
4

3
5

r

g

b

1

2
664

3
775 (13.80)

The problem with this definition is that it does not actually transform the coor-

dinates between models. That is, instead of looking for corresponding colors in

57313.3 Color models

the XYZ model according to the RGB and CMY base colors, it assumes that the

bases of the CMY are [0 1 1], [1 0 1], and [1 1 0] in RGB coordinates. However,

the base of the CMY model certainly does not match the RGB model.

Additionally, colors in the CMY that are out of the RGB gamut are not used.

Consequently, these types of transformations generally produce very different col-

ors in both models.

A better way to convert between RGB and CMY color models is to obtain a

transformation by considering the base colors of the RGB and CMY in the XYZ

reference. This approach is analogous to the way the transformation between

models was developed as given in the previous section. However, this approach

also has the problem of mapping colors out of the gamut. As shown in

Figure 13.7, the triangles delineating the RGB and CMY models have large areas

that do not overlap, thus some colors cannot be represented in both models. That

is, a transformation based on the XYZ model will give coordinates of points out-

side the target gamut. Thus, for example, colors in a display will not be repro-

duced in a printed image. A solution to this problem is to replace colors mapped

outside the target gamut by the closest color in the gamut. However, this loses the

color gradients by saturating at the end of the gamut. Alternatively, the source

colors can be scaled such that the gamut fits the target gamut. However, this

reduces the color tones.

Since there is not a unique transformation between RGB and CMY models,

the change between color models has been defined by using color management

systems. These are software systems that use color profiles that describe the color

transformation for particular hardware and viewing characteristics. The format of

color profiles is standardized by the ICC (International Color Consortium) and

they define the transformation from the source to the XYZ or CIE LAB. The

transformation can be defined by parameters or by tables from where the interme-

diate colors can be interpolated. Since profiles use chromaticity coordinates, they

also contain the coordinates of the white reference point.

Many capture systems such as cameras and scanners produce and use standard

color models. Thus, the profile for these systems is commonly defined. However,

since there is no best way to transform between models, every hardware device

that captures or displays color data can have several profiles. They are generally

provided by hardware manufacturers and they are obtained by carefully measur-

ing and matching colors in their systems. Generally, there are profiles that provide

the closest possible color matching as well as profiles that produce different col-

ors but use most part of the target gamut. Other profiles manipulate colors to

highlight particular parts of the gamut and saturate others. These profiles are

denoted as profiles for different rendering intent. The best profile depends on fac-

tors such as the colors on the image, color relationships, desired lightness, and

saturation as well as subjective perception.

As we have already explained, corresponding chromaticity coordinates to the

XYZ model and a white reference point can be used to compute normalization

constants that define the color model transformations. Thus, color management

574 CHAPTER 13 Appendix 4: Color images

systems use color profiles in a similar way to the color transformation defined in

Eq. (13.64). That is, they use the transformation of the source to convert to the

reference frame and then the inverse of the target to obtain the final transformed

data. If necessary, it will also perform transformations between the XYZ and CIE

LAB before transforming to the final color model. For example, a transformation

from RGB to CMY can be performed by two transformations as

c

m

y

2
4

3
55M21

CMY;XYZMXYZ;RGB

r

g

b

2
4

3
5 (13.81)

Here, the transformations are represented as matrices, but generally they are

defined by tables. Thus, the implementation performs lookups and interpolations.

In a typical case, the first transformation will be defined by the profile of a cam-

era or scan, while the second is given by an output device such as a printer.

13.3.6 Luminance and chrominance color models:
YUV, YIQ, and YCbCr

The RGB color models define base colors according to practical physical proper-

ties of reproduction systems. Thus, the brightness of each color depends on all

components. However, in some applications like video transmission, it is more

convenient to have a separate single component to represent the perceived bright-

ness. From a historical perspective, perhaps the most relevant models that use a

component to represent brightness are the YUV and YIQ. It is important to men-

tion that sometimes the term YUV is used to denote any color model that uses

luminance and chrominance in different components; the Y component is called

the luma and the remaining two components are referred to as the chrominance.

However, YUV is actually a standard color model that, like YIQ, was specifically

developed for analogue television transmission.

In the early development of television systems, it was important to have the

brightness in a single component for two main reasons. First, the system was

compatible with the old black and white televisions that contained a single lumi-

nance component; the added color data can be transmitted separately from the

brightness. Secondly, the transmission bandwidth can be effectively reduced by

dropping the bandwidth of the components having the chromaticity; since the

human eye is more sensitive to luminance, the reduction in chromaticity produces

less degradation in the images when using the RGB model. Thus, transmission

errors are less noticeable by the human eye. Currently, the data reduction

achieved with this color model is not only important for transmission and storing,

but also for video processing. For processing, a separate luminance can be used to

apply techniques based on gray level values as well of techniques that are inde-

pendent of the luminosity.

The YUV and YIQ color models are specified by the NTSC and PAL televi-

sion broadcasting standards. The difference between both color models is that the

57513.3 Color models

YIQ has a rotation of 33� in the color components. The rotation defines the I axis

to have colors between orange and blue and the Q axis to have colors between

purple and green. Since the human eye is more sensitive to changes in the I axis

than to the colors in the Q component, the signal transmission can use more band-

width for I than for Q to create colors that are clearly distinguished.

Unfortunately, the decoding of I and Q is very expensive and television sets did

not achieved a full I and Q decoding. Nowadays, the NTSC and PAL standards

are being replaced by digital standards such as the ATSC (Advanced Television

Systems Committee).

Video signals can also be transmitted without combining them into a single

channel, but by using three independent signals. This is called component video

and it is commonly used for wire video transmission such as analogue video cam-

eras and DVD players. The color model used in analogue component video is

called YPbPr. The YCbCr is the corresponding standard for digital video. Since

this standard separates luminance, it is adequate for data reduction and thus it has

been used for digital compression encoding formats like MPEG (Moving Pictures

Expert Group) and JPEG (Joint Photographic Expert Group). The data reduction

in digital systems is implemented by having less samples of chrominance than

luminance. Generally, the chrominance is only half or a quarter of the resolution

of luma component. There are other color models such as YCC. This color model

was developed for digital photography and it is commonly used in digital

cameras.

There are applications that require converting between different luminance

and chrominance models. For example, if processing increases the resolution of

video images, then it will be necessary to change between the color model used

in standard definition and the color model used in high definition. In these

cases, the transformation can be developed in two steps by taking as reference

RGB color models. More often, conversions between RGB and YUV color

models are necessary when developing interfaces between transmission and

reproduction systems, e.g., when printing a digital image from a television sig-

nal or when using an RGB display to present video data. Conversion to the

YUV color model is also necessary when creating video data from data captured

using RGB sensors and it can also be motivated by processing reasons. For

example, applications based on color characterizations may benefit by using uni-

form spaces.

It is important to note that transformations between RGB color models and

luminance and chrominance models do not change the color base, but they only

rearrange the colors to give a different meaning to each component. Thus, the

base colors of luminance and chrominance models are given by the RGB stan-

dards. For example, YIQ uses the NTSC RGB base colors. These are called the

RGB base or primaries of the YIQ color model. That means that the luminance

and chrominance models are defined from RGB base colors and this is the reason

why sometimes luminance and chrominance are considered as a way of encoding

RGB data rather than a color model per se.

576 CHAPTER 13 Appendix 4: Color images

13.3.6.1 Luminance and gamma correction
The transformation from RGB to YUV is defined by considering the y component

as the perceived intensity of the color. The perceived intensity was defined by the

luminosity function in Eq. (13.2). Certainly, this function depends on the compo-

sition of the base colors. For example, for the CIE RGB is defined by

Eq. (13.25). Since the YUV and YIQ color models were developed for television

transmission, perceived intensity was defined according to the properties of the

CRT phosphorus used on early television sets. These are defined by the RGB

NTSC base colors. If we consider the contribution that each component has to

luminosity, then y will be approximately given by

y5 0:18r1 0:79g1 0:02b (13.82)

This equation defines luminance. In YUV and YIQ, this equation is not

directly used to represent brightness, but it is modified to incorporate a nonlinear

transformation that minimizes the perceived changes in intensity. The transforma-

tion minimizes visible errors created by the necessary encoding of data using a

limited bandwidth. Since the human eye distinguishes more clearly variations in

intensity at low luminance than when the luminance is high, then an efficient cod-

ing of the brightness can be achieved if more bandwidth is used to represent dark

values than bright values. Coding and decoding luminance is called gamma

encoding or gamma correction.

The graph in Figure 13.8(a) illustrates the form of the transformations used in

gamma correction. The horizontal axis of the graph represents the luminance y

and the vertical axis represents the luma. The luma is generally denoted as y0 and
it is the value used to represent brightness in the YUV and YIQ color models.

Accordingly, some texts use the notation Y0UV and YUV to distinguishing mod-

els using gamma corrected values. However, the transmission of analogue televi-

sion always includes gamma corrected values. Curves representing gamma

(b) Gamma decoding(a) Gamma encoding

y

y ’

10
0

1

1–γy

y

y ’

y ’γ

10
0

1

FIGURE 13.8

Gamma correction.

57713.3 Color models

correction in Figure 13.8 only illustrate an approximation of the transformation

used to obtain the luma. In practice, the transformation is defined by two parts: a

power function is used for most of the curve and a linear function is used for the

smallest values. The linear part is introduced to avoid generating insignificant

values when the slope of the power exponential is close to zero.

Figure 13.8(a) illustrates the encoding power function that maps each lumi-

nance value into a point in the vertical axis. This mapping shrinks intervals at

high luminance and expands intervals at y values. Thus, when y is encoded, more

bandwidth is given to the values where the human eye is more acute. The power

function is

ΓðyÞ5 y
1
γ

� �
(13.83)

Here, (1/γ) is called the gamma encoding value and it was chosen by practical

considerations for television sets. Since the CRT on television sets had a nonlin-

ear response that approximates the inverse of the transformation in Eq. (13.83),

the gamma value was choosing to match the inverse response. As such, there is

no need for decoder hardware, but the CRT nonlinearity acts as a decoder and the

intensity reaching the eye is linear. Thus, by using gamma correction, the trans-

mission not only encoded the luminance efficiently, but at the same time it cor-

rects for nonlinearity of the CRT. It is important to emphasize that the main aim

of gamma encoding is not to correct the nonlinearity of CRT displays but to

improve the visual quality by efficiently encoding luminance. The gamma encod-

ing of television transmission was carefully chosen such that the nonlinearity of

the CRT was also corrected when the signal was displayed. However, gamma cor-

rection is important even when image data is not displayed on a CRT and video

data is often gamma corrected. Consequently, to process the video data, it is often

necessary to have gamma decoding. After processing, if the results ought to be

displayed on a screen, then it should be gamma encoded to match the screen

gamma.

Figure 13.8(b) illustrates the decoding gamma transformation. The function in

this graph is a typical voltage/luminance response of a CRT and it corresponds to

the inverse of Eq. (13.83). Thus, it expands intervals at high luminance and

shrinks intervals at low luminance. Consequently, it will transform values that

have been gamma encoded into linear luminance. Since the encoding occurs

before the transmission of the signal, limited bandwidth of the transmission pro-

duces larger errors at low luminance values than at high luminance values.

Accordingly, the encoding effectively improves the perceived quality of the

images; image artifacts such as banding and roping produced by quantization are

created at low intensities, so they are not evident to the human eye.

Evidently, the value of gamma varies depending on particular properties of

the CRT, but for the YUV and YIQ standards, it defines a value of γ5 2.2. That

is, the gamma encoding for YUV should transform the values in Eq. (13.82) by

the power in Eq. (13.83) with encoding gamma of 0.45. Since the RGB

578 CHAPTER 13 Appendix 4: Color images

components in television sets were produced by three independent electron beans,

the encoding cannot apply the transformation to combine luminance, but each

component is separately gamma corrected. That is, the luma is defined as the sum

of gamma corrected RGB components. Thus, by gamma correcting Eq. (13.82)

for γ5 2.2, we have

y0 5 0:299r0 1 0:587g0 1 0:114b0 (13.84)

The prime symbol in this equation is used to indicate gamma corrected values.

That is, r0 5Γ(r), g0 5Γ(g), and b0 5Γ(b). These values have a range between

zero and one.

There is an alternative definition of luma that was developed according to cur-

rent displays used for HDTV technology. This definition is given by

y0 5 0:212r0 1 0:715g0 1 0:072b0 (13.85)

In practice, Eq. (13.84) is defined for YUV and YIQ and it is used for stan-

dard television resolutions (i.e., SDTV), while Eq. (13.85) is part of the ATSC

standards and it is used for HDTV.

13.3.6.2 Chrominance
The U and V components represent the chrominance and they are defined as the

difference between the color and the white color at the same luminance. Given an

RGB color, the white at the same luminance is defined by Eq. (13.84). Thus, the

chrominance is given by

u5Kuðb0 2 y0Þ
v5Kvðr0 2 y0Þ (13.86)

Only two components are necessary since for chromaticity one component is

redundant according to the definition in Eq. (13.13). This definition uses gamma

encoded components and that a color is between black and white (i.e., gray level

values), the components have the same value. Thus, y0 5 b0 5 r0 and the chromi-

nance becomes zero.

The constants Ku and Kv in Eq. (13.86) can be defined such that the values of

u and v are within a predefined range. In television transmission, the color com-

ponents of YUV and YIQ are combined into a single composite signal that con-

tains the luma plus a modulated chrominance. In this case, the composite

transmission is constrained by the amplitude limits of the television signal. This

requires that u be between 60.436, while the values of v must be between

6 0.613 (Poynton, 2003).

The desired television transmission ranges for u and v are obtained by consid-

ering the maximum and minimum of b0 2 y0 and r0 2 y0. The maximum of b0 2 y0

is obtained when r5 g5 0 and b5 1, i.e., 12 0.114. The minimum value is

obtained when r5 g5 1 and b5 0, i.e., 2(12 0.114). Similarly, for r0 2 y0, we
have that the maximum is obtained when b5 g5 0 and r5 1 and the minimum

57913.3 Color models

when b5 g5 1 and r5 0. That is, the extreme values are 6(12 0.299).

Accordingly, the constants that bound the values to 60.436 and 60.613 are

Ku 5 0:436=ð12 0:114Þ
Kv 5 0:615=ð12 0:299Þ (13.87)

That is,

u5 0:493ðb0 2 y0Þ
v5 0:877ðr0 2 y0Þ (13.88)

These constants are not related to perception or properties of the colors but

are defined such that signals are appropriate for composite transmission according

to the NTSC and PAL standards. The same constants are used when the signal is

transmitted over two channels (i.e., S-Video), but as we explain below they are

different when the signal is transmitted over three channels.

13.3.6.3 Transformations between YUV, YIQ, and RGB color models
By considering the luma defined in Eq. (13.84) and by algebraically develop-

ing the chrominance defined in Eq. (13.88), we can express the mapping

from RGB color model to YUV color by using a 33 3 transformation matrix.

That is,

y0

u

v

2
4

3
55

0:299 0:587 0:114
20:147 20:288 0:436
0:615 20:514 20:100

2
4

3
5 r0

g0

b0

2
4

3
5 (13.89)

A similar transformation for high-definition video can be obtained by repla-

cing the first row of the matrix according to Eq. (13.85). The transformation from

YUV to RGB is defined by computing the inverse of the matrix in Eq. (13.89),

That is,

r0

g0

b0

2
4

3
55

1:0 0:0 1:139
1:0 20:394 20:580
1:0 2:032 0:00

2
4

3
5 y0

u

v

2
4

3
5 (13.90)

In the case of the YIQ model, the luma and chrominance follow the same for-

mulation, but the U and V components are rotated by 33�. That is,

i

q

� 	
5

cosð33Þ 2sinð33Þ
sinð33Þ cosð33Þ

� 	
0:877ðr0 2 y0Þ
0:499ðb0 2 y0Þ

� 	
(13.91)

By developing this matrix and by considering Eq. (13.82), we have

y0

i

q

2
4

3
55

0:299 0:587 0:114
0:596 20:275 20:321
0:212 20:523 0:311

2
4

3
5 r0

g0

b0

2
4

3
5 (13.92)

580 CHAPTER 13 Appendix 4: Color images

The transformation from YIQ to RGB is defined by taking the inverse of this

matrix. That is,

r0

g0

b0

2
4

3
55

0:299 0:587 0:114
0:596 20:275 20:321
0:212 20:523 0:311

2
4

3
5 y0

i

q

2
4

3
5 (13.93)

13.3.6.4 Color model for component video: YPbPr
The YPbPr color model uses the definition of luma given in Eq. (13.84) and the

chrominance is defined in an analogous way to Eq. (13.86). That is,

pb 5Kbðb0 2 y0Þ
pr 5Krðr0 2 y0Þ (13.94)

The difference between this equation and Eq. (13.86) is that since YPbPr was

developed for component video, it assumes that signals are transmitted indepen-

dently and consequently there are different constraints about the range of the

transmission signals. For component video, the luma is transmitted using a 1 V

signal, but this signal also contains sync tips, thus the actual luma has a

0�700 mV amplitude range. In order to bring the chrominance to the same range,

the normalization constants in Eq. (13.94) are defined such that the chrominance

is limited to half the luma range (i.e., 60.5). Thus, signals are transmitted using

a maximum amplitude of 60.350 mV that represent the same 700 mV range of

the luma signal.

In a similar way to Eq. (13.87), in order to bound the chrominance values to

60.5, the normalization constants are defined by multiplying by the desired

range:

Kb 5 0:5=ð12 0:114Þ
Kb 5 0:5=ð12 0:299Þ (13.95)

By using these constants in Eq. (13.94), we have

pb 5 0:564ðb0 2 y0Þ
pr 5 0:713ðr0 2 y0Þ (13.96)

As such, the transformation from the RGB color model to the YUV color

model is given by

y0

pb
pr

2
4

3
55

0:299 0:587 0:114
20:169 20:331 0:500
0:500 20:419 20:081

2
4

3
5 r0

g0

b0

2
4

3
5 (13.97)

The inverse is then given by

r0

g0

b0

2
4

3
55

1:0 0:0 1:402
1:0 20:344 20:714
1:0 1:772 0:0

2
4

3
5 y0

pb
pr

2
4

3
5 (13.98)

58113.3 Color models

The transformations for HDTV can be obtained by replacing the first row in

Eqs (13.97) and (13.98) according to the definition of luma in Eq. (13.85).

13.3.6.5 Color model for digital video: YCbCr
The YUV, YIQ, and YPbPr color models provide a representation of colors based

on continuous values defined for the transmission of analogue signals. However,

transmission and processing of data in digital technology require a color represen-

tation based on a finite set of values. The YCbCr color model defines a digital

representation of color by digitally encoding the luma and chrominance compo-

nents of the YPbPr model.

The YCbCr model encodes the values of YPbPr by using 8 bits per compo-

nent, but there are extensions based on 10 bits. The luma byte represents an

unsigned integer and its values range from 16 for black to 235 for white. Since

chrominance values in the YPbPr model are positive and negative, the chromi-

nance bytes in YCbCr represent two’s complement signed integers centered at

128. Also, the YCbCr standard defines that the maximum chrominance values

should be limited to 240. The ranges of the components in the YCbCr model are

called YCbCr video levels and they do not cover the maximum range that can be

represented using 8 bits. The range is clipped to avoid having YCbCr colors that

when mapped to the RGB can create saturate colors out of the RGB gamut. That

is, the range of the YCbCr components is chosen to be a subset of the RGB

gamut. The xvYCC color model extends YCbCr representation by considering

that modern displays and reproduction technologies can have a gamut that

includes higher saturation values. Thus, the full 8 bit range is used. Also some

applications, like JPEG encoding, have been considered more practical to use the

full 8 bit range.

By considering the range of the components in the YCbCr model and by recal-

ling that the luma in the YPbPr model ranges from 0 to 1 while the chrominance

takes values between 60.5, then the transformation that defines the YCbCr color

model is given by

y0c 5 161 219�y0; Cb 5 1281 224pb; Cr 5 1281 224pr (13.99)

Here we use y0c to denote the luma component in the YCbCr color model. For

applications using the full range represented by 8 bits, we have the alternative

definition given by

y0c 5 255�y0; Cb 5 1281 256pb; Cr 5 1281 256pr (13.100)

By developing Eq. (13.99), according to the definitions in Eqs (13.84) and

(13.96), we have that the transformation from RGB to YCbCr can be written as

y0c
Cb

Cr

2
4

3
55

65:481 128:553 24:966
237:797 274:203 112:0
112:0 293:786 218:214

2
4

3
5 r0

g0

b0

2
4

3
51

16

128

128

2
4

3
5 (13.101)

582 CHAPTER 13 Appendix 4: Color images

By solving for r0, g0, and b0, we have that the transformation from the YCbCr

color model to the RGB color model is given by

r0

g0

b0

2
4

3
55

0:00456 0:0 0:00625
0:00456 20:00153 20:00318
0:00456 0:00791 0:0

2
4

3
5 y0 2 16

pb 2 128

pr 2 128

2
4

3
5 (13.102)

For high-definition data, the definition should use Eq. (13.85) instead of

Eq. (13.84). Also when converting data considering full range defined by 8 bits,

the transformation equations are developed from Eq. (13.100) instead of using

Eq. (13.99). Also, since this representation is aimed at digital data, there are for-

mulae that approximate the transformation by using integers or bit manipulations.

Similar to color models used for analogue transmission, the YCbCr encodes col-

ors efficiently by using more data for luma than for chrominance. This is achieved

by using different samplings for the image data. The notation 4:2:2 is used to indicate

that images have been codified by sampling the chrominance half the frequency than

the luma. That is, each pair of pixels in an image’s row has four bytes that represent

two luminance values and two chrominance values; there is a luma for each pixel,

but the chrominance is the same for both pixels. The notation 4:1:1 is used to indicate

that 4 pixels share the same chrominance values. In addition to these representations,

some standards like MPEG support vertical and horizontal sampling. In this case,

four pixels in two consecutive rows and two consecutive columns are represented by

six bytes; four for luminance and two for chrominance.

13.3.7 Perceptual color models: HSV and HLS
As mentioned in Section 13.3.5, RGB color models are aimed at representing col-

ors created in reproduction systems. Thus, the combination of RGB components

cannot be intuitive to human interpretation. That is, it is difficult to determine the

precise values that should have color components that create a particular color.

Even when using the visualization of the RGB color cube, the interpretation of

colors is not simple since perceptual properties such as the color brightness vary

indistinctly along the RGB axes. Of course the chromaticity diagram is very use-

ful to visualize the relationships and properties of RGB colors. However, since

this diagram is defined in the XYZ color space, it is difficult to relate color’s

properties to RGB component values. Other color models like YUV provide an

intuitive representation of intensity, but chrominance only represents the differ-

ence to white at same luminance, thus the color ranges are not very intuitive.

Perceptual color models are created by a transformation that rearranges the colors

defined by the RGB color model such that their components are easy to interpret.

This is achieved by relating components to colors’ characteristics such as hue,

brightness, or saturation. Thus, tasks such as color picking and color adjustments

can be performed using color properties having an intuitive meaning.

There are many perceptual color models, but perhaps the most common are

the HSV (hue, saturation, value) and the HLS (hue, lightness, saturation). The

58313.3 Color models

HSV is also referred to as HSI (hue, saturation, intensity) or as the HSB (hue, sat-

uration, brightness). HSV and HLS use two components to define the hue and sat-

uration of a color but they use different concepts to define the component that

represents the brightness. It is important to make clear that the definition of hue

and saturation used by these color models does not correspond to the actual col-

or’s properties defined in Section 13.3.3.6 but are ad hoc measures based on intui-

tive observations of the RGB color cube. However, similar to the hue and

saturation discussed in Section 13.3.3.6 and illustrated by using the chromaticity

diagram shown in Figure 13.3, the hue and saturation in the HIS and HSV color

models is defined by using polar coordinates relative to a reference gray or white

point. The hue of a color that provides a meaning to the color family like, for

example, red, yellow, or green is defined by the angular component and the satu-

ration that provides an intuitive meaning of color sensation from white or gray is

defined by the radial distance.

In order to compute hue and saturation according to the perception of the

human eye, it is necessary to obtain the polar coordinates of the corresponding

CIE RGB or XYZ color’s chromaticity coordinates. However, the development of

the HSV and HLS color models opts for a simpler method that omits the transfor-

mation between RGB and XYZ by computing the hue and saturation directly

from the RGB coordinates (Smith, 1978). This simplicity in computation leads to

three undesirable properties (Ford and Roberts, 1998): first, as we discussed in

Section 13.3.5, the RGB coordinates are device dependent. Thus, the color

description in these models will change depending on the reproduction or capture

devices. That is, the same image used on television sets and on a digital camera

will have different color’s properties. Secondly, RGB coordinates are not based

on human perception but are dependent on color reproduction technology. Thus,

the computations are not based on reference values that match our perception. As

such, the colors’ properties in HSI and HSV color models give only rough

approximations of perceived properties. Finally, since the color’s luminance is

not actually correlated to definitions like the luminosity functions and the compu-

tations use approximations, the brightness component does not correspond to the

actual perceived brightness. Consequently, changes in hue or saturation can be

perceived as changes in brightness and vice versa. However, in spite of these

drawbacks, the intuitive definition provided by the HIS and HSV color models

has demonstrated to be useful in developing tools for color selection. In image

processing, these models are useful for operations that categorize range of colors

and automatic color replacement since color rules and conditionals can be simply

specified based on intuitive concepts.

Since HSV and HLS are defined by ad hoc practical notions rather than by

formal concepts, there are several alternative transformations to compute the color

components. All transformations are special developments of the original hexagon

and triangle geometries (Smith, 1978). Both geometrics define brightness by using

planes with normal along the line defining gray. In the hexagonal model, planes

are defined as projections of subcubes in the RGB color cube while the triangle

584 CHAPTER 13 Appendix 4: Color images

model planes are defined by three points in the RGB axes. In general, the hexa-

gon model should be preferred because the transformations are simple to compute

(Smith, 1978). However, there are implementations of the HLS transformations

suitable for real-time processing in current hardware. Thus, other factors such as

the HIS model is more flexible about the definition of brightness, and the better

distribution of the color makes the HIS color model more attractive for image

processing applications.

13.3.7.1 The hexagonal model: HSV
Figure 13.9 illustrates the derivation of the HSV color model according to the

hexagonal model. In this model, the RGB color cube is organized by considering

a collection of subcubes formed by changing the coordinates of the components

from zero to the maxima possible coordinate value. The quantity defining the size

of the subcubes is called the value which generally ranges from 0 to 1. A value of

0 defines a subcube enclosing a single color (i.e., black) and a value of 1 encom-

passes the whole RGB cube. The subcubes do not contain all the colors they can

enclose but only include the colors in the three faces that are visible from the

point defining the white corner of the RGB color cube and looking toward the ori-

gin. In Figure 13.9(a), these are the shaded faces of the smaller subcube. As such,

each color in the RGB color cube is uniquely included in a subcube and the value

that defines the subcube for any chosen color can be determined by computing

B

G

Y

B [0,0,v]

G [0,v,0]R [v,0,0]

M
C

v

R

v

W

Y

B

(a) Subcubes for different values (b) Projection of subcubes

(c) Computation of saturation (d) Computation of hue

R

M C

G
s

p
pY

pC

Y

B

R

M C

Gp
h

e

pY

pR

FIGURE 13.9

HSV color model.

58513.3 Color models

the maxima of its coordinates. That is, a color [r g b] is included in the cube

defined by a value given by

v5maxðr; g; bÞ (13.103)

According to this definition, the value in the HSV color model is related to

the distance from black. Fully saturated colors like red, green, and yellow are

in the same plane in the HSV color space. Evidently, this is not in accordance

with the perceived intensity as defined by the luminosity function in Figure 13.4.

However, this definition of blackness is useful to create user interfaces that permit

the selection of colors given that hue is independent of brightness. In this method,

the user can choose a desired hue or color base and then add blackness to change

its shade. Change in tint or whiteness is given by the saturation, while tint and

shade define the tone of the color. In the HSV color model, saturation is some-

times referred to as chroma.

The definition of value in Eq. (13.103) can be interpreted as a projection that

takes all the colors in the faces of a subcube and maps them into a single plane as

illustrated in Figure 13.9(b). Here, the view is aligned with the points defining

black and white such that the projection defines a hexagon. Three of the vertices

of the hexagon are defined by the RGB axis and they have coordinates [v 0 0],

[0 v 0], and [0 0 v]. The other three vertices define yellow, cyan, and magenta,

given by [v v 0], [0 v v], and [v 0 v]. The color is then defined as a position on a

hexagonal plane around the lightness axis. The size of the hexagon is given by v

and consequently the set of hexagons for all the subcubes form a hexahedron with

the peak in the location of black. The value that defines brightness is determined

by the color’s vertical position in the axis of the hexahedron; at the peak of the

hexahedron there is no brightness, so all colors are black while the brightest col-

ors are at the other end.

Since in the projection the center of the hexagon defines gray levels, the satu-

ration can be intuitively interpreted as the normalized distance from the color to

the hexagon’s center; when s is zero the color is gray, so it is desaturated. When

the color is saturated then s is unity and the color lies in the border of the hexa-

gon. Thus, the computation of saturation can be based on the geometry illustrated

in Figure 13.9(c). Here, the center of the hexagon is indicated by the point w and

the saturation for a point p is the distance s. Figure 13.9(c) illustrates an example

for a color lying in the region between the axes R and G. In this case, the distance

from w to p can be computed by considering a point pY on the Y axis. The subin-

dex on the point indicates that the point lies on a particular axis. Thus, pM and pC
are the points on the M and C axes that are used for colors in the GB and BR

regions, respectively. By considering the geometry in Figure 13.9(c), the satura-

tion is defined by three equations that are applicable depending on the region

where the point p lies. That is,

s5
jwpY j
jwyj ; s5

jwpCj
jwcj ; s5

jwpMj
jwmj (13.104)

586 CHAPTER 13 Appendix 4: Color images

The first equation defines saturation when p is in the RG regions and the two

remaining equations when it is in the GB and BR regions. In these equations, the

notations jwyj, jwcj, and jwmj indicate the distances from the point w to the max-

ima point along the Y, C, and M axis. Thus, the divisor normalizes the distance to

be between zero and one. In Figure 13.9(c), these distances correspond to the

length of the subcube defining the hexagon given in Eq. (13.103). By considering

the geometry in Figure 13.9(c), the distance for each point can be computed as

jwpY j5 jwyj2 jypY j; jwpCj5 jwcj2 jwpCj; jwpMj5 jwmj2 jwpMj (13.105)

Thus, by considering Eqs (13.103) and (13.105) in Eq. (13.104),

s5
v2 jypY j

v
; s5

v2 jypCj
v

; s5
v2 jypMj

v
(13.106)

We can also see in Figure 13.9(c) that the distances in these equations corre-

spond to the color component in the direction of the axis where the point lies.

That is,

s5
v2 b

v
; s5

v2 g

v
; s5

v2 r

v
(13.107)

In order to combine these three equations into a single relationship, it is neces-

sary to observe how the [r g b] coordinates of a color determine its region in the

hexagon. By observing the projection of the cube illustrated in Figure 13.9, it can

be seen that a color is in the region RG only if the b component of the color is

lower than r and g. Similarly, the color is in the GB region only if r is the smal-

lest component and it is in the region BR only if g is the smallest component.

Accordingly,

s5
v2minðr; g; bÞ

v
(13.108)

Similar to saturation, the hue of a color is intuitively interpreted by consider-

ing the geometry of the hexagon obtained by the subcube’s projection. As such,

the hue is considered as the angular value taking as reference the center of the

hexagon; by changing the angle, we change the color from red, yellow, green,

cyan blue, and magenta. Naturally, the computation of the hue is also dependent

on the part of the hexagon where the color lies.

Figure 13.9(d) illustrates the geometry used to compute the angle for a point

between the R and Y lines. The angular position of the point p is measured as a

distance from the R line as

h5
1

6

jpRpj
jpRpY j

(13.109)

The divisor in the second factor normalizes the distance, thus the hue is inde-

pendent of the saturation. According to this equation, the hue value is zero when

the point is on the R line and it is 1/6 when it is on the Y line. This factor is

58713.3 Color models

included since we are measuring the distance in one sextant of the hexagon, thus

the distance around all the hexagon is one.

By considering the geometry in Figure 13.9(d), Eq. (13.109) can be rewritten

as

h5
jepj2 jepRj
6UjwpY j

(13.110)

The distance jepj is equal to the value given by the g component and by the sim-

ilarity of the triangles in the figure, we have that jepRj is equal to jypYj. That is,

h5
g2 jypY j
6UjwpY j

(13.111)

By considering Eq. (13.105), Eq. (13.111) can be rewritten as

h5
g2 jypY j

6Uðjwyj2 jypY jÞ
(13.112)

jwyj corresponds to the length of the subcube defining the hexagon given in

Eq. (13.103). Thus,

h5
g2 jypY j

6Uðv2 jypY jÞ
(13.113)

According to Eqs (13.106) and (13.107), the distance jypYj can be computed

by the minimum value of the RGB components of the color. Thus,

h5
g2minðr; g; bÞ

6Uðv2minðr; g; bÞÞ (13.114)

This equation is generally algebraically manipulated to be expressed as

h5
v2minðr; g; bÞ2ðv2 gÞ

6Uðv2minðr; g; bÞÞ (13.115)

As such, the hue is defined by

h5
ð12 hGÞ

6
(13.116)

where

hG 5
ðv2 gÞ

v2minðr; g; bÞ (13.117)

In order to obtain the hue for any color, it is necessary to consider all the

regions in the hexagon. This leads to the following equations for each region:

h5 ð12 hGÞ=6 for RY ; h5 ð11 hRÞ=6 for YG

h5 ð32 hBÞ=6 for GC; h5 ð31 hGÞ=6 for CB

h5 ð52 hRÞ=6 for BM; h5 ð52 hBÞ=6 for MR

(13.118)

588 CHAPTER 13 Appendix 4: Color images

In this notation, RY means when the color is between the line R and Y in the

hexagon and

hR 5
ðv2 rÞ

v2minðr; g; bÞ ; hB 5
ðv2 bÞ

v2minðr; g; bÞ (13.119)

The definitions in Eq. (13.118) add the angular displacements of each sextant,

such that that 0 is obtained for the red color, 1/6 for yellow, 2/6 for green, etc.

That is, the value of h ranges from 0 to 1. In practical implementations, the h

value is generally multiplied by 360 to represent degrees or by 255 so it can be

stored in a single byte. Also, h is not defined when r5 g5 b, i.e, for desaturated

colors. In these cases, implementations generally use the colors of neighboring

pixels to obtain a value for h or just use an arbitrary value.

The implementation of Eq. (13.118) requires determining in which sextant is a

given color. This is done by considering the maximum and minimum values of

RGB. The color will be in the regions RG, GB, or GR when blue, red, or green is

the smallest value, respectively. Similarly, we can see in Figure 13.9 that a color

will be in the regions MY, YC, or CM when r, g, or b are the maxima, respec-

tively. Thus, by combining these conditions, we have that a color will be in a par-

ticular sextant according to the following relationships:

RY if r5max RGB and b5min RGB

YG if g5max RGB and b5min RGB

GC if g5max RGB and r5min RGB

CB if b5max RGB and r5min RGB

BM if b5max RGB and g5min RGB

MR if r5max RGB and g5min RGB

(13.120)

The maxima here can be substituted by v defined in Eq. (13.102).

The transformation from RGB to HSV color models is defined by solving for

r, g, and b in Eqs (13.103), (13.108), and (13.118). Since the transformations are

defined for each sextant, the inverse is also defined for each sextant. For the case

of colors in the RY region, we can observe that according to Eq. (13.120), r is

greater than the other two components, thus

r5 v (13.121)

Since in this sextant the minimum is b, the saturation is given by the first rela-

tionship in Eq. (13.107). By using this relationship and Eq. (13.121), we have

b5 vð12 sÞ (13.122)

The green component can be obtained by considering Eq. (13.114). That is,

h5
g2 b

6Uðv2 bÞ (13.123)

58913.3 Color models

This equation was developed for the RY region wherein b is the minimum of

the RGB components. The value of g expressed in terms of h, s, and v can be

obtained by substitution of Eq. (13.122) in Eq. (13.123). That is,

g5 vð12 sð12 6hÞÞ (13.124)

By performing similar developments for the six triangular regions on the hexa-

hedron, the transformation from the HSV color model to the RGB color model is

defined as

RY r5 v; g5 k; b5m

YG r5 n; g5 v; b5m

GC r5m; g5 v; b5 k

CB r5m; g5 n; b5 v

BM r5 k; g5m; b5 v

MR r5 v; g5m; b5 n

(13.125)

for

m5 vð12 sÞ
n5 vð12 s�FÞ

k5 vð12 sð12FÞÞ
(13.126)

The value of F in these equations is introduced since the equations use the dis-

placement from the start of the interval defined by the region. That is,

F5 6h2 floorð6hÞ (13.127)

Thus, for the region RY, the displacement is measured from the R axis; for the

region YG, is measured from the Y axis, etc. The development in Eqs (13.122)

and (13.124) uses 6h instead of F since both values are the same for the interval

RY. In implementation of Eq. (13.125), the region of the color can be simply

determined by considering the angle defined by h. The index of the region start-

ing from zero for RY and ending with five for MR is floor(6h).

13.3.7.2 The triangular model: HSI
Figure 13.10 illustrates the definition of the triangular model. In this model, the

colors in the RGB cube are organized by a set of triangles formed by three points

in the RGB axes. Each triangle defines a plane that contains colors with the same

lightness value. As the lightness increases, the triangle moves further away from

the origin, thus it contains brighter colors. The lightness in this model is defined

by the value given by

l5wRr1wGg1wBb (13.128)

The weights wR, wG, and wB are parameters of the color model and they scale

each of the axes. When the axes are scaled, the triangles’ center is biased toward

a particular point. For example, if wR5 0.2, wG5 0.4, and wB5 0.4, then the tri-

angle will intersect the R axis at the middle of the distance of the other axes, thus

590 CHAPTER 13 Appendix 4: Color images

its center will be biased toward the green and blue. This type of shift is illustrated

by the dotted triangle in the diagram shown in Figure 13.10(a).

In the triangle model, a color is normalized to be independent of brightness by

division by l.

r5wr

r

l
; g5wg

g

l
; b5wb

b

l
(13.129)

As such, a color can be characterized by the lightness l and by its hue and sat-

uration computed from normalized coordinates. The definition in Eq. (13.129) is

similar to Eq. (13.14). This type of equation defines a central projection that

maps the colors by tracing radial lines from the origin of the coordinate system.

In the case of Eq. (13.129), the projection uses radial lines to map the colors into

the normalized triangle defined by the points [1 0 0], [0 1 0], and [0 0 1].

B

G

G

B

R

BB

O

R
R

G

G

pR

α0

β0

γ0

r–

qR

qR

gR

gR

pB

pB

p

p

q

t x h

mBG

mBG

pRG
pRG pR WRG

x

w

w

p

O

R
[1,0,0]

[0,1,0]

[0,0,1]

(a) Triangles for different lightness (b) Radial projection of a color

(c) Computation of saturation (d) Computation of hue

α0

FIGURE 13.10

HSI color model.

59113.3 Color models

Figure 13.10(b) illustrates this mapping. In this figure, the square in the small tri-

angle is mapped into the larger triangle. The dotted line in the figure corresponds

to the radial axis of the projection. The hue and saturation of any triangle is com-

puted by using normalized coordinates. That is, the hue and saturation of any

color are independent of its lightness and they are computed by considering the

geometric measures in the normalized triangle.

There are two cases of interest for the scale settings. The first case is called

the unbiased case and the second is called the biased NTSC case. The first con-

siders that wR5wG5wB5 1/3. That is, the gray points defined at the centers of

the triangles are [l/3 l/3 l/3]. The white point is obtained for maxima lightness,

[1/3 1/3 1/3]. According to Eq. (13.129), the lightness in the unbiased case is

given by

lunbiased 5
ðr1 g1 bÞ

3
(13.130)

The problem with this definition is that the combination of luminance is

poorly matched to the brightness perceived by the human eye. As shown in

Figure 13.4, the perceived brightness in the human eye is stronger for green col-

ors than for red and blue. The biased NTSC case is aimed at giving a better corre-

lation between lightness and the brightness perceived by the human eye by using

the weights given by wR5 0.3, wG5 0.59, and wB5 0.11. These weights shift the

gray points to be at [0.3l 0.59l 0.11l] and the white point is located at

[0.3 0.59 0.11]. According to Eq. (13.129), the lightness in the biased NTSC case

is given by

lNTSC 5 0:3r1 0:59g1 0:11b (13.131)

This equation is the same as the definition in Eq. (13.84), thus it corresponds to

the luma in the YUV and YIQ color models. Accordingly, the lightness in this case

should be well correlated to the human perception of luminance and it is compati-

ble with analogue television. However, in order to be accurate, it is important that

the RGB components to be gamma corrected. Another issue is that the weight

values move the center point to colors that do not match perceived gray colors. The

gray values in the RGB color models are generally defined for equal coordinate

values, thus the hue and saturation are biased. It is also important to note that

although the triangle model uses the mapping in Eq. (13.14), it does not use the

chrominance diagram to define the coordinates, but the mapping is only used to

obtain a radial projection. The chromaticity diagram is only defined for the CIE

RGB and XYZ color models since they are based on perception experiments.

The geometry used to define the saturation in the triangle color model is illus-

trated in Figure 13.10(c). A color is indicated by the point p and w denotes the

white point. Both points are normalized according to Eq. (13.129), thus they lie

on the plane defined by the normalized triangle. The location of the point w

changes for biased and unbiased cases. In the figure, t is the projection of w on

the plane b5 0 and q is on the line defined by the points w and t.

592 CHAPTER 13 Appendix 4: Color images

Saturation is defined as the difference of a color from gray. That is, it can be

intuitively interpreted as the normalized distance from p to w. When the distance

is zero, the point represents a gray color and when it is one it represents one of

the colors in the perimeter of the triangle. In order to formalize this concept, it is

necessary to consider three different regions in the color space. The regions are

illustrated in Figure 13.10(d) which shows the normalized triangle with the

observer looking at the center of the RGB color cube. The three gray triangles in

this figure define the regions RG, GB, and BR. The geometry in Figure 13.10(c)

corresponds to a color in the RG region. In this case, the distance is normalized

by dividing it by the distance to the point in the line border between the axes R

and G. That is,

sRG 5
jwpj
jwpRGj

(13.132)

The subindex on s indicates that this equation is valid only for colors in the

region RG. If α is the angle formed by the lines pRGw and pRGt, then according to

the dotted triangles in Figure 13.10(c), we have the following two trigonometric

identities:

sinðαÞ5 jwqj
jwpj ; sinðαÞ5 jwtj

jwpRGj
(13.133)

By substituting the values of jwpj and jwpRGj from this equation into

Eq. (13.132), we have

sRG 5
jwqj
jwtj (13.134)

By considering the definition of jwqj,

sRG 5
jwtj2 jqtj

jwtj 5 12 jqtj (13.135)

The distance jqtj corresponds to the blue component of the point p. This point

is the projection of the color according to Eq. (13.129). Thus,

sRG 5 12
b

l
(13.136)

Similar developments can be performed for colors in the regions GB and BR.

In these cases, the point t is the projection of w into the planes r5 0 and g5 0,

respectively. This leads to the following equations that define the saturation on

each region:

sGB 5 12
r

l
; sBR 5 12

g

l
(13.137)

It is possible to combine Eqs (13.136) and (13.137) into a single equation that

defines the saturation for any color by considering the way in which the [r g b]

59313.3 Color models

components determine the region of the color. By observing the projection of the

color in Figure 13.10(d), it can be seen that a color is in the region RG only if b

is the smallest component. It is in the GB region if r is the smallest component,

and it is in the region BR if g is the smallest component. Since the smallest com-

ponent coincides with the color component used to define the saturation in Eqs

(13.136) and (13.137),

s5 12
minðr; g; bÞ

l
(13.138)

The hue of a color is intuitively interpreted by considering the angular value

in the normalized triangle by taking as reference the line joining the white point

and the red color. This is illustrated in Figure 13.10(d). Here, the hue for the color

represented by the point p corresponds to the angle defined between the lines wpR
and wp. In the example in this figure, the white point does not coincide with the

center of the coordinates; however, the same definitions and formulations are

applicable for the unbiased case. In both cases, an angle of zero corresponds with

the red color.

By considering that the white point has the coordinates bwr wg wbc and the

point pR has the coordinates [1 0 0], then the vector from w to pR is given by

wpR 5 ½12wr 2wg 2wb� (13.139)

Since the coordinates of the point p are defined by Eq. (13.129), the vector

from w to p is given by

wp5
r

l
2wr

g

l
2wg

b

l
2wb

� 	
(13.140)

The angle between the vectors in Eqs (13.139) and (13.140) can be obtained

by considering the dot product. That is,

wpRUwp5 jwpRjjwpjcosðhÞ (13.141)

By solving for h, we have

h5 cos21 wpRUwp
jwpRjjwpj

� �
(13.142)

The dot product and the two modules can be computed for Eqs (13.139) and

(13.140). Thus,

h5 cos21ðkÞ (13.143)

For

k5
ð12wrÞðr2wrÞ2wgðg2wgÞ2wbðb2wbÞffi

ð12wrÞ2 1w2
g 1w2

b 1 ðr2wrÞ2 1 ðg2wgÞ2 1 ðb2wbÞ2
q (13.144)

594 CHAPTER 13 Appendix 4: Color images

The transformation in Eq. (13.143) is generally implemented by using an alter-

native expression that uses the arctangent function. That is, by using trigonomet-

ric identities, Eq. (13.143) becomes

h5
π
2
2 tan21 kffiffiffiffiffiffiffiffiffiffiffiffiffi

12 k2
p

� �
(13.145)

This equation will give the correct values only for angles between 0 and π
corresponding to colors for which b, g. When the angle exceeds π, it is neces-

sary to consider that the angle is negative (or measured clockwise). That is,

h5

π
2
2 tan21 kffiffiffiffiffiffiffiffiffiffiffiffiffi

12 k2
p

0
@

1
A; for b, g

2π2
π
2
2 tan21 kffiffiffiffiffiffiffiffiffiffiffiffiffi

12 k2
p

0
@

1
A; otherwise

8>>>>>><
>>>>>>:

(13.146)

This equation gives a range of values from 0 to 2π. In an implementation, the

value obtained is generally expressed on degrees so it can be represented by an

integer number. Alternatively, the range can be quantized to be represented by a

single byte.

The transformation from RGB to HSL is defined by Eqs (13.130), (13.131),

(13.138), and (13.146). Thus, the inverse transformation is obtained by solving

for r, g, and b in these equations. Naturally, the inverse depends on which region

is the color. This region can be determined by comparing the angle h against the

angles formed between the red and green and between the green and blue axes.

These angles are denoted by a0 and a1. For the unbiased case, the w point is in

the middle of the triangle, thus a05 a15 120�. In the biased case, these angles

are a05 156.8� and a15 115.68�. As such, the region of a color is determined by

RG; if h, a0
GB; if a0 # h, a0 1 a1
BR; otherwise

(13.147)

Once the region of a color has been determined, a color component can be

obtained by considering Eq. (13.136) or (13.137). For example, when the color is

in the RG region, we have

b5 lð12 sÞ (13.148)

Similarly, Eq. (13.137) can be used to find the red and green colors when the

color is in the GB and RB regions, respectively.

The computation of the remaining two color components is based on the geo-

metrical property of the normalized triangle (Figure 13.10(b)). Consider the trian-

gle in 3D space that is formed by the points O, pR, and mBG. Here, the point mBG

is the midpoint of the BG line, so the angle between pRmBG and the line between

59513.3 Color models

the G and B axes is 90�. By following a similar development to the triangle rela-

tionships in Eq. (13.134), it is possible to relate the ratios between the distances

along the OR axis and distances along the pRmBG line. Thus, the distance for any

color represented by the point x on the line pRqR can be related to distances along

the OR axis by the following expression:

jOrj
jOpRj

5
jmBGxj
jmBGpRj

(13.149)

However, the distance jOpRj is one and jOrj is the red coordinate of the point

x. Thus, this equation can be simply written as

r5
jmBGxj
jmBGpRj

(13.150)

That is the red component of a color is defined as a ratio in the diagonal line.

Here we denote the red component as r: This is because the point x is on the nor-

malized triangle, thus the red component actually corresponds to the normalized

value given in Eq. (13.129). Similar expressions can be obtained for other color

components. For example, for the blue component, we have

b5
jmGRxj
jmGRpBj

(13.151)

Here mGR is the middle point in the GR line and x is a color on the line

pRmGR.

The relationship in Eq. (13.150) can be extended to lines that do not intersect

BG at its middle point. For the point p on the line pRqR in Figure 13.10(b), we

have that the red value is given by

r5
jpgRj

jqRpRjcosðα0Þ
(13.152)

where

jpgRj5 jqRpjcosðα0Þ (13.153)

Here, α0 is the angle between the lines pRmBG and qRpR. The cosine is intro-

duced such that distances are measured in the same direction as that of the midline.

That is, the substitution of Eq. (13.153) in Eq. (13.152) leads to Eq. (13.150).

Figure 13.10(d) illustrates how the definition in Eq. (13.152) can be used to

obtain the red component for the color represented by a point p. In the figure, the

point x is the orthogonal projection of p on the line wgR. Similar to Figure 13.10

(b), this line has the same direction as the middle line pRmBG. The angle α0 in the

figure is defined by the location of the point w; for the unbiased case, w is in the

middle of the triangle, thus α05 0, and for the biased case the angle is

α05 21.60�. From Figure 13.10(d),

jxgRj5 jgRwj1 jwxj (13.154)

596 CHAPTER 13 Appendix 4: Color images

That is,

jxgRj5 jqRwjcosðα0Þ1 jwpjcosðh2α0Þ (13.155)

Here, the subtraction of the angles α0 and h define the angle between the lines

wx and wp. The subtraction is sometimes expressed as a summation by consider-

ing that α0 is negative. By substitution of Eq. (15.55) in Eq. (13.152), we have

r5
jqRwjcosðα0Þ1 jwpjcosðα0 2 hÞ

jqRpRjcosðα0Þ
(13.156)

The first term in the right side of this equation defines the distance ratio for

the point w. That is,

wR 5
jqRwjcosðα0Þ
jqRpRjcosðα0Þ

(13.157)

Thus,

r5wR 1
jwpjcosðα0 2 hÞ
jqRpRjcosðα0Þ

(13.158)

By considering Eq. (13.132), this equation can be rewritten as

r5wR 1
sjwpRGjcosðα0 2 hÞ

jqRpRjcosðα0Þ
(13.159)

The distance jwpRGj can be obtained by considering the angle β0 defined

between the lines wpRG and wwRG. We can observe from Figure 13.10(d) that

cosðβ0 2 hÞ5 jwwRGj
jwpRGj

(13.160)

Thus,

jwpRGj5 jwwRGj
cosðβ0 2 hÞ (13.161)

The angle β0 in this equation can be expressed in terms of α0 by observing

the triangles in the figure that α01 γ05 30 and α01β05 90. That is,

β0 5α0 1 60 (13.162)

By substitution of Eqs (13.161) and (13.162) in Eq. (13.159), we have

r5wR 1 s
jwwRGjcosðα0 2 hÞ

jqRpRjcosðα0Þcosð601α0 2 hÞ (13.163)

By observing that the sides of the normalized triangle have the same length,

we have that the middle distances are related by

jqRpRjcosðα0Þ5 jpRmBGj5 jpBmGRj (13.164)

59713.3 Color models

That is,

jwwRGj
jqRpRjcosðα0Þ

5
jwwRGj
jpBmGRj

(13.165)

The distances are measured in the same direction to the midline jmGRpBj.
Thus, according to Eq. (13.151), the ratio in the left side in Eq. (13.165) defines

the blue coordinate of the point. That is,

jwwRGj
jpBmGRj

5wB (13.166)

Thus, the equation for the red component is obtained by substitution of this

relationship in Eq. (13.163). That is,

r5wR 1 swB

cosðα0 2 hÞ
cosð601α0 2 hÞ (13.167)

This equation represents the red normalized component of a color. The actual

red component can be obtained by considering Eq. (13.129). That is,

r5 l1 sl
wB cosðα0 2 hÞ

wR cosð601α0 2 hÞ (13.168)

As such, the r and b components for a color can be computed using Eqs

(13.148) and (13.168). The remaining component color can be computed using

Eq. (13.128). That is,

g5
ðl2wRr2wBbÞ

wG

(13.169)

Similar developments can be performed for obtaining the RGB components of

colors in the regions GB and BR. Therefore, the complete transformation from

HSL to RGB according to the definitions in Eq. (13.147) is given by

if h, a0:

b5 lð12 sÞ; r5 l1 s
wB cosðA0Þ

wR cosð601A0Þ
; g5

ðl2wBb2wRrÞ
wG

if a0 # h, a0 1 a1:

r5 lð12 sÞ; g5 l1 s
wR cosðA1Þ

wG cosð601A1Þ
; b5

ðl2wRr2wGgÞ
wB

otherwise:

g5 lð12 sÞ; b5 l1 s
wG cosðA2Þ

wB cosð601A2Þ
; r5

ðl2wGg2wBbÞ
wR

(13.170)

For

A0 5α0 2 h

A1 5α1 2 h2 a0
A2 5α2 2 h2 a0 2 a1

(13.171)

598 CHAPTER 13 Appendix 4: Color images

These equations introduce the subtraction of the angles a0 and a1, so the compu-

tations are made relative to the first axis defining the region. In the unbiased model,

the white point is at the center of the triangle, so the constants are defined by

wR 5 0:33; wG 5 0:33; wB 5 0:33
a0 5 120�; a1 5 120�

α0 5 0; α1 5 0; α2 5 0

(13.172)

For the biased model, they are

wR 5 0:30; wG 5 0:59; wB 5 0:11
a0 5 156:58�; a1 5 115:68�

α0 5 21:60�; α1 5214:98�; α2 5210:65�
(13.173)

The alpha sign is negative for the angles used in the GB and BR regions. This

is because the lines defining those angles are in opposite direction to the direction

of the angle α0 used in the presented development.

13.3.8 More color models
This appendix has discussed different types of color spaces that have been created

according to different motivations; there are color spaces aimed to formalize and

standardize our perception of color, while other models are developed for a more

practical nature according to the way reproduction systems work or how data

should be organized for particular process such as video signal transmission. In

any case, the color models are based on the tristimulus theory that formalized the

sensations created by wavelengths in space. Thus, these models do not describe

the physical spectral nature of color, but they provide a way to specify, re-create,

and process our visual sensation of color using a 3D space.

It should be noted that this appendix has considered the most common color

spaces; however, there are other important spaces that have similar motivations

and properties, but they change the way colors are described. For example, the

CIE LCH color model uses the same transformations as the LAB, but it uses

cylindrical coordinates instead of rectangular. This gives a uniform space with

polar coordinates, so it can be related to hue and saturation. The saturation in this

space is generally referred to as chroma and it has the advantage of be more per-

ceptually linear. Another example of an important color description is the

Munsell color model. This color model also uses cylindrical coordinates, it uses

perceptual uniform saturation, and it is based on measures of human perception.

It is also important to mention that there exist other color models that have

focused on achieving a practical color description. For example, the PANTONE

color system consists of a large catalog of standardized colors.

In addition to many color spaces, the literature has alternative transformations

for the same color space. Thus, in order to effectively use color information in

image processing, it is important to understand the exact meaning of the color

components in each color model. As such, the importance of the transformations

59913.3 Color models

between models is not to define a recipe to convert colors but to formalize the

relationships defined by the particular concepts that define each color space.

Accordingly, the transformations presented in this appendix have been aimed at

illustrating particular properties of the color spaces to understand their strengths

and weaknesses rather than to prescribe how color spaces should be manipulated.

13.4 References
Broadbent, A.D., 2004. A critical review of the development of the CIE1931 RGB color-

matching function. Color Res. Appl. 29 (4), 267�272.

Fairman, H.S., Brill, M.H., Hemmendinger, H., 1997. How the CIE 1931 color-matching

functions were derived from Wright�Guild data. Color Res. Appl. 22 (1), 11�23.

Ford, A., Roberts, A., 1998. Color space conversions. , http://www.poynton.com/PDFs/

coloureq.pdf. . (accessed 29 April 2012)

Guild, J., 1932. The colorimetric properties of the spectrum. Philos. Trans. R. Soc. London

A230, 149�187.

Judd, D.B., 1935. A Maxwell triangle yielding uniform chromaticity scales. J. Opt. Soc.

Am. 25 (1), 24�35.

Kuehni, R.G., 2003. Color Space and its Divisions: Color Order from Antiquity to the

Present. Wiley, Hoboken, NJ.

MacAdam, D.L., 1942. Visual sensitivities to color differences in daylight. J. Opt. Soc.

Am. 32 (5), 247�274.

Nida-Rümelin, M., Suarez, J., 2009. Reddish green: a challenge for modal claims about

phenomenal structure. Philos. Phenomenolog. Res. 78 (2), 346�391.

Poynton, C.A., 2003. Digital Video and HDTV: Algorithms and Interfaces. Elsevier, San

Francisco, CA.

Sagawa, K., Takeichi, K., 1986. Spectral luminous efficiency functions in the mesopic

range. J. Opt. Soc. Am. 3 (1), 71�75.

Sharpe, L.T., Stockman, A., Jagla, W., Jägle, H., 2005. A luminous efficiency function,

V*(λ), for daylight adaptation. J. Vision 5 (11), 948�968.

Sherman, P.D., 1981. Colour Vision in the Nineteenth Century: Young/Helmholtz/Maxwell

Theory. Adam Hilger, Bristol.

Smith, A.R., 1978. Color gamut transform pairs. ACM SIGGRAPH Comput. Graphics 12

(3), 12�19.

Wyszecki, G.W., Stiles, W.S., 2000. Color Science, Concept and Methods, Quantitative

Data and Formulae. Wiley, New York, USA.

Wright, W.D., 1929. A re-determination of the trichromatic coefficients of the spectral col-

ors. Trans. Op. Soc. 30 (4), 141�164.

600 CHAPTER 13 Appendix 4: Color images

http://www.poynton.com/PDFs/coloureq.pdf
http://www.poynton.com/PDFs/coloureq.pdf

Index

Note: Page numbers followed by “f”, and “t” refer to figures and tables respectively.

A
Accumulator array, 227�228, 243, 249

Active appearance models, 334�337

Active contour without edges, 322�323

Active contours, 299�325, see also Snakes

geometric, 318�325

parametric, 299�301

Active pixel, 13

Active shape models, 334�338

comparison, 338

Acuity, 6

Adaptive Hough transform, 287

Addition, 28�29, 86�88

Additive operator splitting, 322

Affine

camera model, 501

invariance, 198�199, 278�279, 343�344, 393

moments, 393

transformation, 494�496

Aging, 14�15

Aliasing, 52�53

antialiasing, 244�245

Analysis of 1st order edge operators, 143

Anisotropic diffusion, 114�120

Antialiasing, 244�245

Aperture problem, 205�206

Arbitrary shape extraction, 219�220, 271�272

Area description, 378

Artificial neural networks, 429

Aspect ratio, 16�17

Associative cortex, 9

Autocorrelation, 47, 188

Averaging error, 107�108

Averaging operator, 101�103

direct, 102

for background estimation, 439�440

Gaussian, 104�106

B
Background

estimation, 437�450

subtraction, 437�439

Backmapping, 247, 254

Band-pass filter, 80, 168�169, 178�179

Bandwidth, 5, 15�16, 78, 80, 102�103, 178�179

Basic Gaussian distribution, 104, 443

Basis functions, 59�60, 69, 72, 78

Benham’s disk, 11

Bhattacharyya distance, 424

Bilateral filtering, 120

Bilateral mirror symmetry, 327�328

Binary morphology, 129

Biometrics, 2, 121, 237�238, 416�417

Blind spot, 5

Blooming, 14�15

Boundary, 345�346

Boundary descriptors, 345�378

Bresenham’s algorithm

circles, 254

lines, 247

Brightness, 12�13, 38

addition, 86�88

clipping, 86�88

division, 86�88

inversion, 25�30, 86�88

multiplication, 86�88

scaling, 88�89

Brodatz texture images, 401�402

Burn, 14�15

C
C implementation, 17�18

C11, 17�18

Camera, 12�15

aging, 14�15

blooming, 14�15

burn, 14�15

CCD, 12

CCIR standard, 12

CMOS, 12

digital, 12, 16�17

digital video, 16�17

high resolution, 15

hyperspectral, 15

infrared, 15

interlacing, 16�17

lag, 14�15

low-light, 15

pinhole, 490

progressive scan, 16�17

readout effects, 14�15

vidicon, 12

601

Camshift, 457�472

Canny edge detection operator, 153�161

Canonical analysis, 429

Cartesian coordinates, 491

Cartesian moments, 384�388

CCD camera, 12

CCIR standard, 12

Central limit theorem, 108, 224, 519�520

Centralized moments, 385�386

Centered Gaussian distribution, 443�444

Chain codes, 346�349

Charge coupled device, 12

Chebyshev moments, 393

Choroid, 5

Chrominance, 8

CIE, 547�561

Ciliary muscles, 5

CImg, 18, 19t

Circle drawing, 218

Circle finding, 261�266, 413

Circular symmetry, 327�328

Classification, 417�429

Clipping, 86�88

Closing operator, 126, 441

closure, 126

CMOS camera, 12

Coding, 9, 41�42, 58�59, 69, 335�336

Colormetric equation, 544

Color, 38�42, 544

tracking, 457

models, 544�600

Compactness, 379�381

Comparison

active shape, 293�294

circle extraction, 257�258

corner extraction, 180�193

deformable shapes, 294�299

edge detection, 138, 140�173

filtering images, 115�117, 121�122

Hough transform, 258�271, 287

moments, 383�394

optical flow, 211�212

statistical operators, 122�123

template matching, 338

texture, 406�407, 429

thresholding, 161

Complementary metal oxide silicon, 12

Complete snake implementation, 308

Complex magnitude, 45

Complex moments, 393

Complex phase, 45

Compressive sensing, 52

Computer software, 17�18

Computer vision system, 12�18

Computer interface, 15�17

Computerized tomography, 3

Cones, 6

types, 6

Confusion matrix, 420

Connectivity analysis, 160, 345f

Continuous Fourier transform, 54

Continuous signal, 15

Continuous symmetry operator, 333�334

Convolution, 46, 69, 103, 222�235

duality, 46, 103

template, 98�101, 142, 222�235

Cooccurrence matrix, 406�407

Co-ordinate systems, 21, 495

Corner detection, 180�193

chain code, 346�349

comparison, 185�186, 198�199

differencing, 182�184

differentiation, 184�188

Harris operator, 188�192

improvement, 151

Moravec operator, 188�192

performance, 185�186

Correlation, 47, 182, 203f, 224�225,

230�231

function, 188

Correlation optical flow, 200�204, 203f

Cosine distance, 424

Cosine transform, 68�69, 406

Covariance matrix, 335, 421�423

Cross-correlation, 224�225, 230�231

Cubic splines, 395

Curvature, 171, 180, 301, 304�305, 320�321,

395

definition, 180�182

primal sketch, 151

scale space, 151

Curve fitting, 195, 521�523

D
d.c. component, 54�55, 61�62, 78

Deformable template, 294�297

Delta function, 47

Demonstrations, 12, 31�32

Deriche operator, 155

Descriptors

3D Fourier, 377�378

elliptic Fourier, 369�371

Fourier, 351�353

real Fourier, 355�357

602 Index

region, 378�394, 409�410

texture, 403�417

Digital camera, 16�17

video, 16�17

Difference of Gaussian, 165, 194

Differential optical flow, 204�211

Digital video camera, 15�17

Dilation, 128�130, 442

Direct averaging, 107

Discrete cosine transform, 68�69, 406

Discrete Fourier transform, 53�62, 393�394

Discrete Hartley transform, 70�71

Discrete sine transform, 69

Discrete symmetry operator, 329

Distance measure, 417�425

Bhattacharyya, 424

cosine, 424

Euclidean, 310, 417�418

L1 and L2 norms, 418

Mahalanobis, 420�421

Manhattan, 418

Matusita, 424

taxicab, 418

Distance transform, 325�327

Drawing lines, 138

Drawing circles, 218

Dual snake (active contour), 299�325

Duality, 243, 492

Duality convolution, 46, 230�231

Dynamic textures, 417

E
Ebbinghaus illusion, 10�11

Edge

direction, 144�145, 149�150, 155, 164

magnitude, 144�145

vectorial representation, 144�145

Edge detector, 140�173

Canny, 153�161

comparison, 171�172, 183�184

Deriche, 155

first order, 140�161

horizontal, 140

Laplacian, 163�164

Laplacian of Gaussian, 164

Marr-Hildreth, 165�170, 172

Petrou, 170�171

Prewitt, 145�146

Roberts cross, 143�144

second order, 161�170

Sobel, 146�153

Spacek, 170�171

surveys, 173

Susan, 171

vertical, 140

Eigenvalue, 190, 335�336, 534�537

Eigenvector, 335�336, 534�537

Ellipse finding, 255�258, 266

Elliptic Fourier descriptors, 369�371

Energy, 176, 404�405

Energy minimization, 296, 299�300, 395

Entropy, 198, 404�405

Equalization, 90�93

Erosion, 124�127, 442

Estimation of background, 437�450

Estimation theory, 519

Euclidean distance, 304, 419

Euler number, 381�383

Evidence gathering, 243

Example worksheets, 24f

Eye, 5�8

F
Face recognition, 2, 40�41, 73�74, 318, 336

Fast Fourier transform, 59�60, 107, 403�404

Fast Hough transform, 287

Fast marching methods, 322

Feature space, 424�425

Feature extraction, 1�600!

Feature subset selection, 429

FFT application, 121�122, 230�234, 403�404

Fields, 16�17

Filter

averaging, 101�103

bilateral, 120

band-pass, 80, 168�169, 178�179

high-pass, 79�80, 151�153, 168�169

low-pass, 78, 102�103, 151�153, 168�169

median, 108, 122, 134

mode, 112�114

truncated median, 112�114, 122

Filtering image comparison, 115f, 122

Firewire, 16

First order edge detection, 140�161

Fixed pattern noise, 14�15

Flash A/D converter, 15�16

Flexible shape extraction, 293

Flexible shape models, 334�337

Flow detection, 199�212

Focal length, 490

Foot-of-normal description, 247

Force field transform, 121�122

Form factor, 234

Fovea, 5

603Index

Fourier descriptors, 349�378

3D, 378

elliptic, 369�371

real Fourier, 355�357

Fourier transform, 42�48

applications, 78�80, 103, 173�174, 403

display, 61f, 403

discrete, 53�62, 153, 393�394

frequency scaling, 66�67, 403�404

inverse, 46, 55�56, 179�180

log polar, 234

Mellin, 234

moments, 393�394

ordering, 61

pair, 46, 48f, 55f, 62

phase congruency, 173�174

pulse, 43f

reconstruction, 44�45, 56f, 176, 394

replication, 59�60

reordering, 61

rotation, 65�66

separability, 59�60

shift invariance, 63�65, 354

of Sobel operator, 152f

superposition, 67�68

texture analysis, 403

Fourier-Mellin transform, 234

Framegrabber, 15�16

Frames, 15

Frequency, 41�42

Frequency domain, 41�42

Frequency scaling, 66�67, 403�404

Fuzzy Hough Transform, 287

G
Gabor wavelet, 71�74, 178�179, 237�238,

406

log-Gabor, 178�179

Gamma correction, 577

Gait recognition, 210�211, 333�334, 436�437,

482

Gaussian

averaging, 104�106

function, 47, 62, 104, 443

noise, 108, 223, 520

operator, 104�106

smoothing, 114�115, 122, 146�148,

154�155

Gaussian distribution

basic, 443

centred, 443�444

multivariate, 444�445

General form of Sobel operator, 149

Generalized Hough transform, 271�286

Generic Image Library (GIL), 18

Genetic algorithm, 296�297

Geometric active contour, 318�325

Gradient Location and Orientation Histogram

(GLOH), 239�240

Greedy algorithm, 301�308

Greedy snake, 301�308

Gray scale, 21, 38

Gray-level morphology, 127�128

Group operations, 98�108

H
Haar wavelets, 74�78

Hamming window, 108, 233�234

Hanning window, 108, 233�234

Harris corner detector, 188�192

Hartley transform, 70�71

High resolution camera, 15

High-pass filter, 79�80, 151�153, 168�169

Histogram, 84�85

equalization, 90�93

normalization, 89�90

Histogram of Oriented Gradients (HoG), 241

Hit or miss operator, 123

HoG, 241

Homogeneous co-ordinate system,

21, 491�496

Homography, 495

Horizontal edge detection, 140

Horizontal optical flow, 205

Hotelling transform, 78, 525

Hough Transform (HT), 243�287

adaptive, 287

antialiasing, 244�245

backmapping, 247, 254

circles, 250�255, 261�266

ellipses, 255�258, 266�271

fast, 287

fuzzy, 287

generalized, 271�286

invariant, 279�286

lines, 243�249

mapping, 243

noise, 246�247, 252�254

occlusion, 244, 254

polar lines, 249

probabilistic, 287

randomized, 287

reviews, 287

velocity, 476

604 Index

Hu moments, 387

Hue saturation value HSV, 585

Hue saturation intensity HSI, 590

Human eye, 5�8

Human vision, 4�12

Hyperspectral camera, 15

Hysteresis thresholding, 158

I
IEEE 1394, 16

Illumination, 140, 194, 211�212, 218, 403

Image coding, 17�18, 41�42, 69, 80

Image filtering comparison, 115�117, 122

Image formation, 38�42

Image geometry, 489

Image processing, 1

Image texture, 2, 66, 314, 400�402

Inclusion operator, 127�128

Inertia, 404�405

Infrared camera, 15

Integral image, 196�197

Intensity normalization, 89

Interlacing, 17f

Invariance, 198�199, 278�279, 343�344, 393

affine, 198�199, 278�279, 343�344, 393

illumination, 140, 194, 211�212, 218, 403

location, 194, 218, 343�344, 385�386

position, 228, 233�234, 327�328, 403

projective, 198�199, 343�344

rotation, 193�194, 234, 343�344, 372,

385�386

scale, 218, 228, 231�232, 234, 403, 413

shift, 63�65, 354, 403�404

start point, 347�348

Invariant Hough transform, 279�286

Invariant moments, 387�392

Inverse Fourier transform, 46, 51�52, 174

Inversion of brightness, 25�30, 86�88

Iris, 5

Irregularity, 380�381

Isochronous transfer, 16

J
Java, 17�18

Journals, 30�31

JPEG coding, 17�18, 41�42, 69, 198�199

K
Karhunen�Loéve transform, 78, 525�526

Kass snake, 308�313

Kernel methods, 429

k-nearest neighbour rule, 424�428

L
L1 and L2 norms (distances), 417�418

Lag, 14�15

Laplacian edge detection operator, 163�164

Laplacian of Gaussian, 164

Fourier transform, 169f

Laplacian operator, 163�164

Lateral inhibition, 8

Lateral geniculate nucleus, 9

Least squares criterion, 519�521

Legendre moments, 393

Lens, 5

Level sets, 318�325, 338

Line drawing, 138

Line finding, 243�249, 259�261

Line terminations, 186, 301

Linearity, 47, 67�68

Local Binary Pattern (LBP), 411�417

Local energy, 176

Location invariance, 194, 218, 343�344, 385�386

Logarithmic point operator, 88�89

Log-polar mappings, 234

Look-up table, 15�16, 89

Low-light camera, 15

Low-pass filter, 77�78, 102�103, 151�153,

168�169

Luminance, 8

Luminosity, 545�547

LUV color model, 562�567

M
Mach bands, 7�8

Magazines, 30

Magnetic resonance, 2�3

Mahalanobis distance, 420�421

Manhattan distance, 418

Maple mathematical system, 19�20

Marr-Hildreth edge detection, 165�170, 173

Fourier transform, 168�169

Mathcad, 25�30

Mathematical systems, 19�30

Maple, 19

Mathcad, 25�30

Mathematica, 19

Matlab, 19�25

Octave, 20

Matlab mathematical system, 19�25

Matusita distance, 424

Meanshift, 457�472

Medial axis, 327

Median filter, 109�112, 122, 134

for background estimation, 439�440

605Index

Mellin transform, 234

Mexican hat, 165

Minkowski operator, 130�133

Mirror symmetry, 385

Mixture of Gaussians, 444�445, 444f, 446f,

450, 473

Mode, 112

Mode filter, 112�114

Moments, 383�394

affine invariant, 393

Cartesian, 384

centralized, 385�386

Chebyshev, 393

complex, 393

Fourier, 393�394

Hu, 387

Legendre, 393

normalized central, 387�388

pseudo-Zernike, 393

reconstruction, 394

reviews, 383, 393

statistical, 383

Tchebichef, 393

velocity, 482�483

Zernike, 388�392

Moravec corner operator, 188

Morphology

binary, 123�124, 127

gray level, 127�128

Motion detection, 199�212, 220�221

area, 200�204

differencing, 204�211, 220�221

optical flow, 200�211

Moving object

detection, 437�450, 476�480

description, 480�483

tracking, 451�452

MPEG coding, 17�18, 69

Multiplication of brightness, 86�88

Multiscale operators, 115�117, 193�197

Multivariate Gaussian distribution,

444�445

N
Narrow band, 322

Nearest neighbor, 424�428

Neighbors, 345�346

Neural

model, 8

networks, 429

signals, 9

system, 8�9

Noise

Gaussian, 106, 223, 519�520

Rayleigh, 108, 114

salt and pepper, 111�112, 171�172

speckle, 114

Nonmaximum suppression, 155�158

Normal distribution, 146�148, 223, 519�520

Normal force, 313�314

Normalization, 90�93, 305

Normalized central moments, 387�388

Norms (distance), 420�421

NTSC, 16�17

Nyquist sampling criterion, 49�51

O
Object detection

moving, 435

static, 439�440

Occipital cortex, 9

Occlusion, 229�230

Open contour, 313�314

Open CV, 18, 19t

Opening operator, 126�127, 441

Optical flow, 199�212

comparison, 210�211

correlation, 198�199, 203f

differential, 204�211

horizontal, 205

matching, 198�199

tracking, 452�453

vertical, 205

Optical Fourier transform, 57, 233�234

Optimal smoothing, 149, 154

Optimal thresholding, 94�95

Ordering of Fourier transform, 61

Orthogonality, 255�256, 335�336, 391

Orthographic projection, 21, 333�334, 502

P
PAL system, 16�17

Palette, 40

Parameter space reduction, 259�261

Parametric active contour, 299�325

Paraperspective model, 500

Passive pixel, 13

Pattern recognition, 31, 429�431

statistical, 97, 383�384

structural, 429�431

PCA

SIFT, 525�526

statistical shape, 525�526

606 Index

Perimeter, 378

descriptors, 345�378

Perspective, 21, 490�491

camera model, 490�491

Petrou operator, 170�171, 173

Phase, 45, 63�64

Phase congruency, 173�180

Photopic vision, 6

Pinhole camera, 490

Picture elements, 2�3, 21

Pixels, 2�3, 21

active, 13

passive, 13

Poincarré measure, 381�383

Point distribution model, 334�335

Point operators, 86�97

Polar co-ordinates, 228, 233�234

Polar HT lines, 247

Position invariance, 228, 233�234, 327�328,

403

Prewitt edge detection, 145�146, 172

Primal sketch, curvature, 192�193

Principal components analysis, 78, 335,

525�540

Probabilistic Hough transform, 287

Progressive scan camera, 16�17

Projective geometry, 491

Projective invariance, 198�199, 343�344

Pseudo Zernike moments, 393

Pulse, 43

Q
Quadratic splines, 395

Quantization, 108, 183, 459, 578

Quantum efficiency, 14�15

R
Radon transform, 243

Random field models, 417

Randomized HT, 287

Rarity, 198

Rayleigh noise, 108, 114

Readout effects, 14�15

Real Fourier descriptors, 355

Reconstruction

Fourier transform, 44�45, 56f, 176, 394

moments, 394

Rectilinearity, 381�383

Region, 345

Region descriptors, 378�394, 409�410

Regularization, 314

Remote sensing, 2�3

Reordering Fourier transform, 61

Replication, 59�60

Research journals, 30�31

Retina, 5

Review

chain codes, 346�349

circle extraction, 257�258

corners, 192�193

deformable shapes, 288

edge detection, 173

education, 31�32

Hough transform, 287

level set methods, 320

moments, 383, 393

optical flow, 210�211

pattern recognition, 428�429

shape analysis, 395

shape description, 395

template matching, 287

texture, 431

thresholding, 93�94

RGB color model, 568

Roberts cross edge detector, 143�144

Rods, 6

Rotation invariance, 193�194, 234, 343�344,

372, 385�386

Rotation matrix, 190, 272, 497

R-table, 274�275

S
Saliency, 198

Salt and pepper noise, 111�112, 348�349

Sampling, 49�53, 56

Sampling criterion, 49�53, 56

Sawtooth operator, 88

Scale invariance, 218, 228, 231�232, 234, 403,

413

Scale Invariant Feature Transform

SIFT, 193�196

Scale space, 115, 134, 192�193, 195

curvature, 151

Scaling of brightness, 84�85

Scotopic vision, 6

Second order edge operators, 161�170

Separability, 59�60

Shape descriptions, 480�483

Shape extraction, 220�222

circle, 261�266, 413

ellipses, 257f, 266�271

lines, 243, 259�261

Shape reconstruction, 350�351, 374, 392

Shift invariance, 63�65, 354, 403�404

607Index

SIFT operator, 193�196

PCA-SIFT, 525�526

Sinc function, 43�44, 47, 106

Sine transform, 69

Skeletonization, 325�334

Skewed symmetry, 333�334

Smoothness constraint, 206

Snakes, 299�325

3D, 314

active contour without edges, 322�323

dual, 315

geometric active contour, 318�325

greedy, 301�308

Kass, 308�313

normal force, 313�314

open contour, 313�314

parametric active contour, 318�319

regularization, 314

Sobel edge detection operator, 146�153

Fourier transform, 151�153

general form, 149

Spacek operator, 172�173

Speckle noise, 114

Spectrum, 7, 43�44

Speeded Up Robust Features (SURF), 196�198

Splines, 351�352

Start point invariance, 347�348

Statistical geometric features, 409

Statistical moments, 383

Statistical pattern recognition, 97, 383�384

Structural pattern recognition, 428�429

Structuring element, 123, 126

Subtraction of background, 475�476

Superposition, 67�68

Support vector machine, 429

SURF, 196�198

Survey, see Review

Susan operator, 171

Symmetry, 327�334

bilateral, 327�328

circular, 327�328

continuous operator, 333�334

discrete operator, 329

focus, 333�334

mirror, 327�328

skewed, 333�334

Synthetic computer images, 24f

T
Taxicab measure, 418

Television

aspect ratio, 16�17

interlacing, 17f

signal, 12�13

Template

computation, 228

convolution, 46, 98�101, 142, 222�235

Fourier transform, 230

matching, 338

noise, 229

occlusion, 229

optimality, 224

shape, 110�111

size, 102�104, 110�111

Template matching, 222�235

Terminations, 119, 301

Textbooks, 31�34

Texton, 417

Texture, 2�3, 66, 314, 400�402

classification, 417�429

definition, 400

description, 402

dynamic, 417

random field models, 417

segmentation, 429�431

texton, 417

uniform LBP, 416�417

Texture mapping, 111�112

Thinning, 154, 395

Thresholding, 93�97, 158, 220�222

hysteresis, 158

for moving objects, 436�437

optimal, 94�95

uniform, 93�94, 142, 161

Trace of matrix, 190�191

Tracking, 451�473

Camshift, 457�472

colour, 460f

edges, 455�456

Meanshift, 457�472

multiple hypothesis, 455�456

object detection, 235�237, 435

optical flow, 452

Transform

adaptive Hough transform, 287

continuous Fourier, 42

discrete cosine, 68�78, 406

discrete Fourier, 53�62, 393�394

discrete Hartley, 70�71

discrete sine, 69

distance, 325�327

fast Fourier transform, 59�60, 107,

230�231

fast Hough transform, 287

608 Index

force field, 121�122

Fourier-Mellin, 234

Gabor wavelet, 71�74, 240

generalized Hough, 277f

Hotelling, 78, 525

Hough, 243�287

inverse Fourier, 46, 58, 179�180

Karhunen Loève, 78, 525

Mellin, 234

one-dimensional (1D) Fourier, 53�56

optical Fourier, 233�234

Radon, 243

two-dimensional Fourier, 57�62

Walsh, 78, 378, 406

wavelet transform, 73, 406

Transform pair, 46�47, 62, 64f

Translation invariance, 218, 354

Tristimulus theory, 542�544

True color, 40

Truncated median filter, 112, 134

Tschebichef moments, 393

Two-dimensional Fourier transform, 57�62

U
Ultrasound, 2�3, 114, 122, 171�172

filtering, 114, 122, 171�172

Umbra approach, 127

Uniform local binary patterns, 414�415

Uniform LBP, 415

Uniform thresholding, 93�94, 142, 161

Unpredictability, 198

V
Velocity, 200�204

Hough transform, 287

moments, 482�483

Vertical edge detection, 140

Vertical optical flow, 206

Vidicon camera, 12

Viola Jones, 74, 235�237

Video color model, 582

Vision, 2�4

VLFeat 18, 19t

VXL, 18

W
Walsh transform, 78, 80�81, 406

Wavelet transform, 73, 406

Gabor, 71�74, 178�179, 237�238

Haar, 74�78, 235�236

Wavelets, 71�74, 239�240, 378, 428

Weak perspective model, 505�507

Windowing operators, 108, 238�239

Worksheets, 24f, 25�26, 34

Y
YUV color model, 580

YIQ color model, 580

Z
Z transform, 234

Zernike moments, 388�392

Zernike polynomials, 388�389

Zero crossing detection, 167f, 379�380

Zero padding, 231

Zollner illusion, 10�11

609Index

	Contents
	Preface
	What is new in the third edition?
	Why did we write this book?
	The book and its support
	In gratitude
	Final message

	About the authors
	Chapter 1 —Introduction
	1.1 Overview
	1.2 Human and computer vision
	1.3 The human vision system
	1.3.1 The eye
	1.3.2 The neural system
	1.3.3 Processing

	1.4 Computer vision systems
	1.4.1 Cameras
	1.4.2 Computer interfaces
	1.4.3 Processing an image

	1.5 Mathematical systems
	1.5.1 Mathematical tools
	1.5.2 Hello Matlab, hello images!
	1.5.3 Hello Mathcad!

	1.6 Associated literature
	1.6.1 Journals, magazines, and conferences
	1.6.2 Textbooks
	1.6.3 The Web

	1.7 Conclusions
	1.8 References

	Chapter 2 —Images, sampling, and frequency domain processing
	2.1 Overview
	2.2 Image formation
	2.3 The Fourier transform
	2.4 The sampling criterion
	2.5 The discrete Fourier transform
	2.5.1 1D transform
	2.5.2 2D transform

	2.6 Other properties of the Fourier transform
	2.6.1 Shift invariance
	2.6.2 Rotation
	2.6.3 Frequency scaling
	2.6.4 Superposition (linearity)

	2.7 Transforms other than Fourier
	2.7.1 Discrete cosine transform
	2.7.2 Discrete Hartley transform
	2.7.3 Introductory wavelets
	2.7.3.1 Gabor wavelet
	2.7.3.2 Haar wavelet

	2.7.4 Other transforms

	2.8 Applications using frequency domain properties
	2.9 Further reading
	2.10 References

	Chapter 3— Basic image processing operations
	3.1 Overview
	3.2 Histograms
	3.3 Point operators
	3.3.1 Basic point operations
	3.3.2 Histogram normalization
	3.3.3 Histogram equalization
	3.3.4 Thresholding

	3.4 Group operations
	3.4.1 Template convolution
	3.4.2 Averaging operator
	3.4.3 On different template size
	3.4.4 Gaussian averaging operator
	3.4.5 More on averaging

	3.5 Other statistical operators
	3.5.1 Median filter
	3.5.2 Mode filter
	3.5.3 Anisotropic diffusion
	3.5.4 Force field transform
	3.5.5 Comparison of statistical operators

	3.6 Mathematical morphology
	3.6.1 Morphological operators
	3.6.2 Gray-level morphology
	3.6.3 Gray-level erosion and dilation
	3.6.4 Minkowski operators

	3.7 Further reading
	3.8 References

	Chapter 4 —Low-level feature extraction (including edge detection)
	4.1 Overview
	4.2 Edge detection
	4.2.1 First-order edge-detection operators
	4.2.1.1 Basic operators
	4.2.1.2 Analysis of the basic operators
	4.2.1.3 Prewitt edge-detection operator
	4.2.1.4 Sobel edge-detection operator
	4.2.1.5 The Canny edge detector

	4.2.2 Second-order edge-detection operators
	4.2.2.1 Motivation
	4.2.2.2 Basic operators: the Laplacian
	4.2.2.3 The Marr–Hildreth operator

	4.2.3 Other edge-detection operators
	4.2.4 Comparison of edge-detection operators
	4.2.5 Further reading on edge detection

	4.3 Phase congruency
	4.4 Localized feature extraction
	4.4.1 Detecting image curvature (corner extraction)
	4.4.1.1 Definition of curvature
	4.4.1.2 Computing differences in edge direction
	4.4.1.3 Measuring curvature by changes in intensity (differentiation)
	4.4.1.4 Moravec and Harris detectors
	4.4.1.5 Further reading on curvature

	4.4.2 Modern approaches: region/patch analysis
	4.4.2.1 Scale invariant feature transform
	4.4.2.2 Speeded up robust features
	4.4.2.3 Saliency
	4.4.2.4 Other techniques and performance issues

	4.5 Describing image motion
	4.5.1 Area-based approach
	4.5.2 Differential approach
	4.5.3 Further reading on optical flow

	4.6 Further reading
	4.7 References

	Chapter 5 — High-level feature extraction: fixed shape matching
	5.1 Overview
	5.2 Thresholding and subtraction
	5.3 Template matching
	5.3.1 Definition
	5.3.2 Fourier transform implementation
	5.3.3 Discussion of template matching

	5.4 Feature extraction by low-level features
	5.4.1 Appearance-based approaches
	5.4.1.1 Object detection by templates
	5.4.1.2 Object detection by combinations of parts

	5.4.2 Distribution-based descriptors
	5.4.2.1 Description by interest points
	5.4.2.2 Characterizing object appearance and shape

	5.5 Hough transform
	5.5.1 Overview
	5.5.2 Lines
	5.5.3 HT for circles
	5.5.4 HT for ellipses
	5.5.5 Parameter space decomposition
	5.5.5.1 Parameter space reduction for lines
	5.5.5.2 Parameter space reduction for circles
	5.5.5.3 Parameter space reduction for ellipses

	5.5.6 Generalized HT
	5.5.6.1 Formal definition of the GHT
	5.5.6.2 Polar definition
	5.5.6.3 The GHT technique
	5.5.6.4 Invariant GHT

	5.5.7 Other extensions to the HT

	5.6 Further reading
	5.7 References

	Chapter 6 —High-level feature extraction: deformable shape analysis
	6.1 Overview
	6.2 Deformable shape analysis
	6.2.1 Deformable templates
	6.2.2 Parts-based shape analysis

	6.3 Active contours (snakes)
	6.3.1 Basics
	6.3.2 The Greedy algorithm for snakes
	6.3.3 Complete (Kass) snake implementation
	6.3.4 Other snake approaches
	6.3.5 Further snake developments
	6.3.6 Geometric active contours (level-set-based approaches)

	6.4 Shape skeletonization
	6.4.1 Distance transforms
	6.4.2 Symmetry

	6.5 Flexible shape models—active shape and active appearance
	6.6 Further reading
	6.7 References

	Chapter 7 —Object description
	7.1 Overview
	7.2 Boundary descriptions
	7.2.1 Boundary and region
	7.2.2 Chain codes
	7.2.3 Fourier descriptors
	7.2.3.1 Basis of Fourier descriptors
	7.2.3.2 Fourier expansion
	7.2.3.3 Shift invariance
	7.2.3.4 Discrete computation
	7.2.3.5 Cumulative angular function
	7.2.3.6 Elliptic Fourier descriptors
	7.2.3.7 Invariance

	7.3 Region descriptors
	7.3.1 Basic region descriptors
	7.3.2 Moments
	7.3.2.1 Basic properties
	7.3.2.2 Invariant moments
	7.3.2.3 Zernike moments
	7.3.2.4 Other moments

	7.4 Further reading
	7.5 References

	Chapter 8— Introduction to texture description, segmentation, and classification
	8.1 Overview
	8.2 What is texture?
	8.3 Texture description
	8.3.1 Performance requirements
	8.3.2 Structural approaches
	8.3.3 Statistical approaches
	8.3.4 Combination approaches
	8.3.5 Local binary patterns
	8.3.6 Other approaches

	8.4 Classification
	8.4.1 Distance measures
	8.4.2 The k-nearest neighbor rule
	8.4.3 Other classification approaches

	8.5 Segmentation
	8.6 Further reading
	8.7 References

	Chapter 9 —Moving object detection and description
	9.1 Overview
	9.2 Moving object detection
	9.2.1 Basic approaches
	9.2.1.1 Detection by subtracting the background
	9.2.1.2 Improving quality by morphology

	9.2.2 Modeling and adapting to the (static) background
	9.2.3 Background segmentation by thresholding
	9.2.4 Problems and advances

	9.3 Tracking moving features
	9.3.1 Tracking moving objects
	9.3.2 Tracking by local search
	9.3.3 Problems in tracking
	9.3.4 Approaches to tracking
	9.3.5 Meanshift and Camshift
	9.3.5.1 Kernel-based density estimation
	9.3.5.2 Meanshift tracking
	Similarity function
	Kernel profiles and shadow kernels
	Gradient maximization

	9.3.5.3 Camshift technique

	9.3.6 Recent approaches

	9.4 Moving feature extraction and description
	9.4.1 Moving (biological) shape analysis
	9.4.2 Detecting moving shapes by shape matching in image sequences
	9.4.3 Moving shape description

	9.5 Further reading
	9.6 References

	Chapter 10— Appendix 1: Camera geometry fundamentals
	10.1 Image geometry
	10.2 Perspective camera
	10.3 Perspective camera model
	10.3.1 Homogeneous coordinates and projective geometry
	10.3.1.1 Representation of a line and duality
	10.3.1.2 Ideal points
	10.3.1.3 Transformations in the projective space

	10.3.2 Perspective camera model analysis
	10.3.3 Parameters of the perspective camera model

	10.4 Affine camera
	10.4.1 Affine camera model
	10.4.2 Affine camera model and the perspective projection
	10.4.3 Parameters of the affine camera model

	10.5 Weak perspective model
	10.6 Example of camera models
	10.7 Discussion
	10.8 References

	Chapter 11— Appendix 2: Least squares analysis
	11.1 The least squares criterion
	11.2 Curve fitting by least squares

	Chapter 12— Appendix 3: Principal components analysis
	12.1 Principal components analysis
	12.2 Data
	12.3 Covariance
	12.4 Covariance matrix
	12.5 Data transformation
	12.6 Inverse transformation
	12.7 Eigenproblem
	12.8 Solving the eigenproblem
	12.9 PCA method summary
	12.10 Example
	12.11 References

	Chapter 13— Appendix 4: Color images
	13.1 Color images
	13.2 Tristimulus theory
	13.3 Color models
	13.3.1 The colorimetric equation
	13.3.2 Luminosity function
	13.3.3 Perception based color models: the CIE RGB and CIE XYZ
	13.3.3.1 CIE RGB color model: Wright–Guild data
	13.3.3.2 CIE RGB color matching functions
	13.3.3.3 CIE RGB chromaticity diagram and chromaticity coordinates
	13.3.3.4 CIE XYZ color model
	13.3.3.5 CIE XYZ color matching functions
	13.3.3.6 XYZ chromaticity diagram

	13.3.4 Uniform color spaces: CIE LUV and CIE LAB
	13.3.5 Additive and subtractive color models: RGB and CMY
	13.3.5.1 RGB and CMY
	13.3.5.2 Transformation between RGB color models
	13.3.5.3 Transformation between RGB and CMY color models

	13.3.6 Luminance and chrominance color models: YUV, YIQ, and YCbCr
	13.3.6.1 Luminance and gamma correction
	13.3.6.2 Chrominance
	13.3.6.3 Transformations between YUV, YIQ, and RGB color models
	13.3.6.4 Color model for component video: YPbPr
	13.3.6.5 Color model for digital video: YCbCr

	13.3.7 Perceptual color models: HSV and HLS
	13.3.7.1 The hexagonal model: HSV
	13.3.7.2 The triangular model: HSI

	13.3.8 More color models

	13.4 References

	Index

